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Internal waves in a two-layer fluid with rotation are considered within the framework of
Helfrich’s f -plane extension of the Miyata–Maltseva–Choi–Camassa model. We develop
simultaneous asymptotic expansions for the evolving mean fields and deviations from them
to describe a large class of uni-directional waves via the Ostrovsky equation, which fully
decouples from mean-field variations. The latter generate additive inertial oscillations
in the shear and in the phase of both the interfacial displacement and shear. Unlike
conventional derivations leading to the Ostrovsky equation, our formulation does not
impose the zero-mean constraints on the initial conditions of any variable. Using the
constructed solutions, we model the evolution of quasi-periodic initial conditions close
to the cnoidal wave solutions of the Korteweg–de Vries (KdV) equation but with local
defects, both with and without rotation. We show that rotation leads to the emergence
of bursts of internal waves and shear currents, qualitatively similar to the wavepackets
generated from solitons and modulated cnoidal waves in earlier studies, but emerging
much faster. We also show that cnoidal waves with expansion defects discussed in this
work are generalised travelling waves of the KdV equation: they satisfy all conservation
laws of the KdV equation (appropriately understood), as well as the Weirstrass–Erdmann
corner condition for broken extremals of the associated variational problem and a natural
weak formulation. Being smoothed in numerical simulations, they behave, in the absence
of rotation, as long-lived states with no visible evolution, while rotation leads to the
emergence of strong bursts.
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1. Introduction
The Korteweg–de Vries- and Ostrovsky-type family of models plays an important role
in understanding the behaviour of long nonlinear internal waves commonly observed in
coastal seas, narrow straits and river–sea interaction areas (see Grimshaw et al. 1998;
Lamb 2005; Helfrich & Melville 2006; Bona, Lannes & Saut 2008; Ostrovsky et al.
2015; Khusnutdinova & Zhang 2016; Stastna 2022; Ostrovsky et al. 2024, and references
therein). The Ostrovsky equation (Ostrovsky 1978; see also Grimshaw 1985),

(AT + ν AAξ + λAξξξ )ξ = γ A, (1.1)

with constant coefficients ν, λ and γ , is a rotationally modified extension of the
integrable Korteweg–de Vries (KdV) equation (Boussinesq 1871; Korteweg & de Vries
1895; Gardner et al. 1967), accounting for the leading-order balance of weak nonlinear,
dispersive and rotational effects. In the general setting of a density stratified fluid described
by the Euler equations on an f -plane, where f stands for the Coriolis parameter, with
boundary conditions appropriate for oceanic applications, (1.1) is written for the amplitude
A(ξ, T ) of a single plane internal mode φ(z) in a reference frame moving with the linear
long-wave speed c0. Here, ξ and T denote the characteristic and slow-time variables,
respectively. In physical variables, where the bottom is at z = −h and unperturbed surface
is at z = 0, the modal equations have the form

(ρ0W 2φz)z + ρ0 N 2φ = 0, (1.2)

φ = 0 at z = −h, and W 2φz = gφ at z = 0. (1.3)
Here, ρ0(z) is the stable background density profile, g is gravity, N 2 = −gρ0z/ρ0, W =
c0 − u0, where u0(z) is the background shear flow supported by a body force, and it is
assumed that there are no critical levels, that is W �= 0 for any z in the flow domain. The
nonlinear, dispersive and rotational coefficients ν, λ and γ , respectively, are given by

Iν = 3
∫ 0

−h
ρ0W 2φ3

z dz, Iλ=
∫ 0

−h
ρ0W 2φ2 dz, Iγ = f 2

∫ 0

−h
ρ0Φφz dz, (1.4)

where

I = 2
∫ 0

−h
ρ0Wφ2

z dz, ρ0WΦ = ρ0Wφz − (ρ0u0)zφ, (1.5)

and f is the Coriolis parameter (a single mode reduction of the bi-modal system derived
in Alias, Grimshaw & Khusnutdinova 2013). Note that when there is no shear flow,
that is u0(z) ≡ 0, then Φ ≡ φz and γ = f 2/2c; in this case λγ > 0 (normal dispersion),
but sufficiently strong shear near a pycnocline may lead to a situation where λγ < 0
(anomalous dispersion, see Alias, Grimshaw & Khusnutdinova 2014).

The Ostrovsky equation became a paradigm forming model for studying the effects
of rotation on the evolution of internal waves with the natural initial conditions in
the form of KdV solitons (see Grimshaw & Helfrich 2008; Grimshaw et al. 2013;
Ostrovsky et al. 2015; Stepanyants 2020, and references therein) and cnoidal waves, with
an emphasis on modulational instability (see Whitfield & Johnson 2014, 2017; Johnson
2025, and references therein), as well as the related qualitative analysis of the long-
time asymptotics of strongly interacting internal modes described by solutions of coupled
Ostrovsky equations (Alias et al. 2014). One of the aims of our current study is to
extend the modelling to situations when the initial conditions are close to a cnoidal wave
(approximately a chain of KdV solitons), but they are not perfectly periodic, and rather
have some local defects within the computational domain (hence, they can be viewed
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Figure 1. The first 1.7 hours of the colour contour time series of temperature profiles off Northern Oregon
from the surface to 35 m depth. The figure is adapted from Stanton & Ostrovsky (1998).

as being quasi-periodic), and to show, for the case of normal dispersion λγ > 0, that this
class of initial conditions also leads to the generation of slower-moving bursts, qualitatively
similar to the previously modelled unsteady wavepackets (see Grimshaw & Helfrich 2008;
Whitfield & Johnson 2017; Stepanyants 2020, and references therein). The motivation for
that study stems from the observational data of the type shown in figure 1, where we can
see formation of a wavetrain of internal solitary waves close to an imperfect cnoidal wave.
Indeed, given that the waves generally propagate in a variable environment, quasi-periodic
initial conditions seem to be a more natural choice than a single (pure or only slowly
modulated) cnoidal wave. Recently, there appeared renewed interest in the possibility of
generating rogue waves and breathers by various localised perturbations of cnoidal waves
both in integrable and non-integrable settings (see Kuznetsov & Mikhailov 1975; Onorato
et al. 2013; Chabchoub et al. 2013; Kedziora, Ankiewicz & Akhmediev 2014; Maiden &
Hoefer 2016; Chabchoub et al. 2021; He et al. 2022; Bertola, Jenkins & Tovbis 2023;
Grava et al. 2023; Hoefer, Mucalica & Pelinovsky 2023; Mao et al. 2023; Chandramuli
et al. 2024, and references therein), among other possible mechanisms (e.g. Kharif,
Pelinovsky & Slunyaev 2009; Zakharov 2009; Pelinovsky & Slunyaev 2016; Bokaeeyan,
Ankiewicz & Akhmediev 2019; Choi et al. 2022; Slunyaev & Shrira 2023; Agafontsev
et al. 2024; Congy et al. 2024; Flamarion, Pelinovsky & Didenkulova 2024; Slunyaev
2024, and references therein). Moreover, internal rogue waves registered in the oceans have
been linked to the KdV solitons (Osborne 2010). Our study extends the line of research
related to localised perturbations by adding the effect of rotation, as well as discussing the
generalised (shock-like) travelling waves in the absence of rotation (for the KdV equation).

Unlike the KdV equation, the Ostrovsky equation has a constraint on the mean value
of its regular solutions. For example, for periodic solutions on the interval [−L , L], any
regular solution should have zero mean∫ L

−L
A dξ = 0. (1.6)

Additional constraints appear when solutions are considered in the class of functions
vanishing at infinity (Benilov 1992). The existing derivations of the Ostrovsky equation
from the Euler equations do not allow one to consider the arbitrary initial conditions for
the field variables of the parent system, but only those which agree with this constraint.
This restriction on the choice of initial conditions of the Cauchy problem for the parent
system became known as the ‘zero-mean contradiction’. Hence, another aim of our study
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is to generalise the construction of weakly nonlinear solutions leading to the Ostrovsky
equation in such a way that the zero-mean contradiction is avoided. Indeed, this has
been previously done within the scope of the derivation of Ostrovsky-type models in
the simpler settings of the Boussinesq–Klein–Gordon and coupled Boussinesq equations
(Khusnutdinova, Moore & Pelinovsky 2014; Khusnutdinova & Tranter 2019, 2022). In
contrast to the previous work, in the fluids context the mean-field equations appear to be
coupled to equations for deviations from the mean values, presenting a new challenge,
which is addressed in our present paper.

Hence, the aim of our study is twofold, and the rest of the paper is organised as
follows. In § 2 we introduce Helfrich’s rotation-modified two-layer Miyata–Maltseva–
Choi–Camassa (MMCC-f ) model (Helfrich 2007) and obtain its simpler weakly nonlinear
reduction which is used to develop the subsequent (weakly nonlinear) derivations of the
reduced model (for the original MMCC model see Miyata 1988; Maltseva 1989; Choi &
Camassa 1996, 1999). While this setting is simpler than the full Euler equations, our
derivations reveal that it retains the key complexity: the mean-field equations are coupled
with the equations for the deviations. Therefore, this model provides an appropriate
framework for our developments. Next, in § 3 we refine the derivation of the uni-
directional model by considering the simultaneous evolution of mean fields and deviations
from them. This approach introduces the fast characteristic variable ξ = x − c0t and
two slow-time variables τ = √

αt and T = αt , rather than just one, where α is the
small-amplitude parameter (we assume the maximum balance conditions for the weak
nonlinearity, dispersion and rotation). We find a way to bypass the zero-mean contradiction
by developing simultaneous asymptotic expansions of both the mean-field variables and
deviations from them. This allows us to construct a more general class of solutions
allowing the initial conditions for all fluid variables to have arbitrary (and generally time-
dependent) mean values, while the emerging Ostrovsky equations have zero mean by
construction. In § 4 we use the constructed weakly nonlinear solution combined with
numerical modelling using the KdV and Ostrovsky equations in order to investigate
the effect of rotation on the evolution of cnoidal waves of the KdV equation close to
their solitonic limit and having local amplitude and/or periodicity defects. We begin
the section by considering the effect of rotation on simple soliton and cnoidal wave
solutions, as well as dark and bright breathers of the KdV equation and expansion and
contraction periodicity defects in order to set up the phenomenological framework for the
discussion of our main numerical results concerning generic localised perturbations. The
expansion/contraction defects are introduced by cutting the cnoidal wave at the trough
and symmetrically inserting a piece of a straight line/extracting a small symmetric piece
around the trough and gluing the remaining parts together, respectively, see the first two
rows of figure 17 in Appendix A. In all cases we take a sufficiently large computational
domain and impose periodic boundary conditions to model the resulting quasi-periodic
solutions. We show that, combined with the effect of rotation, initial conditions in the
form of cnoidal waves with local defects can lead to bursts of large-amplitude internal
waves and shear currents at relatively small slow-time values and tens of times faster than
the generation of wavepackets from a soliton and a slowly modulated cnoidal wave initial
conditions considered in earlier studies (Grimshaw & Helfrich 2008; Whitfield & Johnson
2017). This significantly increases the likelihood of emergence of such rotation-induced
bursts under real oceanic conditions (see the relevant discussions and oceanic synthetic-
aperture radar images in Stastna et al. 2009; Whitfield & Johnson 2017; Grimshaw,
da Silva & J. 2017). For the generic local defects introduced by adding a localised
perturbation, this can be attributed to the formation of a pair of bright and dark KdV
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breathers and contraction and expansion periodicity defects, with the subsequent effect
of rotation. For the pure expansion and contraction defects the bursts do not take place
without rotation. In fact, in pseudospectral numerical runs the smoothed counterparts of
such initial conditions evolve almost like travelling wave solutions of the KdV equation,
for a very long time. We argue that this happens because these functions (and some other
functions constructed from the known KdV solutions by similar procedures) satisfy all
(infinitely many) conservation laws of the KdV equation (see Appendix A for the details
of this and related discussions). Moreover, a cnoidal wave with an expansion defect has a
continuous first derivative, satisfying the Weirstrass–Erdmann corner condition for broken
(non-smooth) extremals (e.g. Fox 1954) and it is a generalised (‘shock-like’) travelling
wave, using the terminology introduced by Gavrilyuk & Shyue (2022). We also make
remarks about a possible weak formulation for the generalised travelling waves of the KdV
equation. The Cauchy problem for the KdV equation with periodic boundary conditions
in L2 (the square-integrable functions on a torus) is globally well posed, including
uniqueness and continuous dependence with respect to the initial data (Bourgain 1993).
The bursts observed in our modelling with pure periodicity defects are then attributed
solely to the effect of rotation. Moreover, we show that the effects discussed in the paper
are structurally stable with respect to the natural (compatible with the period of the
background cnoidal wave) variations in the size of the computational domain. We finish
with a discussion in § 5, where we also show an example where a local perturbation of
a cnoidal wave of the type considered in our paper has led to the generation of a rogue
wave. A pseudospectral scheme used to solve the Ostrovsky equation is discussed in
Appendix B.

2. The MMCC- f model
We consider the f -plane extension of the MMCC model for an inviscid, incompressible
two-layer fluid with the rigid lid introduced by Helfrich (2007)

hit + (hi ui )x = 0, (2.1)

where

uit + ui uix − f vi = −gηx + 1
ρi

Px + Di , (2.2)

Di = h−1
i

{
h3

i

3

[
uixt + ui uixx − (uix)

2]}
x

, (2.3)

vi t + uivix + f ui = 0. (2.4)

Here, hi , ρi are the layer depths and densities, ui , vi denote the depth-averaged, over each
layer, horizontal velocities in the x and y directions with i = 1 and 2 referring to the
upper and lower layers, respectively; f is the Coriolis parameter, g is gravity and P is the
pressure at the interface. The subscripts t and x denote partial derivatives. In the absence
of motion h1 = h0, and h1 + h2 = H (total depth) and η is the interfacial displacement
(η = h0 − h1, see figure 2).

In the Boussinesq approximation ((ρ2 − ρ1)/ρ1 � 1), the equations can be simplified
by eliminating Px . Using

√
g′H , H, l (a typical wavelength) and l/

√
g′H to non-

dimensionalise (ui , vi ), hi , x and t , respectively, and changing the variables to
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Figure 2. Schematic of a two-layer fluid with rotation in the rigid-lid approximation.

s = u2 − u1, v = v2 − v1, h2 = 1 − h1, U = u1h1 + u2h2 and V = v1h1 + v2h2 with the
barotropic transport in x direction U = F(t) �= 0 in general, we obtain

ηt + (c2
0s + σ sη − sη2 + Fη)x = 0, (2.5)

st +
(σ

2
s2 − s2η + η + Fs

)
x
− γ̃ v = β̃(D2 − D1), (2.6)

vt−svηx + σ svx − 2sηvx + Fvx + sVx + γ̃ s = 0, (2.7)

Vt + (c2
0sv + σ svη − svη2 + FV )x + γ̃ F = 0, (2.8)

where c2
0 = h0(1 − h0), σ = 2h0 − 1, g′ = g
ρ/ρ1, L R =√g′H/ f, γ̃ = l/L R, β̃ =

(H/ l)2.
Next, we consider the Ostrovsky equation regime and assume that β̃ =O(α) and γ̃ =

O(α1/2), where α is the small-amplitude parameter, and scale β̃ = αβ, γ̃ = √
αγ , where

β, γ =O(1). Then, considering the asymptotic expansions

(η, s, v, V ) = α(η, s, v, V )(1) + α2(η, s, v, V )(2) + O(α3), (2.9)

F = αF (1) + α2 F (2) + O(α3), (2.10)
and dropping the terms of O(α3) (not used in our subsequent derivations), gives the
simpler weakly nonlinear equations (all variables have been scaled by α, but for simplicity
we keep the same notations for the new O(1) variables)

ηt + c2
0sx = −α(σ sη + Fη)x , (2.11)

st + ηx = √
αγ v − α

(
σ ssx + Fsx − βc2

0
3

sxxt

)
, (2.12)

vt = −√
αγ s − α(σ svx + Fvx + sV x ), (2.13)

Vt = −√
αγ F − α

(
c2

0sv + FV
)

x . (2.14)

For F = 0, the equations reduce to the model derived by Gerkema (1996), Helfrich (2007).
We consider the periodic solutions on the interval [−L , L] (a typical setting for

numerical runs using pseudospectral methods). Alongside (2.11)–(2.14) we will consider
the equations for the evolving mean fields by averaging the system with respect to x over
this interval and denoting the mean values by hats
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η̂t = 0, (2.15)

ŝt = √
αγ v̂, (2.16)

v̂t = −√
αγ ŝ − α

1
2L

∫ L

−L
(σ svx + sVx ) dx, (2.17)

V̂t = −√
αγ F. (2.18)

Here, the mean fields are generally time-dependent. Hence, the equations for the evolving
mean values and deviations from the mean values are generally coupled because of
the integral term in (2.17). This differs from our previous derivations of Ostrovsky-type
equations free from zero-mean contradiction within the scope of the Boussinesq–Klein–
Gordon equation (Khusnutdinova et al. 2014; Khusnutdinova & Tranter 2019) and coupled
Boussinesq equations (Khusnutdinova & Tranter 2022), where the mean fields were
described by independent equations.

3. Weakly nonlinear uni-directional solution free from zero-mean contradiction
In this section, we construct a large class of solutions of the system (2.11)–(2.18) describing
uni-directionally propagating waves on top of evolving mean fields by presenting each
variable in the form of the sum of its mean value (generally, time-dependent) and deviation
from this mean value

η = η̂ + η̃, s = ŝ + s̃, v = v̂ + ṽ, V = V̂ + Ṽ , (3.1)

where the unknowns η̂, ŝ, v̂, V̂ and the given function F are assumed to be functions
of t, τ = √

αt, T = αt , while the deviations η̃, s̃, ṽ, Ṽ are assumed to depend on the fast
characteristic variable ξ = x − c0t , where c0 is the linear long-wave speed, and two slow-
time variables τ and T . Both the averages and deviations from the averages are sought in
the form of asymptotic multiple-scale expansions in powers of

√
α

(η̂, ŝ, v̂, V̂ ) = (η̂, ŝ, v̂, V̂ )(0) + √
α(η̂, ŝ, v̂, V̂ )(1) + α(η̂, ŝ, v̂, V̂ )(2) + O

(
α3/2), (3.2)

(η̃, s̃, ṽ, Ṽ ) = (η̃, s̃, ṽ, Ṽ )(0) + √
α(η̃, s̃, ṽ, Ṽ )(1) + α(η̃, s̃, ṽ, Ṽ )(2) + O

(
α3/2). (3.3)

The prescribed function F(t) defining the barotropic transport in the x direction is also
assumed to be given in the form

F = F (0) + √
αF (1) + αF (2) + O

(
α3/2). (3.4)

The average interfacial displacement η̂ is a constant, and if η̂(0) �= 0, then without loss of
generality we assume that η̂ = η̂(0). If η̂(0) = 0, but η̂(1) �= 0, then without loss of generality
η̂ = √

αη̂(1), etc. Similarly, if F (0) �= 0, then we can assume F = F (0), etc.
At O(1) we obtain the equations

− c0η̃
(0)
ξ + c2

0 s̃(0)
ξ = 0, ŝ(0)

t − c0s̃(0)
ξ + η̃

(0)
ξ = 0, (3.5)

v̂
(0)
t − c0ṽ

(0)
ξ = 0, V̂ (0)

t − c0Ṽ (0)
ξ = 0, ŝ(0)

t = 0, v̂
(0)
t = 0, V̂ (0)

t = 0, (3.6)
implying

ŝ(0) = A(0)(τ, T ), v̂(0) = B(0)(τ, T ), V̂ (0) = C (0)(τ, T ), (3.7)

s̃(0) = 1
c0

η̃(0), ṽ(0) = 0, Ṽ (0) = 0. (3.8)

Here, the functions (A, B, C)(0) are arbitrary functions of their variables, and we have
used that all deviations should have zero mean, by construction of the solution.
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Next, collecting the terms of O(
√

α), using relations (3.7), (3.8) and simplifying the
resulting system by virtue of its averaged members, we obtain the system

− c0η̃
(1)
ξ + c2

0 s̃(1)
ξ = −η̃(0)

τ , −c0s̃(1)
ξ + η̃

(1)
ξ = − 1

c0
η̃(0)

τ , (3.9)

ṽ
(1)
ξ = γ

c2
0
η̃(0), Ṽ (1)

ξ = 0, (3.10)

ŝ(1)
t = γ B(0) − A(0)

τ , v̂
(1)
t = −γ A(0) − B(0)

τ , V̂ (1)
t = −γ F (0) − C (0)

τ . (3.11)
Equations (3.9) imply

η̃(0)
τ = 0, s̃(1) = 1

c0
η̃(1), (3.12)

again using that all deviations have zero mean.
To avoid secular growth in ŝ(1) and v̂(1), we require that

A(0)
τ = γ B(0), B(0)

τ = −γ A(0), (3.13)

which implies A(0)
ττ = −γ 2 A(0), yielding

A(0) = A(T ) cos γ [τ + φ(T )], B(0) = −A(T ) sin γ [τ + φ(T )], (3.14)

where A(T ) and φ(T ) are arbitrary functions of T .
To avoid secular growth in V̂ (1) one can consider two options:

(i) F (0) = F (0)(τ, T ), then C (0)
τ = −γ F (0), implying

V̂ (0) = C (0) = −γ

∫ τ

0
F (0)(τ̃ , T )dτ̃ , (3.15)

assuming that F (0) is such that the C (0) is bounded;
(ii) F (0) = F (0)(t, τ, T ) such that V̂ (1) = − ∫ t

0 [γ F (0)(t, τ, T ) + C (0)
τ (τ, T )]dt̃ is bound-

ed, e.g. γ F (0) = −C (0)
τ + sin ωt, where ω = ω(τ, T ).

If F (0) �= 0, we can assume that F (1) = 0, etc.
In what follows, we consider the first case. Then, summarising, we have

ŝ(0) = A(T ) cos γ [τ + φ(T )], v̂(0) = −A(T ) sin γ [τ + φ(T )], (3.16)

V̂ (0) = −γ

∫ τ

0
F (0)(τ̃ , T )dτ̃ , s̃(0) = 1

c0
η̃(0)(ξ, T ), ṽ(0) = 0, Ṽ (0) = 0; (3.17)

ŝ(1) = A(1)(τ, T ), v̂(1) = B(1)(τ, T ), V̂ (1) = C (1)(τ, T ), s̃(1) = 1
c0

η̃(1), (3.18)

ṽ(1) = γ

c2
0

(∫ ξ

−L
η̃(0)(ξ̃ , T )dξ̃ −

〈∫ ξ

−L
η̃(0)(ξ̃ , T )dξ̃

〉)
, Ṽ (1) = 0. (3.19)

Here,
〈∫ ξ

−L η̃(0)(ξ̃ , T )dξ̃
〉
= (1/2L)

∫ L
−L(
∫ ξ

−L η̃(0)(ξ̃ , T )dξ̃ )dξ is the mean value.
Finally, collecting the terms at O(α), using (3.16)–(3.19) and simplifying the resulting

system by virtue of its averaged members, we obtain

− c0η̃
(2)
ξ + c2

0 s̃(2)
ξ = − σ

c0
(η̂(0) + η̃(0))η̃

(0)
ξ

− σ

(
A(T ) cos γ [τ + φ(T )] + 1

c0
η̃(0)

)
η̃

(0)
ξ − F (0)η̃

(0)
ξ − η̃(1)

τ − η̃
(0)
T , (3.20)
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− c0s̃(2)
ξ + η̃

(2)
ξ = γ 2

c2
0

(∫ ξ

−L
η̃(0)(ξ̃ , T )dξ̃ −

〈∫ ξ

−L
η̃(0)(ξ̃ , T )dξ̃

〉)
− βc2

0
3

η̃
(0)
ξξξ

− σ

c0

(
A(T ) cos γ [τ + φ(T )] + 1

c0
η̃(0)

)
η̃

(0)
ξ − 1

c0

(
F (0)η̃

(0)
ξ +η̃(1)

τ +η̃
(0)
T

)
, (3.21)

ṽ
(2)
ξ = γ

c2
0
η̃(1), (3.22)

Ṽ (2)
ξ = −A(T ) sin γ [τ + φ(T )]η̃(0)

ξ , (3.23)

ŝ(2)
t = γ B(1) − A(1)

τ − AT cos γ [τ + φ(T )] + γ AφT sin γ [τ + φ(T )], (3.24)

v̂
(2)
t = −γ A(1) − B(1)

τ + AT sin γ [τ + φ(T )] + γ AφT cos γ [τ + φ(T )], (3.25)

V̂ (2)
t = −γ F (1) − C (1)

τ + γ

∫ τ

0
F (0)

T (τ̃ , T )dτ̃ . (3.26)

Equations (3.20) and (3.21) yield the equation

−2η̃(1)
τ = 2η̃

(0)
T +

[
σ η̂(0)

c0
+ 2σ A cos γ (τ + φ) + 2F (0)(τ, T )

]
η̃

(0)
ξ + 3σ

c0
η̃(0)η̃

(0)
ξ

+ βc3
0

3
η̃

(0)
ξξξ − γ 2

c0

(∫ ξ

−L
η̃(0)(ξ̃ , T )dξ̃ −

〈∫ ξ

−L
η̃(0)(ξ̃ , T )dξ̃

〉)
. (3.27)

Integrating (3.27) with respect to τ and avoiding secular growth with τ , we obtain

2η̃
(0)
T + σ η̂(0)

c0
η̃

(0)
ξ + 3σ

c0
η̃(0)η̃

(0)
ξ + βc3

0
3

η̃
(0)
ξξξ

−γ 2

c0

(∫ ξ

−L
η̃(0)(ξ̃ , T )dξ̃ −

〈∫ ξ

−L
η̃(0)(ξ̃ , T )dξ̃

〉)
= 0, (3.28)

and

η̃(1) = −
[
σ A

γ
sin γ (τ + φ) +

∫ τ

0
F (0)(τ̃ , T )dτ̃

]
η̃

(0)
ξ , (3.29)

where we did not add an arbitrary zero-mean-field function since this just redefines
η̃(0)(ξ, T ).

Differentiating (3.28) with respect to ξ and changing the variable ξ to ζ = ξ −
(σ η̂(0)/2c0)T leads to the traditional form of the Ostrovsky equation(

η̃
(0)
T + α1η̃

(0)η̃
(0)
ζ + β1η̃

(0)
ζ ζ ζ

)
ζ

= γ1η̃
(0), (3.30)

where

α1 = 3σ

2c0
, β1 = βc3

0
6

, γ1 = γ 2

2c0
. (3.31)

Next, substituting (3.29) for η̃(1) into (3.22) for ṽ
(2)
ξ we conclude that

ṽ(2) = − 1
c2

0

[
σ A sin γ (τ + φ) + γ

∫ τ

0
F (0)(τ̃ , T )dτ̃

]
η̃(0), (3.32)
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using the zero-mean condition once again. Similarly, (3.23) yields

Ṽ (2) = −A sin γ (τ + φ)η̃(0). (3.33)

Finally, the equations for the mean values yield AT = φT = 0 in order to avoid secular
growth, and then simplify to take the form

ŝ(2)
t = γ B(1) − A(1)

τ , v̂
(2)
t = −γ A(1) − B(1)

τ ,

V̂ (2)
t = −γ F (1) − C (1)

τ + γ

∫ τ

0
F (0)

T (τ̃ , T )dτ̃ . (3.34)

Assuming that F (1) = F (1)(τ, T ), we then have

A(1)
τ = γ B(1), B(1)

τ = −γ A(1), C (1)
τ = −γ F (1) + γ

∫ τ

0
F (0)

T (τ̃ , T )dτ̃ . (3.35)

In what follows, we consider (F, A, B)(1) = 0, while

C (1) = γ

∫ τ

0

(∫ τ̂

0
F (0)

T (τ̃ , T )dτ̃

)
dτ̂ , (3.36)

provided this function is bounded. A sufficient condition for the latter is given by F (0)
T = 0,

implying that F (0) = F (0)(τ ), which we assume here.
Hence, considering the equations up to O(α), i.e. up to the accuracy of the governing

equations (2.11)–(2.18), allows us to fully define all terms at O(1) and O(
√

α). The
procedure can be continued to any order, but instead of using the truncated weakly
nonlinear formulation, we would need to use the original strongly nonlinear equations.

To summarise, up to the accuracy of the governing equations, we obtained the following
large class of uni-directional waves described by the Ostrovsky equation and propagating
over the non-zero, generally evolving, mean fields:

η = η̂(0) + η̃(0) − √
α

[
σ A

γ
sin γ (τ + φ) +

∫ τ

0
F (0)(τ̃ )dτ̃

]
η̃

(0)
ζ + O(α), (3.37)

s = A cos γ (τ + φ) + 1
c0

η̃(0) − √
α

1
c0

[
σ A

γ
sin γ (τ + φ) +

∫ τ

0
F (0)(τ̃ )dτ̃

]
η̃

(0)
ζ + O(α),

(3.38)

v = −A sin γ (τ + φ) + √
α

γ

c2
0

[∫ ζ

−L
η̃(0)(ζ̃ , T )dζ̃ −

〈∫ ζ

−L
η̃(0)(ζ̃ , T )d ζ̃

〉]
+ O(α),

(3.39)

V = −γ

∫ τ

0
F (0)(τ̃ )dτ̃ + O(α), (3.40)

where η̂(0), A, φ are arbitrary constants, F (0)(τ̃ ) is a function such that
∫ τ

0 F (0)(τ̃ )dτ̃

is bounded (e.g. sin ωτ̃ ) and η̃(0) = η̃(0)(ζ, T ) satisfies the Ostrovsky equation (3.30),
where

ζ = ξ − σ η̂(0)

2c0
T = x −

(
c0 + ασ η̂(0)

2c0

)
t, T = αt. (3.41)
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We note that this weakly nonlinear solution can be rewritten in a more convenient and
asymptotically equivalent form

η = η̂(0) + η̃(0) (T, θ) + O(α), (3.42)

s = A cos γ (τ + φ) + 1
c0

η̃(0) (T, θ) + O(α), (3.43)

v = −A sin γ (τ + φ) + √
α

γ

c2
0

[∫ θ

−L
η̃(0)(θ̃ , T )dθ̃ −

〈∫ θ

−L
η̃(0)(θ̃ , T )dθ̃

〉]
+ O(α),

(3.44)

V = −γ

∫ τ

0
F (0)(τ̃ )dτ̃ + O(α), (3.45)

where

θ = ζ −
√

ασ A

γ
sin γ (τ + φ) − √

α

∫ τ

0
F (0)(τ̃ )dτ̃ , (3.46)

and (
η̃

(0)
T + α1η̃

(0)η̃
(0)
θ + β1η̃

(0)
θθθ

)
θ
= γ1η̃

(0), (3.47)

with α1 = (3σ/2c0), β1 = (βc3
0/6), γ1 = (γ 2/2c0). Note that we should not add any

additional transport terms to (3.47) since we simply replace ζ with θ in the solution of
(3.30) in order to combine the O(1) and O(

√
α) terms in the asymptotic expansions.

This representation, where the effective phase θ now depends on ζ and τ , gives a clear
description of the main effects related to non-zero mass: generally, there appear O(1)

inertial oscillations in both shear variables, as well as O(
√

α) oscillations with the same
frequency in the phase of the interfacial displacement and shear. Non-zero barotropic
transport F (0) in the propagation direction also gives an O(

√
α) shift in the phase of

the interfacial displacement and shear in the propagation direction, as well as giving an
O(1) contribution to the transverse barotropic transport.

Thus, the solution η̃(0) of the Ostrovsky equation (3.47), has zero mean by construction,
η has an arbitrary constant mean value, while the shear variables s and v generally
have time-dependent mean values. The barotropic transport variables F and V are also
generally time-dependent.

We finish the section by considering the limit of the constructed weakly nonlinear
solution (3.42)–(3.47) to the case when there is no rotation. Assuming φ = 0, consider
a finite value of τ and let γ → 0. Then

η = η̂(0) + η̃(0) (T, θ) + O(α), (3.48)

s = A + 1
c0

η̃(0) (T, θ) + O(α), (3.49)

v = O(α), V = O(α), (3.50)
where

θ = ζ − σ AT − √
α

∫ τ

0
F (0)(τ̃ )dτ̃ , (3.51)

and

η̃
(0)
T + α1η̃

(0)η̃
(0)
θ + β1η̃

(0)
θθθ = 0, (3.52)

with α1 = 3σ/2c0, β1 = βc3
0/6, is the KdV equation.
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In the rest of this paper we consider the case F (0) = 0 (i.e. the barotropic transport
is absent). A particular choice A = η̂(0)/c0 corresponds to the case when there is no
background shear flow, and then, in the KdV equation (3.52),

θ = ξ − α1η̂
(0)T = x −

(
c0 + 3ασ η̂(0)

2c0

)
t. (3.53)

In general, A = (η̂(0)/c0) + s0, where s0 = const represents a constant background shear,
and then we have, again in the absence of rotation,

θ = ξ − (α1η̂
(0) + σ s0)T = x −

(
c0 + 3ασ η̂(0)

2c0
+ ασ s0

)
t. (3.54)

Suppose one allows for the presence of a weak piecewise-constant shear flow in the two
layers and assume that s0 > 0. In the absence of rotation, sufficient conditions allowing
one to avoid the appearance of the long-wave instability and critical levels are given, in
the non-dimensional variables used in this paper, by the conditions

s0 <

(
ρ1(1 − h0) + ρ2h0

ρ2

)1/2

and s0 <

(
ρ1h0(1 − h0)

ρ1(1 − h0) + ρ2h0

)1/2

(3.55)

(see Ovsyannikov 1979, 1985; Bontozoglou 1991; Boonkasame & Milewski 2011;
Lannes & Ming 2015; Khusnutdinova & Zhang 2016 for the details and the necessary
conditions), where the second condition is stronger than the first. In the Boussinesq
approximation used in this paper it implies

s0 < c0 = [h0(1 − h0)]1/2 . (3.56)

In the following sections we consider the basic case s0 = 0.
The constructed weakly nonlinear solution can be used to describe waves of small

amplitude. The conservation of energy to leading order was verified using the asymptotic
approximation of Helfrich (2007). Fully nonlinear waves in the absence of rotation are
significantly different from the weakly nonlinear description provided by the KdV equation
(see Jo & Choi 2002, 2008; Camassa et al. 2006; Choi 2006; Camassa et al. 2010; Barros,
Choi & Milewski 2020; Doak, Barros & Milewski 2022 and references therein). The
extended weakly nonlinear models can be used to describe MMCC waves of greater
amplitude than that described by the KdV equation (Sidorovas et al. 2025), paving the
way for similar extensions in the presence of rotation.

4. The effect of rotation on the evolution of cnoidal waves with defects
The MMCC system admits periodic nonlinear travelling wave solutions (Camassa et al.
2010) (see also Sidorovas et al. 2025 for the weakly nonlinear modelling of the cnoidal
waves of small and moderate amplitude). The aim of this section is to model the effect of
rotation on the evolution of the waves generated by initial conditions close to the cnoidal
waves of the KdV equation but having local amplitude and/or periodicity defects. We use
the weakly nonlinear solution constructed in § 3 and first model the effect of rotation on
the exact classical solutions of the KdV equation: solitons and cnoidal waves (Boussinesq
1871; Korteweg & de Vries 1895), as well as bright and dark breathers (Kuznetsov &
Mikhailov 1975; Hoefer et al. 2023). Then, we consider cnoidal waves with the local
expansion and contraction periodicity defects introduced by cutting at the trough and
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symmetrically inserting a piece of a straight line, and by symmetrically cutting away a part
close to the trough between the two neighbouring peaks and gluing together the remaining
parts of the solution, respectively (see the first two rows in figure 17 of Appendix A). This
allows us to set up a framework for the discussion of the effects observed in our subsequent
modelling of cnoidal waves with generic localised perturbations. As a by-product of
our study involving initial conditions with local periodicity defects we came across an
observation that cnoidal waves with expansion defects can be viewed as generalised
(‘shock-like’) travelling waves of the KdV equation. In Appendix A, we prove that all
conservation laws of the KdV equation (infinitely many) are identically satisfied for them,
provided that we understand the conserved quantities as the natural sum of integrals,
treating the points of discontinuity similarly to shocks. Moreover, a cnoidal wave with
an expansion defect has a continuous first derivative, satisfying the Weirstrass–Erdmann
corner condition for the associated variational problem. We also make comments about a
possible weak formulation.

In our numerical experiments, we use two sets of parameters. In the first set, which
is used for the majority of our simulations (except the runs shown in figures 13, 14(b),
15(b) and 16), the pycnocline is closer to the surface, and internal waves are the waves
of depression. Hence, we show the bottom view in the majority of our figures in this
section. The depths of the upper and lower layers are 37.5 and 112.5 m, respectively, and
the total depth of the system, denoted by H , is 150.0 m. The densities of the upper and
lower layers are chosen to be ρ1 = 1000.0, ρ2 = 1003.1 kg m−3, respectively. The small
parameters are defined as α = a/H , β̃ = (H/ l)2 and γ̃ = (l f )/

√
(g′H), where a is a wave

amplitude, l is a wavelength, f is the Coriolis parameter, g′ = g
ρ/ρ1 is the reduced
gravity. We let α = 0.005 and β̃ = 0.030. We assume midlatitude oceanic values for
the Coriolis parameter f = 5 × 10−5 s−1, and reduced gravity g′ = 0.030 m s−2. Hence,
γ̃ ≈ 0.020. The non-dimensional unperturbed upper layer depth h0 = 0.250 gives values
of the linear long-wave speed c0 = (h0 − h2

0)
1/2 ≈ 0.433 and coefficient σ = 2h0 − 1 =

−0.500. The scaled O(1) parameters are β = β̃/α and γ = γ̃ /
√

α. Then, the coefficients
of the Ostrovsky equation (3.47), are given by α1 ≈ −1.732, β1 ≈ 0.081, γ1 ≈ 0.096. This
regime is close to one of the regimes considered by Helfrich (2007), and the internal
waves are waves of depression. The second set of parameters is used to model the internal
waves of elevation shown in figures 13, 14(b), 15(b) and 16, and here the pycnocline is
closer to the bottom: the depths of the upper and lower layers are 120.0 and 30.0 m,
respectively. The total depth of the system is again H = 150.0 m. The other parameters
are unchanged except the non-dimensional unperturbed upper layer depth h0 = 0.800,
giving values of the linear long-wave speed c0 = (h0 − h2

0)
1/2 = 0.400 and coefficient

σ = 2h0 − 1 = 0.600. Then, the coefficients of the Ostrovsky equation (3.30) are found
to be α1 = 2.250, β1 = 0.064, γ1 ≈ 0.104. The Ostrovsky equation is solved using a
pseudospectral method described in Appendix B. The constant shear is absent, s0 = 0,
and the initial phase of the inertial oscillations is φ = 0.

4.1. The effect of rotation on solitons and cnoidal waves
We begin by modelling the evolution of initial conditions in the form of solitary and
cnoidal wave solutions of the KdV equation (3.52) associated with the Ostrovsky equation
(3.47), which we write in the form

η
(0)
T + α1(η

(0) − η̂(0))η
(0)
θ + β1η

(0)
θθθ = 0, (4.1)
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where η(0) = η̂(0) + η̃(0). We consider the initial condition for η in the form of a soliton
solution

η(0)
∣∣∣
T =0

= 3vs

α1
sech2

[
1
2

√
vs

β1
(θ + α1η̂

(0)T − vs T − ζ0)

]
T =0

, (4.2)

where ζ0 and vs > 0 are arbitrary constants, and the cnoidal wave solution

η(0) = 6β1

α1

{
u2 + (u3 − u2) cn2

[
(θ + α1η̂

(0)T − vcT − ζ0)

√
u3 − u1

2
; m

]}
T =0

,

(4.3)

given in terms of the Jacobi elliptic functions, where u1 < u2 < u3 are real, vc = 2β1(u1 +
u2 + u3) and m = (u3 − u2)/(u3 − u1) is the elliptic parameter. We recall that, in the case
under study

θ = ζ − 2α1η̂
(0)

3
T, (4.4)

and, accounting for the transport term in (4.1), we get the phase

θ + α1η̂
(0)T − vs/cT − ζ0 = ζ + α1η̂

(0)

3
T − vs/cT − ζ0, (4.5)

choosing the variable ζ as a convenient variable defining the speed of the moving reference
frame in both cases, with and without rotation. Here, ζ + (α1η̂

(0)/3)T = ξ = x − c0t . In
the limit m → 1, the cnoidal wave approaches a soliton (generally, on a non-zero pedestal).
The period of the cnoidal wave is given by

λ= 2K (m)√
(u3 − u1)/2

, (4.6)

where K (m) is the complete elliptic integral of the first kind (see, for example,
Kamchatnov 2000). We use the same initial conditions for η(0) when rotation is present,
and obtain the corresponding weakly nonlinear solutions using (3.42)–(3.46) and the
Ostrovsky equation (3.47).

In figure 3, we compare the evolution of a single soliton in a two-layer fluid system
with rotation in numerical experiments with periodic boundary conditions, either with
or without the sponge layers near the boundaries (see, for example, Alias et al. 2013
for the discussion of the sponge layers). The sponge layers near the boundaries act as a
filter absorbing the radiation. The computational domain is 2L = 100, with the number of
modes M = 998, the spatial step 
x ≈ 10−1, the total simulation time Tmax = 200 and the
temporal step 
T = 10−2. Other constants are vs ≈ 0.487 and ζ0 = 0.

Figure 3(a,b) shows three-dimensional plots of the time evolution of the interfacial
displacement for initial conditions in the form of a single soliton, the views from above (a)
and below (b). Figure 3(c,d) compares the evolution of the same initial conditions without
(c) and with (d) the sponge layers near the boundaries of the periodic domain. The soliton
evolves into an unsteady wavepacket that has been intensively studied previously (see
Grimshaw & Helfrich 2008; Grimshaw et al. 2013; Ostrovsky et al. 2015; Stepanyants
2020, and references therein), and for a long time the radiation penetrating through the
boundaries in the absence of sponge layers does not have a large effect on the shape
or speed of the main wavepacket, which is shown in more detail in figure 3(e, f ,g). The
overall wave pattern remains stable and consistent throughout the simulation.
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Figure 3. The effect of rotation on the interfacial displacement for the KdV soliton initial condition in
simulations with periodic boundary conditions. (a) view from above, (b) view from below, (c) in simulations
without the sponge layers, (d) in simulations with the sponge layers, (e, f ,g) comparison of the lead wavepacket
in simulations without the sponge layers (black) and with the sponge layers (red dashed) at different moments
of time.

Similarly, in figure 4 we show the effect of rotation for the cnoidal wave initial condition.
The computational domain is 2L = 26.40, with the number of modes M = 262, the spatial
step 
x ≈ 10−1, the total simulation time Tmax = 100 and the temporal step 
T = 10−2.
The parameters characterising the initial condition are u1 = −10−3, u2 = 0 and u3 = 3. It
is evident that rotation leads to formation of a rather regular quasi-periodic wave pattern
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Figure 4. The effect of rotation on the interfacial displacement for the KdV cnoidal wave initial condition: (a)
view from above and (b) view from below.
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Figure 5. The effect of rotation on the evolution of the maximum, minimum and amplitude of the interfacial
displacement for a soliton (a) and cnoidal wave (b) initial condition.

shown in figure 4, without the formation of bursts of large waves. Overall, this wave
looks similar to a cnoidal wave, but it has a slowly oscillating amplitude, resembling the
modulationally stable periodic waves in Whitfield & Johnson (2014).

We also note that, both for the soliton and cnoidal wave initial conditions, the time
evolution of the maximum and minimum of the free-surface elevation is quasi-periodic,
with no significant bursts, as shown in figure 5. All computational parameters are the same
as in the previous figures. Hence, we conclude that rotation alone does not trigger the
formation of large waves in these simulations, but it does lead to the emergence of a left-
propagating (i.e. slower moving) wavepacket for initial condition in the form of a soliton.

4.2. The effect of rotation on breathers on a cnoidal wave background
The exact breather on a cnoidal wave solution of the KdV equation was studied by
Kuznetsov & Mikhailov (1975) and Hoefer et al. (2023). There are two types of breathers:
bright and dark (this terminology refers to the canonical form of the KdV equation, where
solitons are waves of elevation). For a bright breather propagating as a dislocation of a
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cnoidal wave, the exact solution of the KdV equation (4.1) takes the form

η(0) = 12β1

α1

{
k2 − 1 + E(k)

K (k)
+ ∂2

∂ζ 2

[
log

(
τ(ζ + α1η̂

(0)

3
T , β1T )

)]}
, (4.7)

where k ∈ (0, 1) is the elliptic modulus (the elliptic parameter m = k2), K (k) is the
complete elliptic integral of the first kind, E(k) is the complete elliptic integral of the
second kind and the τ -function is given by

τ(x, t) := Θ(x − c0t + αb) exp{κb(x − cbt + x0)}
+ Θ(x − c0t − αb) exp{−κb(x − cbt + x0)}, (4.8)

with κb > 0, cb > c0 and αb ∈ (0, K (k)). Here, Θ(x) = θ4(πx/2K (k)), where θ4 is the
Jacobi theta function of type four, given by θ4(u) = 1 + 2

∑∞
n=1(−1)nqn2

cos(2nu). The
solution is parameterised by λ ∈ (−∞, −k2). The parameters are defined as follows
(Hoefer et al. 2023):

ϕγ = arcsin

( √−λ− k2
√

1 − 2k2 − λ

)
, (4.9)

αb = F(ϕγ , k), κb =
√

1 − λ− k2
√−λ− k2

√
1 − 2k2 − λ − Z(ϕγ , k), (4.10)

c0 = 4(2k2 − 1), cb = c0 + 4
√

1 − λ− 2k2
√

1 − λ− k2
√−λ− k2

κb
, (4.11)

where F(ϕ, k) := ∫ ϕ

0 dθ/
√

1 − k2 sin2 θ is the elliptic integral of the first kind, and

Z(ϕ, k) := ∫ ϕ

0

√
1 − k2 sin2 θdθ is the elliptic integral of the second kind.

For a dark breather propagating as a dislocation of a cnoidal wave the exact solution is
again given by (4.7), where the solution is now parameterised by λ ∈ (1 − 2k2, 1 − k2),
and the τ -function takes the form

τ(x, t) := Θ(x − c0t + αd) exp{−κd(x − cd t + x0)}
+ Θ(x − c0t − αd) exp{κd(x − cd t + x0)}, (4.12)

with κd > 0, cd < c0 and αd ∈ (0, K (k)). The parameters are given by

ϕα = arcsin
(√

1 − k2 − λ
k

)
, (4.13)

αd = F(ϕα, k), κd = Z(ϕα, k), (4.14)

c0 = 4(2k2 − 1), cd = c0 − 4
√

(k2 + λ)(λ− 1 + 2k2)(1 − k2 − λ)
κd

. (4.15)

Numerical solutions initiated with the bright and dark breather on a cnoidal wave
initial condition at T = 0 in the absence of rotation (i.e. in the KdV regime) are shown
in the figure 6(a,b). For the bright-breather simulations, shown in the figure 6(a,c,e,g),
the computational domain length is 2L = 72.86, with the number of modes M = 728,
the spatial step 
x ≈ 10−1, the total simulation time Tmax = 100 and the temporal step

T = 10−2. The parameters used in the initial condition are [k, λ] ≈ [0.9998, −1.30]. For
the dark-breather simulations, shown in the figure 6(b,d, f ,h), the computational domain
length is 2L = 80.64, with the number of modes M = 804, the spatial step 
x ≈ 10−1, the
total simulation time Tmax = 100 and the temporal step 
T = 10−2. The other parameters
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Figure 6. Numerical solution for a bright (a,c,e,g) and dark (b,d, f ,h) breather on a cnoidal wave initial
condition (view from below): (a,b) interfacial displacement in the absence of rotation, (c,d) interfacial
displacement under the effect of rotation, (e, f ) / (g,h) shear in the direction of wave propagation / orthogonal
direction, under the effect of rotation.
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Figure 7. The effect of rotation on the evolution of the maximum, minimum and amplitude of the interfacial
displacement for a bright (a) and a dark (b) breather on a cnoidal wave initial condition. Black solid, red dashed
and blue dot-dashed lines correspond to 5, 7 and 9 peaks in the domain, respectively.

are [k, λ] ≈ [0.9998, −0.50]. In the absence of rotation, the figure 6(a,b) shows stable
propagation of the bright- and dark-breather solutions on top of the cnoidal wave, in good
agreement with the available analytical solution (4.7).

Next, the effect of rotation on the evolution of the bright and dark breather on a cnoidal
wave initial condition is shown in the subsequent rows of figure 6, for the interfacial
displacement (figure 6c,d), shear in the direction of wave propagation (figure 6e, f ) and
shear in the orthogonal direction (figures 6g,h). We notice a striking difference from
the results shown in the figure 6(a,b) (no rotation): there emerges a rather strong left-
propagating localised burst clearly visible both in the free-surface elevation (figure 6c,d)
and the shear in the direction of wave propagation (figure 6e, f ). The counterpart of the
wave is also present in the shear in the orthogonal direction (figure 6g,h), but this signal is
weak. It must be noted that the wave forms soon after the initiation of the simulation, and
it continues to grow for a long time.

In these runs, the effect of rotation on a dark breather on a cnoidal wave is qualitatively
similar to that on the bright breather, although less pronounced. In both cases, the
background cnoidal wave continues propagating to the right (in the moving reference
frame), and there appears a significant burst both in the interfacial displacement and the
shear in the direction of wave propagation, moving to the left. For the dark breather, the
signal in the shear in the orthogonal direction is also present, but it is barely noticeable to
the naked eye.

Figure 7 shows the time evolution of the maximum, minimum and the amplitude of
the interfacial displacement for both cases of a bright (figure 7a) and a dark (figure 7b)
breather on a cnoidal wave initial condition. We see that the observed effects of rotation are
structurally stable with regard to the size of the computational domain. We experimented
with 5, 7 and 9 major peaks in the domain. In the bright-breather case, the computational
domains are 2L = 37.42 (5 peaks), 2L = 55.02 (7 peaks), 2L = 72.86 (9 peaks). For the
dark-breather case, the computational domains are 2L = 45.44 (5 peaks), 2L = 63.04
(7 peaks), 2L = 80.64 (9 peaks). The remaining numerical parameters are the same as
before. It is again evident that the wave amplitude grows. The burst forms soon after
the initiation of the numerical runs. The close-up views of the large waves visible in the
free-surface elevation are shown in figure 8 for the time around T = 40 (bright-breather
case, figure 8a) with approximately 29 % increase in the amplitude compared with the
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Figure 8. Close-up view from below of the large burst in the interfacial displacement for a bright (a) and a
dark (b) breather on a cnoidal wave initial condition around T = 40 (a) and T = 9 (b), respectively.

initial condition, and around T = 9 (dark-breather case, figure 8b) with approximately
15 % increase in the amplitude compared with the initial condition. Hence, we conclude
that, under the effect of rotation, the moving dislocation on top of the otherwise regular
cnoidal wave can lead to the emergence of strong bursts of interfacial waves and shear
currents in the direction of propagation of the cnoidal wave.

We also note that we performed preliminary simulations with higher-amplitude
breathers, and these suggest a more complex dynamics: the burst initially propagates to the
right, but part of the mass is subsequently emitted into the background cnoidal wave, and
the burst subsequently decreases in amplitude and changes direction. A detailed investiga-
tion of this behaviour is beyond the scope of the present work and is left for future work.

4.3. The effect of rotation on cnoidal waves with periodicity defects
Recent research related to the wave packets described by the Schrödinger equation has
shown that localised phase defects can lead to the emergence of rogue waves (He et al.
2022). Here, we investigate whether periodicity defects introduced into the long cnoidal
waves in the KdV–Ostrtovsky regime can also lead to the emergence of large localised
bursts of energy, under the effect of rotation. Also, can it happen already in the absence of
rotation, i.e. in the KdV regime?

Motivated by figure 1, we consider cnoidal waves close to their solitonic limit and
introduce two types of periodicity defects (see figure 17 in Appendix A): contraction and
expansion defects, depending on whether the distance between the two neighbouring peaks
is shorter or longer than the period of the cnoidal wave. The first defect is introduced by
symmetrically cutting away a small part close to the trough between the two neighbouring
peaks, and gluing together the remaining parts of the solution. Naturally, the resulting
function has discontinuous first derivative at one point within the computational domain,
but the jump in the derivative is small because we have cut close to extremum (smoothed in
numerical simulations). The second defect is introduced by cutting the graph at the trough
and symmetrically inserting a piece of a straight line. The resulting function has continu-
ous first derivative, and discontinuous second derivative at two points within the compu-
tational domain. To our surprise, in the absence of rotation (KdV regime), these functions
evolved almost like travelling waves of the KdV equation. Both types of waves were long
lived, and a cnoidal wave with an expansion defect, smoothed in a pseudospectral simula-
tion, was stable, with no visible changes at the end of the long run (the difference between
the numerical solution and the initial condition travelling at the speed of the cnoidal
wave was of order 10−4). The numerical results initiated with such initial conditions in
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the absence of rotation are shown in the first row of figure 9 for the contraction defect
(figure 9a) and the expansion defect (figure 9b). Intrigued by this observation, we managed
to prove that, for the constructed functions (and their natural generalisations), all (infinitely
many) conservation laws of the KdV equation, understood in the sense of a sum of
integrals, are satisfied exactly. This approach was inspired by the recent work by Gavrilyuk
et al. (2020), Gavrilyuk & Shyue (2022) and Gavrilyuk, Nkonga & Shyue (2024), where
interesting generalised solutions with singularities satisfying the Weierstrass–Erdmann
corner conditions (e.g. Fox 1954) and requiring the continuity of the derivative at the
junction, were constructed in the context of non-integrable Benjamin–Bona–Mahoney
and conduit equations. To the best of our knowledge, the discontinuous generalised
(shock-like) travelling wave solutions of the KdV equation in the form of cnoidal waves
with periodicity defects constructed in our paper have not been discussed before. A
cnoidal wave with an expansion defect satisfies the corner condition exactly, it’s smoothed
counterpart was extremely stable in our numerical runs, but a smoothed counterpart of a
cnoidal wave with a contraction defect also turned out to be long lived. Further discussion
of solutions of the KdV equation with defects (both stable and unstable) can be found in
Appendix A. Importantly, we conclude that, for the duration of our long simulations, such
natural periodicity defects do not lead to the focusing of energy in the absence of rotation.

Next, we use the cnoidal waves with expansion and contraction defects as the initial
conditions in the presence of rotation. The effect of rotation on the cnoidal wave with
a contraction and expansion defects is shown in the subsequent rows of figure 9, in the
left and right columns, respectively, for the interfacial displacement (figure 9c,d), shear
in the direction of wave propagation (figure 9e, f ) and shear in the orthogonal direction
(figure 9g,h). Here, we see the formation of a strong burst of the interfacial waves and shear
in the direction of wave propagation. In the moving reference frame the burst propagates
to the left. Qualitatively, this is similar to the behaviour observed in the previous section,
where numerical runs were initiated using the breather on a cnoidal wave initial condition,
but the important difference is that this effect is solely due to rotation and no bursts of any
kind are present in the absence of rotation.

Figure 10 shows the time evolution of the maximum, minimum and amplitude of
the interfacial displacement for both cases of a contraction (figure 10a) and expansion
(figure 10b) periodicity defect. We show that the observed effects of rotation are structural-
ly stable with regard to the size of the computational domain. We experimented with 5, 7
and 9 major peaks in the domain. In the contraction defect case, the computational domains
are 2L = 37.42 (5 peaks), 2L = 55.02 (7 peaks), 2L = 72.86 (9 peaks). In the expansion
defect case, the computational domains are 2L = 45.44 (5 peaks), 2L = 63.04 (7 peaks),
2L = 80.64 (9 peaks). The remaining numerical parameters are the same as before. The
burst forms soon after the initiation of the numerical runs, and the wave continues to grow
for a long time after that. The close-up view of the large wave visible in the free-surface
elevation is shown in figure 11 for the time around T = 25 (contraction defect, figure 11a),
with approximately 49 % increase in the amplitude compared with the initial condition
and around T = 32 (expansion defect, figure 11b), with an approximately 31 % increase
in the amplitude compared with the initial condition. Hence, we conclude that, under the
effect of rotation, both contraction and expansion defects present in the otherwise regular
cnoidal wave can lead to the emergence of strong bursts of interfacial waves and shear
currents in the direction of propagation of the cnoidal wave.

4.4. The effect of rotation on cnoidal waves with generic localised defects
Finally in this section, motivated by the recent numerical and experimental generation
of breathers in a fluid conduit during the interaction of a cnoidal wave with a soliton by
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Figure 9. Numerical solution for a cnoidal wave with a contraction (a,c,e,g) and expansion (b,d, f ,h) defect
initials condition (view from below): (a,b) interfacial displacement in the absence of rotation, (c,d) interfacial
displacement under the effect of rotation, (e, f ) / (g,h) shear in the direction of wave propagation / orthogonal
direction, under the effect of rotation.
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Maiden & Hoefer (2016) and Mao et al. (2023) and generalising this scenario, we initiate
numerical runs for our problem with the initial condition which can be described as a
cnoidal wave with a generic localised perturbation. Namely, the initial condition is given
by the function

η(0)|T =0 = 6β1

α1

{
u2 + (u3 − u2) cn2

[(
ζ+α1η̂

(0)

3
T − vcT

)√
u3 − u1

2
; m

]}
T =0

+ A1sech2 [A2(ζ + ζ0)], (4.16)

and u1 < u2 < u3 are real, vc = 2β1(u1 + u2 + u3) and m = (u3 − u2)/(u3 − u1), where
A1, A2 and ζ0 are arbitrary constants.

We experiment with both sets of physical parameters discussed at the beginning of § 4.
For the first set, numerical solutions initiated with the initial condition with a generic
localised defect are shown in figure 12. The computational domain is 2L = 79.20, with the
number of modes M = 790, the spatial step 
x ≈ 10−1, the total simulation time Tmax =
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Figure 12. Numerical solution for a cnoidal wave with a generic localised defect initial condition (waves of
depression, view from above (a,c,e,g) and below (b,d, f ,h)): (a,b) interfacial displacement in the absence of
rotation, (c,d) interfacial displacement under the effect of rotation, (e, f ) / (g,h) shear in the direction of wave
propagation / orthogonal direction, under the effect of rotation.
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100 and the temporal step 
T = 10−2. The parameters used in the initial condition are
u1 = −10−3, u2 = 0, u3 = 3, A1 = −0.80, A2 = 1.00 and ζ0 = −1.30.

The initial condition introduces a localised perturbation to the otherwise regular cnoidal
wave. In our runs, in the absence of rotation (KdV regime), the introduction of such a
localised defect leads to the formation of a pair of bright and dark breathers, as well
as the clearly noticeable expansion defect, which is shown in the first row of figure 12,
showing both the view from above (figure 12a) and the view from below (figure 12b).
Qualitatively, this is similar to the waves generated in the interaction of a cnoidal wave
with a solitary wave in a conduit in Mao et al. (2023). In the moving reference frame,
the bright breather propagates to the right, while the dark breather propagates to the
left, and the expansion defect moves with the speed of the cnoidal wave. The effect of
rotation on the evolution of the same initial condition is shown in the subsequent rows
of the same figure, for the top (figure 12c,e,g) and bottom (figure 12d, f ,h) views of the
interfacial displacement (figure 12c,d), shear in the direction of wave propagation (figure
12e, f ) and shear in the orthogonal direction (figure 12g,h). There are strong bursts both
in the interfacial displacement and shear in the direction of wave propagation, which can
be associated with the previously considered types of ‘defects’ in the otherwise regular
cnoidal wave. The signal in the shear in the orthogonal direction is again weak. Hence, we
conclude that the mechanism of formation of the bursts of strong interfacial displacements
and shear in the direction of wave propagation in these simulations can be interpreted as
formation of KdV-type breathers and the expansion defect on a cnoidal wave background,
with the subsequent effect of rotation.

In order to test our theoretical framework further, we also modelled the effect of
rotation on internal waves of elevation, using our second set of parameters discussed
at the beginning of § 4. In figure 13, the computational domain is 2L = 79.20, with
the number of modes M = 790, the spatial step 
x ≈ 10−1, the total simulation time
Tmax = 100 and the temporal step 
T = 10−2. The parameters used in the initial
condition are u1 = −10−3, u2 = 0, u3 = 3, A1 = 0.80, A2 = 1.00 and ζ0 = −1.30.
Here, the pycnocline is closer to the bottom, the upper layer depth takes 80 % of the total
depth, whereas in previous cases it was 25 %. The results are similar to our previous
simulations for internal waves of depression, but here we see, in the absence of rotation
(i.e. in the KdV regime, see figure 13a,b), the formation of a pair of bright and dark
breathers, as before, but also the noticeable formation of both expansion and contraction
defects. The comparison of the evolution of maxima, minima and amplitude of the waves
shown in figures 12 and 13, under the effect of rotation, is given in figure 14, illustrating
the growth of the amplitude of the waves and further supporting our interpretation of
the observed (in all cases) formation of bursts of strong interfacial displacements and
shear in the direction of wave propagation. For both sets, the computational domains are
2L = 44.00 (5 peaks), 2L = 61.60 (7 peaks) and 2L = 79.20 (9 peaks). The remaining
numerical parameters are the same as before. The results are structurally stable. The
large waves formed at the early stage of our computations are shown in figure 15. At
around T = 19, the first and second sets have approximately 33 % and 36 % increases,
respectively, in the amplitudes relative to the initial conditions.

5. Discussion
In this paper, we addressed several issues related to the modelling of internal waves
in the Ostrovsky regime, i.e. in the KdV regime taking account of rotation. We chose
Helfrich’s f -plane extension (MMCC-f ) of the two-layer MMCC model as our parent
system. The MMCC-f model has similar properties to the full Euler equations with
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Figure 13. Numerical solution for a cnoidal wave with a generic localised defect initial condition (waves of
elevation, view from above (a,c,e,g) and below (b,d, f ,h)): (a,b) interfacial displacement in the absence of
rotation, (c,d) interfacial displacement under the effect of rotation, (e, f ) / (g,h) shear in the direction of wave
propagation / orthogonal direction, under the effect of rotation.
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displacement for a cnoidal wave with a generic localised defect initial condition: waves of depression (a) and
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Figure 15. Close-up view from below (a) and above (b) the large bursts in the interfacial displacement for a
cnoidal wave with a generic localised defect initial condition around T = 19 for the waves of depression (a)
and waves of elevation (b).

rotation with respect to construction of the weakly nonlinear solution, but the technical
details related to the derivation are more manageable. In our derivation, we represented
all field variables as the sums of time-dependent mean values and both spatially and
time-dependent deviations from these evolving means. We considered periodic solutions,
and mean-field equations were obtained by averaging the equations over the period of
the problem. In contrast to our previous research within the scope of the Boussinesq-
type equations, the resulting equations for the mean fields turned out to be coupled to the
equations for the deviations, which presented a significant new challenge. We managed to
construct a large class of solutions for uni-directional waves by introducing two slow-time
variables, and simultaneously constructing asymptotic expansions in powers of the square
root of the amplitude parameter (as opposed to the traditional derivation of the Ostrovsky
equation with just one slow time and in powers of the amplitude parameter). Since the
resulting reduced model, the Ostrovsky equation, has been derived for the zero-mean
deviations by construction, the so-called ‘zero-mean contradiction’ meaning the existence
of the zero-mean constraints on all field variables of the parent system has been by-
passed. Importantly, the Ostrovsky equation is decoupled from the variation of mean fields,
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with the latter acting as additive inertial oscillations in the shear variables as well
as additive oscillations of the same frequency in the phase of both the interfacial
displacement and shear variables. Non-zero barotropic transport in the propagation
direction contributed to the shift in the phase of the interfacial displacement and shear
in the propagation direction, and to the transverse barotropic transport.

Next, we used the constructed weakly nonlinear solution combined with extensive
numerical modelling using the Ostrovsky equation in order to study the effect of rotation
on the evolution of internal waves with initial conditions in the form of KdV cnoidal waves,
but with various local defects. We built the phenomenological framework by considering
pure bright and dark breathers on cnoidal wave initial conditions and cnoidal waves with
contraction and expansion periodicity defects. The latter defects were introduced ‘by
hand’, by modifying the cnoidal wave solution near the trough in between the two peaks,
and we showed that such functions satisfy all (infinitely many) conservation laws of the
KdV equation, where the integration is understood as the sum over the natural subintervals
(see Appendix A). Moreover, the cnoidal waves with an expansion defect also have a
continuous first derivative, satisfying the so-called ‘corner condition’ necessary for it to
be a non-smooth extremal of the relevant variational problem. It must be noted that in our
numerical runs, in the absence of rotation (i.e. in the KdV regime), initial conditions with
both the contraction and expansion defects led to long-lived states, and a cnoidal wave
with an expansion defect behaved very closely to a travelling wave of the KdV equation.
The important difference between the defects represented by dislocation (bright and dark
breather) and periodicity (contraction and expansion) perturbations of the cnoidal wave is
that the second type does not lead to the formation of bursts in the absence of rotation.
Qualitatively, both types of defects lead to the formation of bursts of large interfacial
displacements and shear in the direction of wave propagation, under the effect of rotation.

Finally, we considered initial conditions in the form of cnoidal waves with generic
localised perturbations. Our modelling has shown that, in the absence of rotation (in the
KdV regime), such initial conditions typically produce a pair of a fast-moving bright and
slow-moving dark breathers and expansion and contraction periodicity defects, moving
with the speed of the cnoidal wave. Under the effect of rotation, the splitting of a generic
localised perturbation into these ‘basic’ defects is followed by formation of several bursts
of interfacial displacements and shear in the direction of wave propagation, which can
be associated with the effect of rotation on breathers and the periodicity defects. In all
simulations the large bursts propagated to the left in our moving reference frame, i.e.
slower than the speed of our frame. Although the detailed description of the observed
interfacial bursts goes beyond the scope of our present study, we note that they are
qualitatively similar to the unsteady wavepackets observed in the previous studies of
the effect of rotation on the KdV solitary waves (Grimshaw & Helfrich 2008) and
slowly modulated waves (Whitfield & Johnson 2017), but they appear tens of times faster
(comparing the evolution for the same physical parameters and different initial conditions).
We also note that we compared the evolution of a cnoidal wave with a localised
perturbation in the simulations with periodic boundary conditions with the simulations in
a bigger domain and with zero boundary conditions and sponge layers near the boundaries.
In the latter case the initial condition coincided with the former one in the central part of
the domain, and then was gradually reduced to zero towards the boundaries. Our results
have shown good agreement between these two simulations in the central part of the
latter simulation. Hence, for the problems of that type, simulations with periodic boundary
conditions in a smaller domain can be used instead of simulations in the large domain.

In this study we did not aim to systematically investigate the probability of generation
of rogue waves due to this scenario (in the sense of the classical definition of rogue waves
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Figure 16. Rogue wave generation: three- and two-dimensional views of the interfacial displacement from
above (a) and initial condition at T = 0 vs interfacial displacement at T = 8.8 (b).

as waves with an amplitude more than twice the significant wave height), but it is worth
mentioning the generation of the rogue wave shown in figure 16 using the same physical
parameters as in figure 13 and initial condition (4.16) with u1 = −10−3, u2 = 0,

u3 = 3, A1 = 0.60, A2 = 0.60 and ζ0 = −2.60. The computational domain is
2L = 272.81 with the number of modes M = 2726, the spatial step 
x ≈ 10−1, the
total simulation time Tmax = 100, with the temporal step 
T = 10−2. This could be an
interesting direction of further research.

We hope that our study sheds light both on the typical structure of nearly cnoidal
waves (with defects) observed in oceanic observations (see, for example, figure 1 in the
Introduction), and on the role of rotation in the formation of bursts of large interfacial
displacements and shear in the direction of wave propagation. Further developments could
concern bi-directional propagation and effects related to barotropic transport, which were
discussed in the construction of the weakly nonlinear solution, but were left out of scope
of the subsequent modelling. Another issue which was left out of scope of the present
study was the effect of the depth-dependent shear currents (see Hooper, Khusnutdinova &
Grimshaw 2021, Tseluiko et al. 2023 for the recent developments related to the presence
of a long-wave instability, in the absence of rotation). As a by-product of our study
we constructed some curious generalised travelling waves of the KdV equation, whose
smoothed counterparts naturally emerged in the evolution of initial conditions in the form
of cnoidal waves with local perturbations in the absence of rotation (KdV regime). It would
be interesting to investigate whether similar solutions can be found in other integrable
models, as well as the non-integrable strongly nonlinear parent models, and what is their
meaning and role in the relevant physical contexts.
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Appendix A. Generalised (shock-like) travelling waves of the KdV equation
The cnoidal waves with expansion/contraction defects have a jump in the second/first
derivative at some points within the domain. Our analysis below follows the recent line
of research developed in the papers by Gavrilyuk et al. (2020), Gavrilyuk & Shyue (2022)
and Gavrilyuk et al. (2024). The key idea is to treat the points of discontinuity similarly
to shocks in the theory of hyperbolic conservation laws, i.e. to split the solution into
several parts where the solution and all derivatives are smooth, and to match them at
the points of discontinuity in such a way that the ‘generalised Rankine–Hugoniot (gRH)’
conditions following from the dispersive conservation laws are satisfied. In the previous
work developed within the scope of nonintegrable equations, e.g. the Benjamin–Bona–
Mahoney equation considered by Gavrilyuk & Shyue (2022), the conservation laws have
led to some non-trivial gRH conditions, and numerical experiments have supported the
importance of these conditions. Our observation reported in this appendix is that the
cnoidal waves of the KdV equation with the expansion or contraction defects introduced
in our paper do not lead to any non-trivial jump conditions – all conservation laws are
satisfied, in the same sense as in Gavrilyuk & Shyue (2022). Moreover, the cnoidal
wave with an expansion defect satisfies the Weirstrass–Erdmann corner condition and is a
broken extremal of the associated variational problem.

The KdV equation

ut − 6uux + uxxx = 0, (A1)

can be represented in the form of a conservation law

∂u

∂t
+ ∂

∂x

(−3u2 + uxx
)= 0. (A2)

Equation (A2) implies conservation of ‘mass’

d
dt

∫ L

−L
udx = 0, (A3)

provided the function u(x, t) either vanishes together with its spatial derivatives as L →
∞, or it is spatially periodic on the interval [−L , L]. The latter case is considered in our
paper.

One also has conservation laws for ‘momentum’

∂

∂t

u2

2
+ ∂

∂x

(
uuxx − 1

2
u2

x − 2u3
)

= 0, (A4)

and ‘energy’

∂

∂t

(
u3 + 1

2
u2

x

)
+ ∂

∂x

(
−9

2
u4 + 3u2uxx − 6uu2

x + ux uxxx − 1
2

u2
xx

)
= 0. (A5)
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It is well known that the KdV equation has infinitely many polynomial conservation
laws, which can be proven using a generating function (Miura, Gardner & Kruskal 1968).
We reproduce the main part of the proof below, since we need some formulae from it for
our subsequent considerations. The Gardner transformation

u = w + εwx + ε2w2, (A6)

where ε is the grading parameter, yields

ut − 6uux + uxxx = (1 + 2ε2w + ε∂x
)[

wt + (wxx − 3w2 − 2ε2w3)
x

]= 0. (A7)

Therefore, if w(x, t) satisfies the conservation law

wt + (wxx − 3w2 − 2ε2w3)x = 0, (A8)

then u(x, t) satisfies the KdV equation. Next, one represents w in the form of an
asymptotic expansion in powers of ε

w =
∞∑

n=0

εnwn. (A9)

Collecting the coefficients of equal powers of ε in (A6) gives us

w0 = u , w1 = −w0x = −ux , w2 = −w1x − w2
0 = uxx − u2, (A10)

wn = −wn−1,x −
n−2∑
k=0

wkwn−2−k for n � 2. (A11)

Now, substituting expansion (A9) into (A8) one obtains an infinite series of the KdV
conservation laws as the coefficients at even powers of ε. The coefficients of odd powers
are exact differentials (referred to as ‘trivial conservation laws’, see Miura et al. 1968, for
details). The integrals

In =
∫ L

−L
w2ndx, n = 0, 1, 2, . . . , (A12)

are called ‘Kruskal integrals’. In particular, the first three integrals take the form

I1 =
∫ L

−L
udx, I2 =

∫ L

−L

1
2

u2dx, I3 =
∫ L

−L

(
u3 + 1

2
u2

x

)
dx . (A13)

Next, to prove that cnoidal waves with our contraction and expansion defects satisfy all
conservation laws of the KdV equation, we also need a recurrence formula for the fluxes.
Substituting expansion (A9) into (A8) we obtain

wxx − 3w2 + 2ε2w3 =
∞∑

n=0

εn fn, (A14)

where

f0 = w0,xx − 2w2
0, f1 = w1,xx − 6w0w1, f2 = w2,xx − 3w2

1 − 6w0w2 + 2w3
0,

(A15)

fn = wn,xx − 3
n∑

k=0

wkwn−k + 2
∑

k+l+m=n−2

wkwlwm for n � 2, (A16)
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with the last summation being over all triples of integers (k, l, m) such that k + l + m =
n − 2. The Kruskal integrals and the recurrence relations for the fluxes are invariant with
respect to the Galilean transformations.

Let us now consider a cnoidal wave with an expansion defect, as shown in the
figure 17(a). This wave is constructed by cutting at a trough of the cnoidal wave between
two peaks and symmetrically adding a segment of a straight line at the corresponding
level. In the original (x, t) frame, the entire wave moves with the constant speed of
the cnoidal wave. We now consider it in the reference frame moving with this constant
speed, then the wave is stationary. We place the origin in the middle of the defect. Then,
the function describing the wave profile is even, see the figure 17(a). Let us denote the
period of the cnoidal wave by �. If we consider m peaks in the domain, then without
the defect L = m�/2. With the defect, given that the length of the inserted symmetric
interval is d, then L = (m� + d)/2. The resulting function has a corner at two points in
the periodic domain [−L , L], and the graph is symmetric about the vertical axis passing
through the middle of the interval which has been assumed to be x = 0, with the function
w0 = u being even in that frame. From the recurrence relation (A11), we observe that
functions w2n are even and w2n+1 are odd. Let the x-coordinates of the left and right
endpoints of the line segment be denoted by x1 and x2, respectively. With our choice
of the reference frame we have x1 = −x2 = −xd . Consequently, treating the points of
discontinuity similarly to shocks in the theory of hyperbolic equations (see Gavrilyuk
et al. 2020, Gavrilyuk & Shyue 2022, Gavrilyuk et al. 2024), we represent the integral as
the sum over three subintervals, and obtain

d
dt

In = −
∫ −xd

−L
f2n x dx −

∫ xd

−xd

f2n x dx −
∫ L

xd

f2n x dx (A17)

= − [ f2n
]−xd
−L − [ f2n

]xd
−xd

− [ f2n
]L

xd
= 0, (A18)

by periodicity, the constant value of f2n on the interval [−xd , xd ], and since the flux f2n is
an even function. We note that this can be generalised by first extracting a small part close
to the trough, symmetrically inserting a segment of a straight line and gluing the remaining
parts to it. The resulting functions will also satisfy all conservation laws of the KdV equa-
tion. Note that unlike the examples constructed in Gavrilyuk & Shyue (2022) in the context
of the Benjamin–Bona–Mahoney equation, there appear no non-trivial gRH conditions.

Similarly we can consider a cnoidal wave with a contraction defect, as shown in the
figure 17(b), again in the reference frame where the wave is stationary. This wave is
constructed by extracting a symmetric interval around a trough between two neighbouring
peaks and gluing the remaining parts together. Let us again denote the period of the cnoidal
wave by � and consider m peaks in the domain, then without the defect L = m�/2. With the
defect, given that the length of the extracted symmetric interval is d, then L = (m� − d)/2.
The resulting function has a corner at one point in the periodic domain [−L , L], and the
graph is symmetric about the vertical axis passing through that point. Let us denote this
point by x0. We can then associate the origin of the moving reference frame with x0, i.e.
assume x0 = 0, and the function w0 = u will be even in that frame. From the recurrence
relation (A11), we observe that functions w2n are even and w2n+1 are odd. Recalling that
non-trivial conservation laws correspond to even values 2n, we deduce from the recurrence
relation (A16) that the corresponding fluxes f2n can only contain terms representing even
functions. Therefore,

d
dt

In = −
∫ 0

−L
f2n x dx −

∫ L

0
f2n x dx (A19)
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Figure 17. Schematic of construction of the generalised travelling waves of the KdV equation in the form of
a long-lived cnoidal wave with an expansion and contraction periodicity defects (a and b, respectively), and a
short-lived soliton with similar amplitude defects (c and d, respectively). The waves have negative polarity: the
peaks have negative amplitude.

= − [ f2n
]0
−L − [ f2n

]L
0 = 0, (A20)

by periodicity and since the flux f2n is an even function.
Another way to prove the above relies on using that all non-trivial fluxes f2n are

polynomial functions of even weight with respect to the scaling symmetries of the KdV
equation. This also implies that the fluxes f2n are even functions, and the rest follows from
that.

Next, the KdV equation (A1) can be written in Lagrangian form

δ

∫
Ldxdt = 0, where L= 1

2
φtφx − φ3

x − 1
2
φ2

xx , u = φx . (A21)

The cnoidal waves with expansion defects can be viewed as generalised (shock-like)
travelling waves (see Gavrilyuk & Shyue 2022 for a relevant discussion in the context
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of the Benjamin–Bona–Mahoney equation). Then Lagrangian density (A21) becomes a
function of u and ux : L=L(u, ux ). The Weirstrass–Erdmann corner conditions for broken
extremals require the continuity of

∂L
∂ux

and L− ux
∂L
∂ux

, (A22)

at each junction (e.g. Fox 1954) , which leads to the requirement of continuity of ux , since
u is continuous. This condition is satisfied exactly for a cnoidal wave with an expansion
defect, and approximately for a cnoidal wave with a contraction defect, provided we cut
close to extremum. The smoothed counterparts of cnoidal waves with both expansion and
contraction defects were long lived in our numerical simulations, with the former function
generating states behaving very closely to a travelling wave.

Having observed that the constructed cnoidal waves with expansion defects generate
long-lived states close to travelling waves, it is also temping to try to construct similar
solutions by cutting around the peak rather than the trough. In contrast to the previous
cases, this can be done for a single peak as well, starting from the exact soliton solution, as
shown in figure 17(c,d). However, in numerical runs, the smoothed counterparts of these
solutions turned out to be unstable and short lived, fissioning and giving rise to the usual
solitons, in full agreement with the inverse scattering transform predictions (Gardner et al.
1967, see also Drazin & Johnson 1989) for the respective smoothed initial conditions.
Similar behaviour is observed in the cnoidal wave with an insertion at a peak rather
than though. Such smoothed initial conditions do not produce long-lived states close to
travelling waves in pseudospectral simulations, they are unstable.

Finally, let us also make some remarks concerning a possible weak formu-
lation. Consider a 2L-periodic regular travelling wave described by a function
u = u(ξ), ξ = x − ct of the KdV equation (A1)(−cu − 3u2 + uξξ

)
ξ
= 0. (A23)

Let us multiply (A23) by a test function φ, which is assumed to be smooth and 2L-periodic,
and integrate by parts. Then,∫ L

−L

(−cu − 3u2 + uξξ

)
ξ
φdξ = −

∫ L

−L

(−cu + u2 + uξξ

)
φξ dξ = 0, (A24)

where we used periodicity of the functions. Consider a cnoidal wave with an expansion
defect. It has a jump in the second derivative at two points in the periodic domain and
does not satisfy the strong formulation (A23). However, it does satisfy (A24). Indeed,
let us consider the wave in the reference frame moving with the speed c. The wave is
stationary and even in this reference frame. Then, it is natural to require the test function
φ to be even too. Equation (A23) is invariant with respect to the Galilean transformation.
The integral in the right-hand side of (A24) is well defined. Represent it as the sum of
three integrals, over the intervals [−L , −xd ], [−xd , xd ], [xd , L]. In the first and third
integrals, (−cu + u2 + uξξ ) = const (cnoidal wave), and then the sum of these integrals
is equal to zero using that φ is even and periodic. In the middle integral, u = const
(expansion defect), and then again the integral vanishes using that φ is an even function.
Hence, a cnoidal wave with an expansion defect satisfies a weak formulation, in the above
sense.

If we relax the conditions on the test function, and require only the periodicity but do
not require φ to be an even function, then we can still make the above argument work by
requiring that the length of the defect is commensurate with the period � of the cnoidal
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wave, i.e. xd = n�, where n is a natural number. We note that we experimented with both
commensurate and non-commensurate lengths of the defect, and there was no significant
difference in the states produced at the end of long pseudospectral runs.

The global well posedness of the Cauchy problem with periodic boundary conditions
in L2, including uniqueness and continuous dependence with respect to the initial data,
was proven by Bourgain (1993) (the global existence of the weak L2 solutions on the
infinite line was proven by Kato 1983, Kruzhkov & Faminskii 1984). We believe that
our considerations provide strong evidence that cnoidal waves with expansion defects
considered in this paper are weak solutions of the KdV equation. The states close to
them naturally emerged in numerical modelling of the evolution of initial conditions given
by cnoidal waves with localised perturbations (see, for example, the figures 12(a,b) and
13(a,b), showing the evolution in the absence of rotation, i.e. in the KdV regime).

Appendix B. Numerical scheme for the Ostrovsky equation
The Ostrovsky equation (

uT + α1uuζ + β1uζ ζ ζ

)
ζ

= γ1u, (B1)

is numerically solved by pseudospectral methods (see Fornberg 1996; Trefethen 2000),
which usually offer the highest accuracy and computational efficiency for smooth data
on periodic domains. By implementing the fast Fourier transform algorithm for spatial
derivatives and the fourth-order Runge–Kutta scheme for time stepping, the method yields
accurate approximation of the solution to the differential equation.

The spatial domain is discretised by M equidistant points with spacing 
x = 2π/M .
Then, the discrete Fourier transform of the equation with respect to ζ gives

ûT − i
(

k3β1 − γ1

k

)
û = − ikα1

2
ˆ(u2), (B2)

where k is the scaled wavenumber. We use the fourth-order Runge–Kutta scheme
for temporal integration. By the integrating factor method of Kassam and Trefethen
(e.g. Trefethen 2000), we multiply the equation by K = exp[−i(k3β1 − (γ1/k))T ] to
obtain

ÛT = − ikα1

2
KF

⎧⎨
⎩
(
F−1

[
Û

K

])2
⎫⎬
⎭ , (B3)

where Û = exp[−i(k3β1 − (γ1/k))T ] û = K û and F is the Fourier transform.
Discretising the time domain as Tn = n
T , and introducing the function

E = exp
[

i

2

(
k3β1 − γ1

k

)

T

]
, (B4)

the optimised Runge–Kutta time stepping has the form

û(n+1) = E2û(n) + 1
6

[
E2k1 + 2E(k2 + k3) + k4

]
, (B5)
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where

k1 = − ikα1

2

T F{(F−1[û(n)])2},

k2 = − ikα1

2

T F{(F−1[E(û(n) + k1/2)])2},

k3 = − ikα1

2

T F{(F−1[Eû(n) + k2/2])2},

k4 = − ikα1

2

T F{(F−1[E2û(n) + Ek3]

)2}
. (B6)
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