
23
Quasielastic scattering

A first description of quasielastic scattering is obtained from the electro-
magnetic response of a non-interacting, non-relativistic Fermi gas. This
provides a convenient, consistent picture of the dominant part of the
nuclear response surface as a function of (q, ω). Consider a Fermi gas of
protons as illustrated in Fig. 23.1. The total charge and charge density are
obtained by counting the occupied states

Z =
kF∑
kλ

1 → 2Ω

(2π)3

∫ kF

0
d3k =

Ωk3
F

3π2

Z

Ω
≡ ρ =

k3
F

3π2
(23.1)

The last equality relates the proton density to the Fermi wave number. For
illustration, retain just the Coulomb interaction, assuming no transverse
interaction. The target response surfaces of chapter 11 then reduce to the
form [compare Eq. (12.31)]

W1 = 0 (23.2)

1

MT
W2 =

q4
μ

q4

∑
i

∑
f

|〈f|
∫

exp (−iq · x) ρ̂(x) d3x|i〉|2δ(Wf − Wi)

The notation used is indicated in Fig. 23.2.1

1 Use of translational invariance, with eigenstates of three-momentum, allows one to do

both spatial integrations which yield, in the limit of large Ω, a factor (2π)3Ωδ(3)(Pf − Pi)

— this reproduces the previous form for the response surfaces for a target initially at

rest. In the present form, one can directly calculate the scattering for a stationary target.
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23 Quasielastic scattering 195

Fig. 23.1. Response of Fermi gas.

Fig. 23.2. Notation in calculation of Coulomb response of Fermi gas.

We also extract the nucleon form factor of Eq. (19.22) and write

1

MT
W2 ≡

q4
μ

q4
|fSN(q2)|2 R(q2, ω) (23.3)

Here ω ≡ ε1 − ε2 is the energy loss.
The charge density operator for point protons can then be written in

second quantization as

ρ̂(x) = ψ̂†(x)ψ̂(x) (23.4)

Here, the non-relativistic, two-component proton field is given by

ψ̂(x) =
1√
Ω

∑
kλ

akλ exp (ik · x) ηλ (23.5)

Thus, upon integration∫
exp (−iq · x) ρ̂(x) d3x =

∑
kλ

a
†
k−q, λakλ (23.6)

Matrix elements of this expression for a Fermi gas can now be readily
evaluated. One particle must be destroyed inside the Fermi sea and one
created outside. Upon converting the final sum to an integral, one arrives
at

R(q2, ω) =
2Ω

(2π)3

∫ kF

0
d3k θ(|k − q| − kF )δ(ω − εk−q + εk) (23.7)
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196 Part 4 Selected examples

Fig. 23.3. Momentum space geometry for evaluation of response of a non-
relativistic Fermi gas.

This is a general result for a Fermi gas. Now specialize to the dispersion
relation for non-relativistic nucleons

εk =
k2

2m
(23.8)

R(q2, ω) =
2Ω

(2π)3

∫ kF

0
d3k θ(|k − q| − kF ) δ

(
ω +

k · q

m
− q2

2m

)

Introduce dimensionless variables according to

x ≡ k

kF
; Δ ≡ q

kF
; ξ ≡ mω

k2
F

(23.9)

The additional use of Ω = 3π2Z/k3
F then leads to

R(q2, ω) =
3Z

4π

m

k2
F

∫ 1

0
d3x θ(|x − Δ| − 1) δ

(
ξ + Δ · x − Δ2

2

)
(23.10)

This integral can be done with the aid of some simple geometric
considerations [Fe71]. The situation is illustrated in Fig. 23.3. First rewrite

δ

(
ξ + Δ · x − Δ2

2

)
=

1

Δ
δ

(
x ·

[
Δ

Δ

]
+

ξ

Δ
− Δ

2

)
(23.11)

Energy conservation enforced by the vanishing of the argument of the
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23 Quasielastic scattering 197

Fig. 23.4. The quantity ζR(q2, ω) with ζ ≡ 4kFq/3Zm for the case Δ ≥ 2.

delta function then defines the plane indicated in this figure

−x ·
[
Δ

Δ

]
=

ξ

Δ
− Δ

2
(23.12)

The restrictions on the region of integration reflect the fact that the
particle is initially inside the Fermi sphere (F) and must end up outside

|x − Δ| > 1 ; outside F

|x| ≤ 1 ; inside F (23.13)

The answer for the Δ × (integral) is the area of intersection of the plane
and the restricted Fermi sphere. This is either a circle (as illustrated in
the figure), or an annulus, depending on the value of ξ/Δ. Thus one can
immediately write the answer in the various cases:

1) Δ ≥ 2 (spheres do not intersect)

Δ

2
+ 1 ≥ ξ

Δ
≥ Δ

2
− 1 ; plane intersects sphere

area = π

[
12 −

(
ξ

Δ
− Δ

2

)2
]

R(q2, ω) =
3Z

4π

m

k2
F

π

Δ

[
12 −

(
ξ

Δ
− Δ

2

)2
]

(23.14)

This result is sketched in Fig. 23.4, and we make two observations:

• The peak of this response occurs at ξ = Δ2/2 or

ωpeak = q2/2m (23.15)

This is just the free, non-relativistic kinematic relation for the energy
transfer to a nucleon initially at rest, recoiling with momentum −q. Note
the position of this quaiselastic peak moves with q2.
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Fig. 23.5. Data on quasielastic scattering at ε1 = 500 MeV, θ = 60o from HEPL.
Calculation includes Coulomb and transverse current interactions. ε̄ shifts the
response function by an average nuclear binding energy [Mo71, Do75].

• The width of this peak at the base is 2Δ. Thus δξbase = 2Δ or

1

2
δωbase =

kF

m
|q| = vF |q| (23.16)

There is a Doppler broadening of the quasielastic peak that increases with
|q|. This width can be used to measure the Fermi velocity as shown in Fig.
23.5.
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23 Quasielastic scattering 199

Fig. 23.6. The quantity ζR(q2, ω) with ζ ≡ 4kFq/3Zm for the case Δ ≤ 2.

2) Δ ≤ 2 (spheres intersect)

1 +
Δ

2
≥ ξ

Δ
≥ 1 − Δ

2
; plane does not intersect excluded sphere

R(q2, ω) =
3Z

4π

m

k2
F

π

Δ

[
12 −

(
ξ

Δ
− Δ

2

)2
]

(23.17)

The area and answer are the same as before.
3) Δ ≤ 2 (spheres intersect)

1 − Δ

2
≥ ξ

Δ
≥ 0 ; plane does intersect excluded sphere

area = π

{[
12 −

(
ξ

Δ
− Δ

2

)2
]

−
[
12 −

(
ξ

Δ
+

Δ

2

)2
]}

= 2πξ

R(q2, ω) =
3Z

4π

m

k2
F

2π

(
ξ

Δ

)
(23.18)

The results in the case Δ ≤ 2 are sketched in Fig. 23.6.
This simple model calculation provides excellent insight into quasielastic

electron scattering from the nuclear many-body system.
Within the traditional framework of non-relativistic nucleons and one-

body densities, it is possible to derive some exact results for the nuclear
response functions. An integration over all energy loss in Eq. (23.2) at
fixed q removes the energy delta function, and from Eqs. (23.3) and (23.4)2

S(q2) ≡
∫

dωR(q2, ω) =
∑
f

|〈Ψf |
∫

exp (−iq · x) ρ̂(x) d3x|Ψ0〉|2 (23.19)

2 It is important to note that one can never fully evaluate this integral experimentally

in electron scattering since there the four-momentum transfer must be space-like q2
μ =

q2 − ω2 ≥ 0.
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Here the ground state is written as |i〉 ≡ |Ψ0〉; it is assumed to be non-
degenerate. Closure may now be used on this expression to give

S(q2) = 〈Ψ0|
∫ ∫

d3x d3y exp {−iq · (x − y)} ρ̂(y) ρ̂(x) |Ψ0〉 (23.20)

Now make use of the canonical anti-commutation rules for the proton
fields {

ψ̂α(x), ψ̂
†
β(y)

}
= δ(3)(x − y) δαβ

{ψ̂α(x), ψ̂β(y)} =
{
ψ̂†
α(x), ψ̂

†
β(y)

}
= 0 (23.21)

They allow one to write

ρ̂(y) ρ̂(x) = ψ̂†(y)ψ̂(y)ψ̂†(x)ψ̂(x) (23.22)

= δ(3)(x − y)ψ̂†(x)ψ̂(x) + ψ̂†(y)ψ̂†(x)ψ̂(x)ψ̂(y)

The total charge, a constant of the motion, can be identified according to∫
d3x

∫
d3y exp {−iq · (x − y)} δ(3)(x − y) ψ̂†(x) ψ̂(x) = Ẑ (23.23)

Hence one has the general result

S(q2) = Z (23.24)

+

∫
d3x

∫
d3y exp {−iq · (x − y)} 〈Ψ0|ψ̂†(y)ψ̂†(x)ψ̂(x)ψ̂(y)|Ψ0〉

The discussion can be focused on inelastic transitions by defining S in

through the restriction
∑

f �=0 in Eq. (23.19). This yields

S in(q2) = S(q2) − |〈Ψ0|
∫

exp (−iq · x) ρ̂(x) d3x |Ψ0〉|2 (23.25)

It follows that

S in(q2) ≡
∫

dω Rin(q2, ω)

= Z +

∫ ∫
d3x d3y exp {−iq · (x − y)} g(x, y)

g(x, y) ≡ 〈Ψ0|ψ̂†(y)ψ̂†(x)ψ̂(x)ψ̂(y)|Ψ0〉
−〈Ψ0|ψ̂†(x)ψ̂(x)|Ψ0〉〈Ψ0|ψ̂†(y)ψ̂(y)|Ψ0〉 (23.26)

One observes that g(x, y) in the nuclear two-body charge density, and
this Coulomb sum rule provides probably the only way, in principle, to un-
ambiguously measure this density–density correlation function in nuclei. If
the Fourier transform of the two-body density goes to zero as |q| → ∞, then

S in(q2) → Z ; |q| → ∞ (23.27)
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23 Quasielastic scattering 201

In this limit, in this traditional picture, the Coulomb sum rule simply
counts the number of proton charges.

The Coulomb sum rule can be explicitly evaluated for a Fermi gas
by integrating the previously derived response functions. First note that
dξ = mdω/k2

F , and define y ≡ ξ/Δ. Then
1) For Δ ≥ 2

S in(q2) =
3Z

4

∫ Δ/2+1

Δ/2−1
dy

[
1 −

(
y − Δ

2

)2
]

(23.28)

Change variables to u ≡ y − Δ/2 and use
∫ 1

−1 du(1 − u2) = 4/3, thus

S in(q2) = Z (23.29)

2) For Δ ≤ 2

S in(q2) =
3Z

4

{∫ 1−Δ/2

0
2Δ y dy +

∫ 1+Δ/2

1−Δ/2
dy

[
1 −

(
y − Δ

2

)2
]}

=
3Z

4

[
2Δ

1

2

(
1 − Δ

2

)2

+

∫ 1

1−Δ
du(1 − u2)

]

=
3Z

4

(
Δ − 1

12
Δ3

)
(23.30)

Thus

S in(q2) = Z

(
3

4
Δ − 1

16
Δ3

)
(23.31)

In summary, the Coulomb sum rule defined by

C in(q) ≡ 1

Z
S in(q) (23.32)

takes the following form for a non-relativistic Fermi gas

C in(q) = 1 ; q ≥ 2kF

=
3

2

(
q

2kF

)
− 1

2

(
q

2kF

)3

; q ≤ 2kF (23.33)

This result is plotted as C(Q)NR in Fig. 23.7.3

3 In the quantum field theory QHD-I, described by the lagrangian density of Eq. (21.1),

the baryon field satisfies canonical anti-commutation relations; however, it contains

both baryons and anti-baryons. The equations of motion imply that the local, effective

current in Eq. (21.14) is conserved. A Coulomb sum rule can then be constructed in
direct analogy with the derivation given in the text. The result obtained for nuclear

https://doi.org/10.1017/9781009290616.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.028


202 Part 4 Selected examples

Fig. 23.7. The Coulomb sum rule C(Q) where Q = q/2kF . The non-relativistic
result (NR) is that of Eq. (23.33). Also shown is the RMFT result (see text).

Inspection of Eqs. (23.3) and (23.8) shows that in the non-interacting,
non-relativistic Fermi gas, the Coulomb cross section can be written

d2σ

dε2dΩ2
= σM

q4
μ

q4
|fSN(q2)|2 R(q2, ω) (23.34)

R(q2, ω) =
3Z

4πk3
F

∫ kF

0
d3k θ(|k − q| − kF )δ(ω +

k · q

m
− q2

2m
)

Here we have used Ω = 3π2Z/k3
F . Now write the momentum integration

region in Eq. (23.34) as d2k⊥dk‖ where k‖ lies along q, and assume that
the momentum transfer q is large enough so that the θ function in the
integrand is irrelevant. Then

d2σ

dε2dΩ2
= σM

q4
μ

q4
|fSN(q2)|2 m

q
F(y) ; q → ∞

F(y) =
3Z

4πk3
F

∫ kF

0
d2k⊥ dk‖ δ(k‖ − y)

y ≡ mω

q
− q

2
(23.35)

The energy loss ω and momentum transfer q ≡ |q| enter the scaling
function F(y) only through the single scaling variable y.

matter, using RMFT to evaluate the two-body charge density, is shown in Fig. 23.7

[Wa83]. The Coulomb response amplitudes are more complicated in a full field theory.

For example, there are other degrees of freedom that carry charge, included here in an

empirical fashion in the additional anomalous magnetic moment term in the effective

current [responsible for the rise in C(q2)]. It is also possible to produce real nucleon

pairs in the time-like region [Ma83]. The nuclear Coulomb sum rule in such theories is

examined in detail in [Fe94, Ko95].
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23 Quasielastic scattering 203

Fig. 23.8. Super-scaling analysis of Donnelly and Sick for nuclei from A = 4−197
[Do99]. The variable ψ′, defined in that paper, is close to y/kF .

Suppose one still has a non-interacting, non-relativistic Fermi gas but
now, instead of the initial momentum distribution (3/4πk3

F )θ(kF − k), one
has a more general (normalized) distribution n(k2). One example would be
a thermal Fermi distribution [Fe71]. Suppose also that the Pauli Principle
is irrelevant for the final-state proton. The evident generalization of Eq.
(23.35) is

F(y) =

∫
d2k⊥ dk‖ n(k

2
⊥ + k2

‖) δ(k‖ − y)

=

∫
d2k⊥ n(k2

⊥ + y2)

y ≡ mω

q
− q

2
(23.36)

This result is known as y-scaling. It is a simple result of conservation of
energy and momentum for a non-relativistic nucleon. To the extent that
the nuclear density and Fermi momentum are unchanged as the size of
the nucleus is increased, F(y) should be a universal function independent
of A. y-scaling is discussed in detail in the review article [Da90]. One of
the most impressive applications of y-scaling is in the work of Donnelly
and Sick shown in Fig. 23.8 [Do99], which reflects some of the extended
relativistic analysis in appendix G.

The response of the relativistic Fermi gas is investigated in depth in
[Mo69, Va78, Al88, Ce97]. Smith and Moniz [Sm72] have also calculated
inclusive quaiselastic scattering (e, e′) in a relativistic Fermi gas model of
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Fig. 23.9. Relativistic calculation of quasielastic peak and N�(1232) production
in electron scattering from Ni at ε1 = 500 MeV, and θ = 60o; here ε̄ = 42 MeV
and kF = 271 MeV [Sm72]. The experimental data are from Moniz et al. [Mo71].
The dashed line omits the Pauli principle in the final state.

the nucleus, including production of the Δ(1232) (see chapter 28). Their
results for Ni are shown in Fig. 23.9.

A relativistic model which includes interactions in an average fashion
is given by relativistic mean field theory (RMFT) discussed in chapter
21. Pollock has calculated the four response functions of Eq. (13.48) for
coincident electron scattering (e, e′ N) for nuclear matter in RMFT [Po88].
He uses the current of Eq. (21.14), and his results are shown in Fig. 23.10.
This is a very simple calculation, but it has the following features to
recommend it:

• The RMFT provides a realistic model of nuclear matter [Wa95];

• The full nucleon vertex Γμ = F1γμ − F2σμνkν has been used; the
current is conserved and gives the correct result for a free nucleon;

• The calculation is completely relativistic;

• The resulting response surfaces in Fig. 23.10 map out the complete
Fermi sphere, weighted with the appropriate electromagnetic inter-
action; one can examine any part of the Fermi sphere, including
the deeply bound states, by looking at the appropriate region of the
response surface. Correlations will modify the Fermi sphere and add
a tail to the momentum distribution;

• The (e, e′ n) surfaces are also worth looking at [Po88].

Figures 21.2 and 21.3 show quasielastic data from HEPL on 40
20Ca(e, e′)
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23 Quasielastic scattering 205

Fig. 23.10. The four proton response functions in RMFT obtained from the
transition matrix elements of the current Jμ and evaluated per proton are
plotted as functions of energy loss and cos θq . Here |k| = 0.5 GeV and φq = π/2;
the φq dependence is now in the response. Also kF = 0.28 GeV and m�/m = 0.56
(appropriate for nuclear matter). The vertical scale is 25.0 GeV−1 for all four
response functions, and ωk is in GeV [Po88, Wa95].

and 208
82Pb(e, e′) compared with a calculation in RMFT [Ro80].4 The calcu-

lation uses the relativistic densities for these nuclei, and the full, relativistic,
conserved current; there are no free parameters. The position, shape, and
magnitude of the peak are all well-described; it would appear that one had
an understanding of nuclear quasielastic scattering. Nonetheless, the data
contains both the transverse and Coulomb (longitudinal) response, and if
one could isolate the Coulomb response, where the interaction is simply
with the charges in the target, the understanding should be even better.
Experimentalists have worked very hard to make the required Rosenbluth
separation, and the result for 40

20Ca is shown in Fig. 23.11. The experimen-
tal points are from Saclay; they represent the area under the Coulomb

4 Quasielastic electron scattering for 40
20Ca(e, e′) is calculated in relativistic Hartree by

summing over single-particle transitions, and including the RPA response, in [Ho89].
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Fig. 23.11. Area under the Coulomb part of the quasielastic peak — the
Coulomb sum rule — for 40

20Ca(e, e′). Data are from Saclay [Me84]. Theoreti-
cal curve is RMFT, with relativistic, conserved current and nucleon form factors
left in [Po88, Wa95].

quasielastic peak — the Coulomb sum rule. The theoretical curve is the
same RMFT calculation described above [Po88].5 The disagreement is
by almost a factor of 2 at the largest q. Several possible solutions have
been proposed, including: a swelling of the nucleon in the nuclear medium
[now pretty well ruled out by further (e, e′) studies], modification of strong,
hadronic vacuum polarization in the nuclear medium, RPA correlations,
short-range correlations, and missing experimental strength.

Consider further one of these effects, the role of short-range correlations
in the Coulomb sum rule. Recall from Eqs. (23.26) and (23.32) that the
Coulomb sum rule, properly normalized6 can be written [Vi77, Wa93]

C in(q) = 1 + ρ̃(2)
pp (q) (23.37)

The second term is the Fourier transform of the two-body density. Figure
23.12 [Vi77] shows the calculated quantity |1 − C in(q)| for infinite nuclear
matter using (1) The Pauli correlations of a non-interacting Fermi gas; (2)
A two-body density calculated from the Bethe–Goldstone wave function
for a hard-core interaction [Fe71]; (3) A similar result with a more realistic
two-body interaction. While approximately 10% correction from short-
range correlations at the highest measured q above is conceivable; it is
difficult to see how this could account for the factor of 2.

5 The single-nucleon form factors have been left in this result.
6 The normalization is C in(q) → 0 as q → 0, and the single-nucleon form factor has been

divided out.
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Fig. 23.12. Normalized Coulomb sum rule for nuclear matter including short-
range correlations (see text) [Vi77] .

Fig. 23.13. Two-body density ρ̃(2)
pp (q) extracted from Coulomb sum rule in (a)

3
1H(e, e′) and (b) 3

2He(e, e′). The data are from Bates [Be90].

The two-body density is one of the fundamental quantities in many-
particle physics. For example, the precision measurement of this quantity
by inelastic neutron scattering in liquid 4He provides the basis for much
of our understanding of this quantum fluid. Despite the fact that the two-
body density is the basic quantity used in the calculation of the binding
energy of many-body nuclei, it had never been measured experimentally.
It has now been measured, however, for one simple system.

A study of quasielastic scattering in both 3
2He(e, e′) and 3

1H(e, e′) has
been carried out at Bates. Figure 23.13 shows the two-body density ex-
tracted from the Coulomb sum rule in these two nuclei [Be90]. This
determination has a very nice self-calibration, for the two-body proton
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Fig. 23.14. Nuclear Coulomb response (dimensionless units) for n.m.(e, e′ N) for
hard-core Fermi gas to order (kFa)

2. x is dimensionless energy transfer. Kinematics
arranged so there is no quasi-elastic (e, e′ p) [de66a, de67, Wa93].

density must vanish in 3
1H, as it does. The result for 3

2He provides the
first experimental determination of the two-body nuclear density — a
significant achievement.

The resolution of the disagreement with the Coulomb sum rule in
medium to heavy nuclei has been one of the most significant problems
in nuclear physics [Wa95]. Jourdan has made a very important contri-
bution here [Jo96]. By combining all the available data from the world’s
laboratories, he shows that it is possible to obtain a longer lever arm
on the Rosenbluth plots, separating the dominant transverse scattering,
which determines the slope, from the much smaller Coulomb scattering,
determined from the extrapolated intercept. After an extensive analysis,
he finds a ratio of experimental to theoretical value of the Coulomb sum
rule of 0.97 ± 0.12 in 56

26Fe at q = 570 MeV/c.7

It is interesting to investigate other effects on the electromagnetic re-
sponse surfaces produced by short-range correlations. Figure 23.14 shows
the Coulomb response for the reaction n.m.(e, e′ N) on a nuclear matter
(n.m.) Fermi gas with hard-core interactions [Fe71]. The figure is from

7 The extensive set of current experimental data on separated longitudinal and transverse

quasielastic response surfaces for 40
20Ca is discussed in [Wi97].
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Taber deForest’s thesis [de66a] — done over 30 years ago in connection
with the proposed program for the SCA at HEPL. The quantities (q2, ω)
are arranged to be outside the allowed region for quasielastic scattering for
the Fermi gas — see above and [Fe71]; thus the process can only proceed
while two nucleons are in virtual collision in the nucleus.8 The calculation
of the response is exact to order (kFa)

2 (all graphs creating 2p–2h states
are retained). In Fig. 23.14 the z-axis lies along q. While the resulting
proton distribution may not look so dramatic, the backward peaking of
the neutrons in the n.m.(e, e′ n) Coulomb response is quite spectacular.

8 For quasielastic scattering, the indicated energy conservation region would have to

intersect the Fermi sphere; thus these results lie on the high-energy-loss side of the

quasielastic peak.
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