
18
Radiative corrections

Let us now calculate the observable QED modification of the electron
scattering cross section following from the analysis in the previous chapter.
For this purpose, assume a static (time-independent) external field, in
which case

aext
μ (q) = −2πiδ(Wf − Wi)ã

ext
μ (q) (18.1)

One can identify the T-matrix and cross section corresponding to Eq.
(17.32) from the general relations

Sfi = −2πiδ(Wf − Wi)Tfi

dσ = 2π|Tfi|2δ(Wf − Wi)
dρf

Flux
(18.2)

For illustration, we here confine the discussion to scattering where the
target is left in its ground state. It follows that

dρf

Flux
=

Ωd3k2

(2π)3
1

v1/Ω
(18.3)

Let the superscript denote the order in e, then to O(e4) one has for the
square of the T-matrix

|Tfi|2 = |T (1)
fi + T

(3)
fi |2 = |T (1)

fi |2 + 2ReT
(1)∗
fi T

(3)
fi (18.4)

If the explicit magnetic moment contribution is suppressed for the time
being, then, since the QED amplitude in Eq. (17.32) contains only a real
modification of the coefficient of γμ, one finds to this order(

dσ

dΩ

)
el

.
=

(
dσ

dΩ

)
0

{1 + 2[FE(q2) + q2Πf(q
2)] + · · ·} (18.5)
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140 Part 3 Quantum electrodynamics

Fig. 18.1. Observation in an electron scattering experiment.

Fig. 18.2. Bremsstrahlung in an external field. The photon polarization is εν .

Here (dσ/dΩ)0 is the lowest order cross section, and the dots denote the
magnetic moment contribution.

One now has to think carefully about what is actually observed in the
experiment. Since an electron can always radiate a photon of arbitrarily
long wavelength (or low energy) during the scattering process, what one
will observe in an electron scattering experiment is illustrated in Fig. 18.1.
Experimentally, all one can observe is the sum of these elastic and inelastic
electromagnetic cross sections.

dσ = dσel + dσin (18.6)

One is therefore required to also calculate the cross section for radiation
of a photon, the bremsstrahlung cross section. The two Feynman diagrams
for bremsstrahlung in the same external field are shown in Fig. 18.2. The
analytic expression follows from the previous Feynman rules as

Sfi = − ie2

Ω

1√
2ωlΩ

ū(k2)

[
γνεν

1

iγλ(k2 + l)λ + me
γμ

+γμ
1

iγσ(k1 − l)σ + me
γνεν

]
u(k1)a

ext
μ (q) (18.7)
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18 Radiative corrections 141

This amplitude will give the bremsstrahlung cross section to O(e4), which
is of exactly the same order as the last term in Eq. (18.4).

First, rationalize the term in brackets in Eq. (18.7) and use the Dirac
equation to the left and right

[· · ·] = −
[
2ik2 · ε + i(γλελ)(γσlσ)

2k2 · l + l2
γμ + γμ

2ik1 · ε − i(γλlλ)(γσεσ)

−2k1 · l + l2

]
(18.8)

Now let the photon energy become very small

|l| ≡ ΔE → 0 (18.9)

Then

Sfi
.
= −e2

Ω
ū(k2)γμu(k1)a

ext
μ (q)

[
1√

2ωlΩ

(
k2 · ε
k2 · l − k1 · ε

k1 · l

)]
(18.10)

Note that at this stage strict current conservation (gauge invariance) is
still maintained since if one replaces εμ → lμ this amplitude vanishes.

Assume again a static external field as in Eq. (18.1) and read off the
T-matrix as in Eq. (18.2). The bremsstrahlung cross section is then

dσin = 2πδ(Wf − Wi)|Tfi|2
Ωd3l

(2π)3
Ωd3k2

(2π)3
1

v1/Ω
(18.11)

Under the condition in Eq. (18.9), one can replace

ãext
μ (q) ≈ ãext

μ (k2 − k1)

E2 + ωl = Wf ≈ E2 (18.12)

Since these quantities are now the same as in elastic scattering, dσin will
again be proportional to dσ0! It follows from the above that

dσ

dΩ
=

(
dσ

dΩ

)
el

+

(
dσ

dΩ

)
in

(18.13)

=

(
dσ

dΩ

)
0

⎧⎨
⎩1 + 2[FE(q2) + q2Πf(q

2)]

+
α

4π2

∑
pol

∫ ΔE

0

d3l

ωl

(
k2 · ε
k2 · l − k1 · ε

k1 · l

)2

+ · · ·

⎫⎬
⎭

In this express ΔE is the resolution of the electron detector, and one must
include all inelastic processes that give an electron in the detector within
this resolution. A correct calculation of radiative corrections thus depends
on the geometry of the experiment. The dots again denote the additional
magnetic moment contribution.
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142 Part 3 Quantum electrodynamics

Since a, albeit tiny, mass has been assumed for the photon, the brems-
strahlung term must be evaluated consistently for this situation. The
polarization sum for a massive vector meson yields1

∑
σ

ε(σ)
μ ε(σ)

ν = δμν +
lμlν

λ2
(18.14)

Since the bremsstrahlung amplitude satisfies strict current conservation,
the terms in lμlν in this expression give a vanishing contribution. Hence

∑
pol

(
k2 · ε
k2 · l − k1 · ε

k1 · l

)2

= − m2
e

(k2 · l)2 − m2
e

(k1 · l)2 − 2k1 · k2

(k1 · l)(k2 · l) (18.15)

Here lμ = (l, iωl) where ωl =
√

l2 + λ2.
One must now do the remaining

∫
d3l/ωl , with the limiting results

α

4π2

∑
pol

∫ ΔE

0

d3l

ωl

(
k2 · ε
k2 · l − k1 · ε

k1 · l

)2

=
2α

3π

q2

m2
e

(
ln

2ΔE

λ
− 5

6

)
k2 � m2

e ; q2 � m2
e

=
2α

π
ln

q2

m2
e

ln
ΔE

λ
q2 � m2

e (18.16)

Note that this bremsstrahlung cross section is also infrared divergent so
that it, by itself, is unobservable; however, when adding the two results
in Eq. (18.13), the infrared divergent terms in ln λ cancel identically in the
observable cross section!

A combination of the above results then yields, for the scattering of an
electron in a static Coulomb field

dσ

dΩ
=

(
dσ

dΩ

)
Mott

(1 − δ) (18.17)

δ ≈ 2α

3π

q2

m2
e

(
ln

me

ΔE
+

5

6
− 1

5
− 3

8
+

3

8

)
k2 � m2

e

δ ≈ 2α

π
ln

q2

m2
e

ln
E

ΔE
q2 � m2

e ; E � ΔE

Here we have identified (dσ/dΩ)0 = (dσ/dΩ)Mott for scattering in a static
Coulomb field. The last +3/8 in the second line, canceling the term before
it, is the hitherto suppressed magnetic moment contribution; the −1/5

1 Use Lorentz covariance, l · e = 0, and l2 = −λ2.

https://doi.org/10.1017/9781009290616.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.022


18 Radiative corrections 143

comes from vacuum polarization. We have also written E1 ≡ E, and ΔE
is the experimental resolution.2

These results on the radiative corrections are originally due toSchwinger
[Sc49], who argued that the correct result for the infrared divergent series,
to all orders in α, is really

1 − δ +
δ

2!
+ · · · = e−δ (18.18)

When ΔE → 0, one then has e−δ → 0, and there is no perfectly elastic
scattering.3

Note that while the ultraviolet divergences truly reflect a lack of knowl-
edge of the physics at very short distances, the treatment of the infrared
divergences is basically a technical problem. The emission of very long
wavelength radiation (photons) is essentially governed by classical physics.
This is a problem first treated in detail by Bloch and Nordsieck [Bl37].
The difficulty arises because analyzing the emission photon-by-photon (i.e.
as a power series in e) is not an efficient way of attacking this problem.

2 Note that ln q2 ≈ lnE2 as E → ∞.
3 For applications of radiative corrections see [Ma69, Mo69a].
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