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The inviscid mechanism, driving flow instabilities in a 1:3, planar and symmetric
sudden expansion, is discerned through a sensitivity-based protocol, also referred to as
inviscid structural sensitivity analysis, with a specific focus on the onset and nature of
the secondary instability. The fundamental idea of this methodology is to change the
contribution of viscosity solely in the global stability equations, while freezing the base-
flow field at the critical conditions. This is practically implemented by decoupling the
Reynolds number that serves as the control parameter for determining the steady base flow
from that governing the disturbance evolution, in order to repeat the structural sensitivity
analysis while progressively increasing the Reynolds number in the linearised equations
only. Accordingly, the sequence of structural sensitivity maps enables us to highlight the
flow regions where the inviscid instability mechanism acts. The numerical results reveal
that the classical structural sensitivity analysis accurately locates the wavemaker region
within the primary recirculation zone, but only its inviscid limit can unveil that the core
of the instability coincides with the centre of the primary vortex: a hallmark of an elliptic
instability. To validate the global findings, the results of the inviscid structural sensitivity
analysis are compared with those obtained from geometric optics. The agreement of the
two approaches confirms the inviscid character of the instability, thereby providing a
complete picture of the nature of the secondary bifurcation.
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1. Introduction

Coherent structures play an undeniable role in many turbulent flows (Fiedler 1987).
Identifying the critical conditions and the kind of instability that lead to the breakdown
of these eddies is essential to grasp the behaviour and the organisation of fluid flows.

An interesting example is the flow in a symmetric planar sudden expansion, a classical
configuration characterised by a symmetry-breaking bifurcation, whose first instability has
been extensively investigated in previous studies. Experimental observations, carried out
by several researchers, including Durst et al. (1974), Cherdron, Durst & Whitelaw (1978),
Sobey & Drazin (1986), Fearn, Mullin & Cliffe (1990) and Durst et al. (1993) showed
that, for moderate expansion ratios (i.e. outlet to inlet section), the primary flow is steady,
two-dimensional and exhibits reflectional symmetry about the mid-plane of the channel,
with two recirculation regions of equal size, past the steps of the expansion, that increase
linearly with the Reynolds number. Above the instability threshold, the flow loses its
symmetry via a pitchfork bifurcation and a pair of stable, steady and two-dimensional
asymmetric flow states (secondary flow) evolve gradually, as one recirculation region
grows at the expense of the other.

Subsequent numerical studies of this problem gave more insights into the flow-field
organisation. For instance, Battaglia et al. (1997) identified the onset of the first bifurcation
over a wide range of channel expansion ratios, showing that the critical Reynolds number
decreases with higher expansion ratios, while Fani, Camarri & Salvetti (2012) investigated
the stability properties of the flow in the context of the linear theory and performed
a sensitivity analysis with respect to perturbations that may be produced by a realistic
passive control, thus providing qualitative hints and quantitative pieces of information to
design a control.

As the Reynolds number is increased further, the flow becomes time-dependent.
Experimental observations from Sobey & Drazin (1986) demonstrated the evidence of
a further pitchfork bifurcation, with symmetry breaking in the spanwise direction and
thence the onset of a strongly three-dimensional flow (see figure 12 of Sobey & Drazin
1986). Also the investigations conducted by Fearn et al. (1990) and the numerical analysis
performed by Battaglia et al. (1997) indicated that the flow becomes three-dimensional
prior to becoming unsteady.

To delve deeper into the nature of this secondary instability, Lanzerstorfer & Kuhlmann
(2012a) used an energy approach, as discussed later on. In particular, by varying
the expansion ratio in a quasi-continuous way, they show that the asymmetric two-
dimensional secondary flow becomes unstable to three-dimensional perturbations. For
large expansion ratios, the critical mode passes from stationary to oscillatory and pure
centrifugal and elliptical amplification processes are identified. However, in the case of
moderate expansion ratios, e.g. 1 : 3 symmetric sudden expansion (which is the case of the
present study where a stationary three-dimensional bifurcation is detected), the physical
interpretation becomes challenging, since all the integral energy production rates are
positive, making it difficult to attribute the instability to a single energy transfer process,
therefore preventing them from assessing the character of the instability. Specifically,
the combined effects of flow deceleration near the reattachment point, shear-induced
amplification on both edges of the plane jet and streamline convergence in the downstream
region of the separated flow, are generically indicated as the possible origins of the
destabilisation.

In this context, the goal of the present work is to characterise the mechanism driving
the global instability in the 1 : 3 sudden expansion, with the focus on the onset and nature
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of the secondary instability, whose features are not yet understood. In particular, we show
that the instability is elliptical, a particular kind of inviscid instability.

The concept of inviscid instability can be found in classical textbooks (Charru 2011)
and it has been largely used to explain fluid instabilities in different flow configurations.
According to Charru (2011), an inviscid instability ‘[...] owes its origin to the inertia of
the fluids; [. . .] viscosity only attenuates the instability via diffusion, and plays a smaller
role the higher the Reynolds number’. The elliptic, hyperbolic and centrifugal types of
instability are notably characterised by inviscid mechanisms. In particular, the elliptical
instability is a mechanism by which three-dimensional flows can be generated in regions
of two-dimensional, elliptical streamlines. This mechanism is caused by resonance due
to strain at elliptic stagnation points. Laboratory experiments (Leweke & Williamson
1998) and numerical modelling indicate the severity of the instability mechanism in that
the flow quickly becomes complicated, typically leading to a breakdown to small-scale
disorder. Theoretical investigations of the elliptical instability have been conducted by
Bayly (1986), Pierrehumbert (1986), Landman & Saffman (1987) and Waleffe (1990),
among others. For a comprehensive overview, the reader is referred to Kerswell (2002).
The hyperbolic instability is due to stretching near hyperbolic stagnation points (see e.g.
Friedlander & Vishik 1991; Leblanc 1997; Pralits, Giannetti & Brandt 2013), and it occurs
on streamlines that pass through regions in the neighbourhood of hyperbolic points. The
essential mechanism of the centrifugal instability was given by Rayleigh (1917), who
introduced a criterion to ascertain instability in the inviscid case. This inviscid mechanism
is due to the disruption of the balance between the centrifugal force and the radial pressure
gradient and gives rise to modes which are localised along particular streamlines, with a
transverse spatial structure which generally decays exponentially fast.

An appealing technique to study elliptic, hyperbolic and centrifugal instabilities is
offered by the geometric optics (or short-wave asymptotics) stability approach that
provides a robust framework for establishing local instability criteria (Lifschitz &
Hameiri 1991). This method is based on the classical Wentzel-Kramers—Brillouin (WKB)
approximation and has been successfully applied in the past to study inviscid instabilities
developing on two-dimensional stationary base flows (see e.g. Lebovitz & Lifschitz 1996;
Leblanc & Cambon 1997), in the short-wave limit. Ad hoc correction terms, accounting
for finite wavenumbers and viscous damping (Landman & Saffman 1987), have been used
by Gallaire, Marquillie & Ehrenstein (2007) with the aim of characterising the primary
three-dimensional bifurcation of the flow past a bump.

The link between geometric optics and global stability analysis (Theofilis 2011) was first
explored by Bayly (1988) in the case of centrifugal instabilities. He demonstrated how the
short-wave asymptotic formalism could be used to construct localised amplified normal
modes. Direct comparisons between linearised direct numerical simulation findings and
short-wave asymptotic results (Bayly 1989) have also shown a qualitative agreement
between the two techniques. Further assessment was given by Sipp & Jacquin (1998),
who introduced a more quantitative approach to link the short-wave asymptotic and the
normal mode analysis. They identify elliptical and centrifugal-type normal modes whose
characteristics (spatial structures and eigenvalues) are in accordance with the results given
by the geometrical optics method. Sipp, Lauga & Jacquin (1999) showed that different
instability mechanisms are characterised by spatial support in different regions of the flow
domain. By analysing a periodic array of two-dimensional flattened Taylor—Green vortices
in a rotating frame, they illustrated that centrifugal eigenmodes are localised in the vicinity
of closed streamlines in the anticyclones while elliptical eigenmodes are concentrated in
the centre of the cyclones or anticyclones and hyperbolic eigenmodes are located near
closed streamlines in cyclones. Godeferd, Cambon & Leblanc (2001) confirmed Sipp’s
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prediction of short-wave instabilities by studying a street of Stuart vortices with external
rotation.

Pinpointing inviscid mechanisms in real flow configurations proves to be challenging,
prompting the application of multiple methodologies to capture the physical nature
of the instabilities. Lanzerstorfer & Kuhlmann (2012a, 20126, 2012¢) proposed an
a posteriori energy transfer method to reveal the character of the instabilities
developing in plane-channel flows with geometric discontinuities, i.e. exhibiting sudden
expansions/constrictions in the form of steps. However, as will be pointed out later,
this approach is not always effective, as in some configurations, it fails to discern the
underlying instability mechanism.

Given the lack of a robust methodology, it seems essential to adopt a reliable protocol
to accurately detect the non-viscous nature of the amplification process. In the present
paper, we rely on structural sensitivity analysis to identify the inviscid core that triggers the
feedback mechanism responsible for the instability. The key ingredient of this sensitivity-
based protocol, also referred to as inviscid structural sensitivity analysis, lies in making
viscosity effects vanish solely in the global stability equations while maintaining the base-
flow field constant, computed at the critical Reynolds number. As a matter of fact, the idea
of decoupling the Reynolds number in the base flow and in the perturbation dynamics is
not new, it has been common practice since the work of Lord Rayleigh (1879). When the
instability mechanism is inviscid, removing viscosity from the linear stability analysis
allows us to remove diffusion phenomena from the model, keeping just the inviscid
phenomena that are responsible for the instability. Clearly, the effects of viscosity must be
taken into account to have an accurate, quantitative description of the instability, but, when
an inviscid instability mechanism is at play, computing the inviscid structural sensitivity
is of help to locate and identify the instability mechanism. An important aspect related
to assessing and locating the inviscid instability mechanism is that, once the inviscid
nature and type of the instability (i.e. elliptic, hyperbolic or centrifugal) are characterised,
a connection between global and local analyses can be established. This allows for the
reconstruction of global modes from local approaches, providing a more comprehensive
understanding of the instability behaviour (Bayly 1988; Sipp & Jacquin 1998). Indeed,
the local approach provides a robust framework for gaining deeper physical insight into
the underlying instability, and it is more efficient than global stability analysis from a
computational perspective, as it involves the simple integration of a tiny set of ordinary
differential equations in one dimension.

Citro et al. (2015) used the inviscid structural sensitivity analysis to study the
incompressible flow past a square open cavity. The authors attributed the nature of the
instability to a centrifugal mechanism due to the localisation of the inviscid sensitivity
field around a critical orbit, that was the same as that identified by the short-wave
asymptotic analysis. More recently, Chiarini & Auteri (2023) employed this method to
assess the inviscid character of the primary (regular) bifurcation of the steady, two-
dimensional flow past rectangular cylinders moving along a wall. For small gap heights
and elongated cylinders, they found that the inviscid structural sensitivity analysis closely
aligns with the results predicted from geometric optics, putting forward some evidence
that the centrifugal instability plays a role in the triggering mechanism. Thus, as the local
analysis is able to accurately predict the particle orbit that provides the main contribution
to the instability, the inviscid structural sensitivity can sharply localise the key features of
the bifurcation on closed trajectories or critical points. More specifically, in agreement
with the aforementioned framework proposed by Sipp et al. (1999), in the case of an
elliptical instability, the maximum value of the inviscid structural sensitivity is expected
at the centre of an elliptical vortex, while, for the hyperbolic and centrifugal mechanisms,
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higher sensitivity values are found along streamlines near hyperbolic stagnation points and
along closed streamlines within the recirculating regions, respectively. In this context, the
sensitivity protocol acts as a magnifying glass, capable of clearly isolating the location of
the inviscid core, thereby completing the picture provided by Lanzerstorfer and Kuhlmann.
To the authors’ knowledge, we present the first agreement between an asymptotic WKB
expansion and global stability results for an elliptic instability.

The paper is organised as follows. The second section (§ 2) is devoted to the description
of the geometrical configuration of the problem and its mathematical formulation, while
§ 3 concerns the global linear stability analysis, providing an accurate estimation of
the secondary bifurcation instability threshold (the critical Reynolds number and the
corresponding spanwise wavenumber are determined). Then, in §4, the adjoint-based
structural sensitivity analysis is performed to localise the region in the flow with the
role of wavemaker in the excitation of the global instability. Section 5 is the heart of
the paper since it deals with the inviscid structural sensitivity analysis that allows us to
unveil the physical nature of the instability. Successively, in § 6, we pursue the study
by investigating the mechanism of instability through the geometric optics method, to
validate the predictions provided by the sensitivity protocol. Each section is organised
to first present the fundamental theory behind the methodology employed, followed
by a discussion of the related results. This structure is intended to clarify the specific
contribution provided by each analysis (that is also recalled in the section titles). Finally,
a synthesis of the results and concluding remarks are given in § 7. In the appendices,
we provide a brief description of the numerical methods employed for the global linear
stability analysis (Appendix A) and the short-wave asymptotic (Appendix B).

2. The flow in a plane symmetric sudden expansion
2.1. Geometrical configuration

The analysis presented here concerns the flow of a Newtonian fluid through a symmetric
sudden expansion. With reference to figure 1, the flow is coming from the left at the inlet
of a channel of height d and length L;, =5d, followed by a sudden enlargement in a
planar duct of height D = 3d, whose length L,,; = 50d has been chosen to recover a plane
Poiseuille flow at the downstream end of the channel. Let ER = D/d be the ratio of the
height of the channel downstream (D) and upstream (d) the geometrical discontinuity. In
this study, a value of the expansion ratio ER = 3 has been considered (as, for instance, in
Fearn et al. 1990; Hawa & Rusak 2000; Fani et al. 2012, among others).

The origin of the Cartesian reference frame is placed at the midpoint of the inlet edge
(0Djy), denoting the streamwise, wall-normal and spanwise directions with x, y and z,
respectively. The base flow is assumed to be two-dimensional and homogeneous in the
spanwise direction (7).

The separation and reattachment points of the three recirculation regions (that
characterise the secondary asymmetric flow field) are also qualitatively represented in
figure 1.

2.2. Problem statement

The fluid motion is governed by the unsteady incompressible Navier—Stokes equations
that, in non-dimensional form, can be written as follows:

8"+( Viu= VP+1V2 2.1a)
” u u= Re u, da
V.u=0, (2.1b)
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Figure 1. Symmetric sudden expansion geometry. Dashed lines qualitatively represent the
recirculation regions.

where u is the velocity vector, u(x, t) = (u, v, w)T, P(x, 1) is the reduced pressure field
and x = (x, y, z) indicates the spatial coordinates, while ¢ denotes time.

Equations (2.1) are made dimensionless using the height of the channel before the
expansion (d) and the maximum (centreline) velocity (U.) of the incoming flow as
reference scales for the length and for the velocity, respectively. The Reynolds number
(Re) is thus defined as

U.d

Re= , (2.2)
V

with v the fluid kinematic viscosity.

The boundary conditions complete the system of differential equations, (2.1): at the
inlet (0D;;,), a fully developed Poiseuille velocity profile is prescribed, no-slip boundary
conditions are imposed along the solid walls of the channel (0D,,), while a traction-free
condition is enforced at the outlet (0D,,,;) of the domain

2 2
u="U, (1 — (Fy) ) ey, Vx € 0D;, (inlet),

] (2.3)
u=>0, Vx € 0D,, (wall),

Pn—Re '(Vu-n)=0, Vx € 9D, (outlet),

where e, is the unit vector in the direction of the x-axis, while rn denotes the surface-
normal vector (in this case, it is the vector perpendicular to the outlet of the computational
domain).

3. Global linear stability analysis: the threshold of the secondary instability
3.1. Methodology

3.1.1. Base flow and direct eigenvalue problem

The onset of the secondary instability is investigated by a classical linear stability analysis
(LSA). Thus, the total flow field Q = (u, P)T is assumed as the sum of a steady, two-
dimensional base flow (or basic state) @, and a time-dependent, three-dimensional
perturbation ¢’, i.e. a small deviation from the base flow of amplitude ¢, so that

Ox,1) = (;) (x,1) = Qp(x) +€q'(x, 1), (3.1
where
Q,(x,y) = (up, Py)" = (up, vp, 0, Pp)7, (3.2a)
g, y,z,)=w, P =@’ v, v, P)T. (3.2b)
1023 A13-6
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Substituting the decomposition (3.1) into the system of differential equations, (2.1), and
neglecting quadratic terms, two systems can be obtained that describe the spatial structure
of the base flow and the evolution of perturbations.

The base flow is solution of the steady version of (2.1)

Vzub,

(up - V)up =—VP +
Repr (3.3)

Veu,=0,

supplemented with the boundary conditions listed in (2.3), while the perturbed field is
governed by the linearised, unsteady Navier—Stokes equations (LNSEs)

a /
il + L{up(Repr), Restp} u' + VP =0,
ot (3.4)

V-.-u =0,

where L stands for the linearised Navier—Stokes operator that in vector notation can be
written as follows:

v (3.5)

L{uy,(Regr), Restgl u' =up - Vu' +u' - Vuy, —
Resrp
In the above systems (3.3-3.4), the Reynolds number (defined as in 2.2) used for base-flow
computations (3.3) is denoted as Repr, while the Reynolds number used in the LNSEs
(3.4) is labelled as Regrp. This notation is intended to decouple the Reynolds number that
serves as the control parameter for determining the steady base flow, from the Reynolds
number that governs the evolution of perturbations (as required by the inviscid structural
sensitivity framework discussed in §5). Henceforth, when Repr = Restp we simply
use Re.
Exploiting the homogeneity of the base flow in the spanwise direction (z), the
perturbation (g”) can be expressed using the normal mode decomposition as

g x, v, z,0)=§(x, y)e'' R ycc., (3.6)

where the term c.c. stands for complex conjugate, while ¢ = (u, 13)T =, v, w, ﬁ)T
denotes the global (direct) eigenfunction and y = ¢ 4 iw is the complex eigenvalue, that
comprises the real growth/decay rate of the perturbation (o) and its oscillation circular
frequency (w). Together, eigenvectors and eigenvalues are called the eigenmodes or global
modes.

Injecting the modal ansatz (3.6) into the LNSEs (3.4), the following two-dimensional
(so-called biglobal) generalised (direct) eigenvalue problem (EVP) is obtained:

y @+ L{uy(Regr), Resrg} it + VP =0,
Direct EVP: 3.7
V.-u=0.

For a given k, the complex y can be computed by solving the stability problem (3.7),
complemented with the following boundary conditions:
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=0, ondD;,UJdD, (inlet and wall),
3.8)
Pn —Regp(Vii-n) =0, on dDy, (outlet).

If all the eigenvalues (y) are such that o is negative, then the base flow is stable with
respect to small three-dimensional perturbations (i.e. the disturbance is damped). If, on
the other hand, there exists at least one eigenvalue with positive real part, then the base
flow is unstable (i.e. the disturbance is amplified), namely the perturbations (¢”) grow with
time and the flow will evolve away from its initial state (Q}).

3.1.2. Adjoint eigenvalue problem

To determine the instability core by means of the adjoint-based structural sensitivity

analysis (in § 4), the study of both the direct and adjoint modes is required. In particular,

the adjoint global mode represents the receptivity of the direct mode to external forcing.
Following the framework introduced by Giannetti & Luchini (2007), the adjoint

perturbation §' = (@', PT)T satisfies the following equations:

—ya' + L™ {uy(Repr), Resrplie” + VP =0,
Adjoint EVP: 3.9
v.i'=o.

with corresponding boundary conditions and L' the adjoint linearised Navier—Stokes
operator expressed as

L {up(Regr), Resrglut = up, - Vu'" — Vuy - u'" + R (3.10)
Resrp
More details on the derivation of the adjoint problem can be found in Giannetti & Luchini
(2007), while for a complete review of the role of the adjoint equations in stability analysis
the reader is referred to Luchini & Bottaro (2014).

3.2. Results
As is well known from the literature (Fani et al. 2012), the flow in a 1:3 plane sudden

expansion remains symmetric for Reynolds numbers below Reg) ~ §81. However, under
supercritical conditions, while the flow remains two-dimensional and steady, it becomes
asymmetric.

We perform a global LSA around this secondary flow to investigate the onset of
the secondary bifurcation. The numerical results, shown in figure 2, reveal that the
flow undergoes a steady (w =0; see figure 2b), three-dimensional (k # 0) bifurcation
at a critical Reynolds number of approximately ReEIrI) ~ 306, associated with spanwise
wavenumber k =~ 0.65 (figure 2a), in agreement with previous numerical investigations
(see e.g. Lanzerstorfer & Kuhlmann 2012a). The eigenvalue spectrum (at Reglr[) =306
and k =0.65), illustrated in figure 3, shows that the eigenvalues are real or come in
complex-conjugate pairs, as expected, and that the least stable eigenvalues are discrete.

The structure of the base flow, computed at the critical Reynolds number, is depicted
in figure 4. The flow separates from the lower wall, impinges on the upper edge of the
domain and then reattaches to the bottom wall. This phenomenon is usually explained
by a Coanda effect, that is a consequence of the pressure difference established in the
cross-stream direction (see the early work by Bourque & Newman 1960). The resulting
asymmetric flow field can have one of two specular orientations, corresponding to the main
stream being diverted towards one wall of the channel or the other. In particular, there is
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Figure 2. (a) Growth rate o and (b) frequency w of the least-damped eigenvalue y as a function of the spanwise
wavenumber k, for the cases: Re =304 (dashed line) and the critical value Re :Reg,[) =306 (solid line).
The red marker in (@) highlights the value of the wavenumber (k =0.65) corresponding to the maximum
amplification rate for the case Re = 306.
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Figure 3. Eigenvalue spectrum at Re = Reyl) =306 and k = 0.65. The red marker, labelled with the letter A,
indicates the least stable eigenvalue, with coordinates (7 x 107>, 0) in the plane (o, w).

an equal probability of the jet bending towards the upper or the lower side of the domain.
The streamline plot, of one of the two possible asymmetric flows, shows that the flow
field is characterised by three recirculation bubbles. Two of them separate immediately
past the sharp corners, with the larger vortex referred to as the primary vortex, while
the smaller one, on the opposite side of the channel, is denoted as the secondary vortex.
Further downstream, on the same side of the secondary vortex, a third separated region
arises (tertiary vortex), while at a streamwise distance of approximately x = 35, the flow
recovers its parabolic profile.

The features of the bifurcation can be described by investigating the spatial structure
of the direct and adjoint global eigenfunctions, computed at the critical conditions
(figure 5). The absolute value of the fluctuating velocity field and its adjoint are depicted
in figure 5(a,e). It can be observed that the direct mode (figure Sa) is strictly confined
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Re =ReD =306 llaty

Figure 4. Stationary, two-dimensional and asymmetric base flow computed at the critical Reynolds number

(Re = Reglrl) =306). The contour plot displays the modulus of the velocity field, while solid lines indicate the
streamlines inside the domain.

(a)

1.5

©) Adjoint eigenfunctions (4" llat|

1.5 — 1.0
—— |
-1.5 0

Figure 5. Spatial structure of the direct and adjoint eigenfunctions at the critical Reynolds number (Re =

ReE.Ir’) = 306) associated with a spanwise wavenumber k = 0.65: (a) modulus, (b) streamwise i, (¢) cross-stream
v and (d) spanwise w velocity (direct) perturbed components. Similarly, (e—k) depict the corresponding adjoint
eigenfunctions.

within the primary recirculation region and around the tertiary vortex, while for the adjoint
mode (figure Se) the main contribution of the perturbation is localised close to the primary
vortex core, on the upper wall of the domain, and it decays moving toward the outlet of the
channel.

With reference to the direct eigenfunctions (figure 5b-d), the u-perturbation is
the strongest, with the cross-stream (0) and spanwise ones (w) being respectively
approximately 29.7 % and 17.3 % of the streamwise fluctuations. On the other hand, the
adjoint field (figure 5f~h) reveals that the maximum receptivity is reached near the upper
edge of the domain and the downstream side of the primary vortex for the streamwise
velocity component ("), whereas in the cross-stream (9") and spanwise (") directions,
the fluctuations are most evident inside the primary recirculation region and the bottom
wall, respectively (in particular, ¥ 2 0.524 4T and W' ~ 0.241 ).

4. Structural sensitivity analysis: the core of the instability
4.1. Methodology

To investigate the physical mechanism responsible for the instability, we compute the
structural sensitivity, which allows us to localise the core of the global instability, i.e.
the ‘active’ flow regions where the amplification of the perturbations and receptivity
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Figure 6. Structural sensitivity map, showing the core of the instability at the critical conditions
(Re =ReD = 306, k=0.65).

combine to trigger the instability. The fundamental idea of such approach was introduced
by Giannetti & Luchini (2007) in an attempt to extend to strongly non-parallel flows the
concept of ‘wavemaker’, first introduced in the asymptotic analysis of slowly evolving
flows by Huerre & Monkewitz (1990). Thus, following Giannetti & Luchini (2007), the
structural sensitivity tensor can be evaluated by combining the direct (&) and adjoint (")
eigenvectors

i d

—_— 4.1
Jpat-adv @D

S(x0, yo; Re) =

The tensor S gives the shift in the eigenvalue produced by a velocity feedback localised at
(x0, yo0). Here, " # stands for the dyadic product of the two vectors.

A spatial sensitivity map is then traced by computing the norm of the tensor at each
point of the domain (see Giannetti & Luchini 2007 for details). Large values of S identify
the regions where the localised feedback produces the largest drift in the growth rate or in
the frequency of the mode. As in Giannetti & Luchini (2007), here, we use the Frobenius
norm of this sensitivity tensor to identify where a modification in the linearised equations
produces the greatest drift of the eigenvalue and thereby reveal the region of the flow that
acts as the wavemaker.

4.2. Results

The spatial distribution of the sensitivity tensor, computed at the critical Reynolds number,
is depicted in figure 6. It can be observed that the primary recirculation bubble is the most
sensitive region of the flow, as the structural sensitivity field is highly localised therein and
its peak spreads near the primary vortex centre. Additional information could be gained
by inspecting the absolute value of the individual components of the sensitivity tensor
(as proposed by Qadri et al. 2013, 2015). This analysis allows us to distinguish the direct
and adjoint velocity components that take a relevant role in the feedback process. All the
components depicted in figure 7 show spatial support within the primary recirculation
bubble. It is evident that the spatial structure of the sensitivity tensor is essentially due
to the three components related to the streamwise velocity of the direct global mode
(figure 7a,b,c). Thus, we can state that the feedback process consists of a loop in which
the streamwise perturbations couple with the local receptivity of the flow in all the spatial
directions. Although this analysis allows us to visualise the flow regions where feedback
between the components of the velocity is strong, one can hardly assess the character of
the instability simply based on the inspection of these maps. In particular, it is not clear
whether the wavemaker is linked to the vortex centre (see e.g. figure 7a,b) or whether the
core of the instability is distributed over a closed streamline (see e.g. figure 7¢), that plays
a crucial role in the feedback process. The question of the nature of the amplification
process, operating within the primary recirculation zone, is addressed in the next
section (§ 5).
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Figure 7. The absolute values of the components of the sensitivity tensor S at the critical Reynolds number

(Re :Reglrl) =306) associated with a spanwise wavenumber k = 0.65. The shading on all the plots is scaled

from O (white) to 2 (red). Each frame spans 0 < x < 20 on the horizontal axis and —1.5 <y < 1.5 on the
vertical axis.

5. Inviscid structural sensitivity: the identification of the instability physical
mechanism

5.1. Methodology

The sensitivity analysis performed in the previous section (§4) clearly shows that the
core of the three-dimensional instability, leading to the secondary bifurcation, is confined
within the primary recirculation bubble. However, this observation is insufficient to
unveil the underlying physical process, even if the relatively compact spatial support of
the structural sensitivity field, whose peak spreads near the primary vortex centre, and
the presence of locally closed elliptical streamlines in the core vortex, suggest that the
instability could be associated with an inviscid mechanism.

Sipp et al. (1999) showed that different inviscid instabilities are characterised by
spatial supports in different regions of the flow domain. Specifically, centrifugal and
elliptic eigenmodes are concentrated along closed streamlines and in the vortex centres,
respectively. However, a simple inspection of the sensitivity map (see figure 6) does not
clarify whether the wavemaker is linked to the vortex centre or whether the core of the
instability is distributed over a closed streamline, that plays a crucial role in the feedback
process.

To shed light on the physical nature of the secondary bifurcation, and to assess whether
it is of centrifugal or elliptic type, we aim at isolating the effect of the inviscid mechanism
through a sensitivity-based protocol. The fundamental idea is to decouple the system of
equations that govern the base flow from those that describe the disturbance evolution (as
anticipated in § 2 with the notation Restp and Repr) to change the viscosity effects solely
in the global stability equations, while maintaining the base-flow field constant.

From a practical standpoint, we freeze the base flow at the critical Reynolds
number (ReBF=Re£IrD =306) and then repeat the structural sensitivity analysis while
progressively increasing Regrp in the linearised equations. The resulting inviscid structural
sensitivity tensor is thereby a function of both the base flow (Repr) and the stability
(Restp) Reynolds number

it (uy(Repr); Restp) t(uy(Rer); Restp)

S*(Repr, Restp) = e
Ip ateadv

S.D

The norm of $* can then be used to trace the inviscid structural sensitivity map. If the latter
concentrates in a specific spatial region as Resrp goes to infinity, then one can conjecture
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Figure 8. Inviscid structural sensitivity results at Repr = Reglrl) =306, while progressively increasing Resrp
in the LNSEs only. (@) Growth rate ¢ vs spanwise wavenumber k. The red markers denote the maximum
of the curves. The last two points are labelled with the letters A and B as they will be referenced in the
subsequent section (§ 6). (b—d) Inviscid structural sensitivity maps at (b) Resrp = 612, (¢) Restp = 1530 and
(d) Resp = 6120.

that an inviscid instability mechanism is at play and determine the flow regions where
it acts.

5.2. Results

The results given by the inviscid structural sensitivity analysis are plotted in figure 8(a).
The graph shows the evolution of the growth rate (o) associated with the unstable
global mode under consideration as a function of the spanwise wavenumber (k) for
several stability Reynolds numbers. In particular, numerical experiments were conducted
at Repr =306 and Regsyp =612, 918, 1530, 3060, 6120. It can be observed that, as
Resrp increases, the curves reach their peaks (highlighted by the red markers in the
figure) at progressively higher wavenumbers (this aspect is discussed in detail in the
following section § 6). By observing the spatial structure of the inviscid sensitivity tensor
(figure 8b—d), it is evident that, as Regrp becomes larger, the wavemaker tends to focus in
the primary vortex centre. Furthermore, the spatial support of these fields is concentrated
around their maximum values. These results preclude a centrifugal instability from being
at play and suggest that the amplification process could be associated with an elliptic
mechanism. In particular, by inspecting the spatial distribution of the structural sensitivity
field, computed at the maximum Resrp considered (equal to 6120) (figure 8d), it is
evident that the critical mode is confined within the primary eddy and is strongest in its
centre, which is a hallmark of an elliptic instability (see Bayly 1986; Pierrehumbert 1986;
Waleffe 1990; Kerswell 2002, for a comprehensive description of the elliptic instability
mechanism).

In summary, our findings indicate that the classical structural sensitivity (S) effectively
identifies the wavemaker within the primary recirculation bubble (see figure 6 of
§ 4). However, it is only the inviscid structural sensitivity field (S*) that reveals that
the instability core is concentrated around the centre of an elliptical vortex (see
figure 8d).
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Therefore, our results complete the picture proposed by Lanzerstorfer & Kuhlmann
(2012a). Using an a posteriori energy transfer method, they observed that the flow
dynamics changes with the expansion ratio. For large expansion ratios (i.e. 3.484 < ER <
10; note that this range has been redefined according to our definition of ER) the critical
mode passes from stationary to oscillatory and pure centrifugal and elliptical amplification
processes are identified. However, for moderate expansion ratios (1.538 < ER < 3.334),
which is the case of the present study where a stationary three-dimensional bifurcation
is detected, the physical interpretation becomes challenging and the energy approach
fails to predict the inviscid character of the instability. The authors argue that, in the
moderate expansion ratios range, the flow becomes unstable due to streamline convergence
within the downstream side of the primary vortex, in combination with flow deceleration
near the reattachment point, and an amplification process due to shear stresses near and
between the primary and tertiary vortex. In contrast, by using inviscid structural sensitivity
analysis, we demonstrate that an elliptic instability is already present in the steady
regime.

In this context, the sensitivity protocol acts as a magnifying glass, allowing us to
clearly isolate the inviscid core of the instability, thereby completing the characterisation
of the secondary instability also for moderate ERs. Furthermore, the sensitivity protocol
presented in this work is a general concept that can be used to discern any inviscid-type
instability. Thus, this method can effectively be used also in other flow configurations (see
for instance the works of Citro et al. 2015; Chiarini & Auteri 2023), to unveil the inviscid
character of an instability, thereby enhancing the insight into the mechanism whereby
complex three-dimensional motion can arise directly from two-dimensional coherent
structures.

5.3. Results for a large expansion ratio

The geometric configuration examined in this study is known to exhibit different instability
mechanisms depending on the value of the expansion ratio (Lanzerstorfer & Kuhlmann
2012a). Here, we demonstrate the effectiveness of the sensitivity-based protocol in
detecting inviscid instabilities in a different configuration, specifically one characterised
by ER = 20. As in Lanzerstorfer & Kuhlmann (2012a), we found that the flow undergoes
an unsteady three-dimensional bifurcation at a critical Reynolds number of approximately

Reglrl) ~42.9, associated with a spanwise wavenumber of k~ (.13 and an oscillation
circular frequency of w = 0.048.

To assess the physical mechanism responsible for the instability, we compute both the
classical and the inviscid structural sensitivity fields. The results are depicted in figure 9.
It can be observed that, at the critical Reynolds number, the structural sensitivity field
appears to be spatially diffused (figure 9a). However, by inspecting the inviscid sensitivity
field computed at Resrp = 100 and Res7p = 3000 (figure 9b—c), it is evident that as Regrp
increases, the wavemaker tends to focus around a closed orbit, as expected for a centrifugal
instability. Thus, in accordance with the energetic approach of Lanzerstorfer & Kuhlmann
(2012a), it is possible to attribute the nature of the instability to a centrifugal mechanism
due to the localisation of the inviscid sensitivity field around a closed streamline that falls
in a region in which the Rayleigh (1917) criterion is valid (see figure 12 of Lanzerstorfer &
Kuhlmann 2012a). In conclusion, we highlight that, not only is the inviscid structural
sensitivity able to identify the centrifugal character of the instability associated with a
closed streamline in the recirculating region, but it also accurately predicts the particle
orbit that provides the main contribution to the instability.
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Figure 9. Inviscid structural sensitivity results for the case ER =20, at Repr = Reglr[) = 42.9, while
progressively increasing Resrp in the LNSEs only. Panels show (a) Repr = Restp = 42.9, (b) Repr = 42.9
and Regrp = 100, (¢) Repr = 42.9 and Resrp = 3000, plotted at the optimal spanwise wavenumber.

6. The short-wave asymptotic stability analysis: the elliptic instability
6.1. Methodology

To confirm the evidence, given by the inviscid structural sensitivity analysis (in §5)
of an elliptical instability mechanism, we pursue the investigation using a local theory
based on the geometric optics (or short-wave asymptotic) approach. This theory has been
successfully applied in the past to study elliptic, hyperbolic and centrifugal instabilities
developing on two-dimensional stationary base flows. It is based on the fact that short-
wave instabilities can be described as localised wave envelops that move along trajectories
of fluid elements. The motion is governed by a system of characteristic equations along
the corresponding trajectories, consisting of the eikonal equation for the wavenumber
and the transport equation for the velocity amplitude. Thus, the burden of proof that a
given flow is unstable is placed on the analysis of ordinary differential equations along
trajectories of fluid elements rather than of the three-dimensional Euler equations for
perturbations (Lifschitz 1994). In the following, this approach is briefly presented; for a
detailed description, the reader is referred to the work of Lifschitz & Hameiri (1991) in
which the whole theory is thoroughly explained and applied.

Within the classical WKB approximation, the solution of the LNSEs (3.4) is sought in
the form of a localised rapidly oscillating wave packet evolving along a closed Lagrangian
trajectory, X (¢) such that
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L p(X,1) - P(X 1)
WX D= aX, 0= Y au(X. e, (6.1a)
n
Lp(X,1) - p(X,t
DX, )= b(X, 1, ) =¢ G)Xprnﬁ“, (6.1b)
n

where ¢ denotes the eikonal function, whose spatial derivatives represent the local
wavenumber components k = V¢ (X, t), while € < 1 is a small parameter expressing the
smallness of the scale of the waves represented by (6.1).

Substituting the expansions (6.1a)—(6.1b) into the perturbation equations (3.4) and
grouping terms multiplied by the same power of €, a hierarchy of equations is obtained.
The leading-order approximation yields a set of ordinary differential equations (ODEs)
that, in the inviscid (Re — o0) and short-wave (||k|| — oco) limits, provide the growth rate
associated with a localised perturbation. Specifically, the system of equations describes
the evolution of the wavenumber vector k and the amplitude a as follows:

Dk

=—2T(X)k,
Dt 62)
Da 2kk” :
o (W“’“) Zoa.

where X is the position of the fluid particle moving along the streamlines of the steady
base flow
DX (1)
Dt

In the above equations, D /Dt represents the so-called material derivative (i.e. D/Dt =
8/0t +uyp - V), £ = Vuy, denotes the base-flow velocity-gradient tensor, .# is the identity
matrix and the superscript 7' denotes the transpose. Lifschitz & Hameiri (1991) proved
that the flow is unstable if there exists a streamline along which the amplitude a(¢) grows
without bound as ¢+ — oo. Since the inviscid structural sensitivity analysis (§ 5) suggested
the occurrence of an elliptic amplification process, we evaluated the inviscid local stability
equations (6.2) at the vortex centre of the primary recirculation bubble (thereby, following
the work of Bayly 1986, the tensor .Z has been computed at this point).

Provided k(¢) is periodic in time, the second equation of (6.2) is a Floquet problem
for a(t). As is well known (Bender & Orszag 2013), the general solution is a linear
superposition of Floquet modes

=up(X(1),1). (6.3)

a(t) =a(t)e’’, (6.4)

where a(t) is a periodic function with the same period (7)) as k, while y is the
corresponding complex Floquet exponent, to be determined by computing the monodromy
matrix 27 (T),) that satisfies

Do/ (ZkkT

Dt \ |k
Thus, the instability problem reduces to the calculation of the matrix .27 and its non-trivial
eigenvalues (y; with i =1, 2, 3). Assuming that the real parts (u;) of such eigenvalues

satisfy the condition w; > @2 > w3, the asymptotic growth rate is given by the simple
relation

—f) Z(X)o/ with o/ (0)=.7. (6.5)
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LSA WKB Error
UA(kA = 1.77) GB(kB =2.08) é G()(k—) OO) OO0 (%)
0.05166 0.05922 0.0898 0.1024 0.09143 10.71

Table 1. Comparison between the amplification rates given by the LSA and that given by the short-wave
asymptotics (WKB) in the centre of the primary recirculation bubble (o). The last column estimates the
discrepancy between the two methods. £ and og are extrapolated from the results shown in the plane (k, o)
(see figure 8a in §5) using the points A = (k4, 04) = (1.77, 0.05166) and B = (kp, op) = (2.08, 0.05922)
and assuming a relation of the form ¢ = o9 — &/k (from Sipp et al. 1999).

_ log(uy)

T, (6.6)

o0

where T}, denotes the period of revolution of k

To validate our numerical implementation of the asymptotic approach, we replicated
Bayly’s analytical results (Bayly 1986) (as detailed in Appendix B) and subsequently
used this numerical tool to compute the amplification rate (o) for the problem under
investigation.

6.2. Results

The asymptotic amplification rate (0«,), computed in the centre of the primary vortex, is
displayed in the fifth column of table 1. To make a quantitative comparison between the
results obtained from the local and global stability analysis, we followed the work of Sipp
et al. (1999). Therefore, considering a relation of the type

ok)y=0¢— %, (6.7)
we computed an extrapolated value of the (global) growth rate in the limit of large
wavenumbers, namely o (k — 00) = o0y. In particular, the parameters of (6.7), i.e. op and
& (the latter called the eigenvalue convergence parameter), have been evaluated using
the amplification rates (o4, op) and the corresponding wavenumbers (k4, kp) given by
the global LSA, for the last two cases investigated using the inviscid sensitivity protocol
(indicated in figure 8a of § 5 with A and B, while in table 1 they are denoted o4 and op).

As reported in the sixth column of table 1, the discrepancy in percentage between the
predictions provided by the two theories (global, op and local, o) is approximately 10 %.

Figure 10a shows the comparison between the global growth rates and those predicted
through (6.7). A good agreement is observed between the two sets of data. In particular, the
global stability analysis is more computationally expensive with respect to the geometric
optics approach, since the computation of a global eigenpair involves the solution of a two-
dimensional generalised EVP, while the WKB approach involves the simple integration of
a tiny set of ODEs in one dimension.

Figure 10b shows how the global least stable spanwise wavenumber k grows with the
Reynolds number (Res7rp). In particular, it increases almost linearly with the logarithm of
Regrp. This is in agreement with the hypothesis of the asymptotic theory, suggesting that
k will tend to infinity in the limit of vanishing viscosity.

7. Discussion and conclusions
This paper investigates the inviscid mechanism, driving the secondary instabilityina 1:3
planar sudden expansion, through a sensitivity-based approach. The key ingredient of this
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Figure 10. (a) Comparison between the maximum amplification rates o (i.e. the y coordinate of the red markers
of figure 8a) given by the LSA (lines) and those predicted by the WKB method using the relation proposed by
Sipp et al. (1999). (b) Spanwise wavenumber k at maximum growth rate (i.e. the abscissa of the red markers of
figure 8a) as a function of Resrp. A logarithmic scale is used on the x-axis only for panel (b).

methodology lies in making viscosity effects vanish solely in the global stability equations,
while maintaining the base-flow field constant, computed at the critical Reynolds number.
This is practically implemented by decoupling the Reynolds number that serves as the
control parameter for determining the steady base flow (Repr) from that governing the
disturbance evolution (Resrp). A structural sensitivity analysis is subsequently performed,
with Regrp progressively increased in the linearised equations. The resulting inviscid
structural sensitivity map (S*) reveals the flow regions where the instability mechanism
acts.

The analysis is first carried out by means of the global LSA to accurately estimate
the instability threshold (§3). Specifically, the numerical results indicate that the
base flow undergoes a steady, three-dimensional bifurcation at a critical Reynolds
number of approximately Reglrl) ~ 3006, associated with a spanwise wavenumber k =~ 0.65.
Subsequently, the spatial structure of the direct and adjoint eigenmodes is examined to
characterise the flow features beyond the bifurcation point. The overlap of these two
fields (§ 4) provides information about the sensitivity properties of the flow, the so-called
wavemaker region, where the amplification of the perturbations and receptivity combine
to trigger the instability. In particular, the primary recirculation bubble emerges as the
most sensitive region, as the norm of the structural sensitivity tensor () is concentrated
therein, with its peak spread near the primary vortex centre.

The relatively compact spatial support of the sensitivity map suggests that the instability
may be associated with an inviscid amplification process. To test this hypothesis and
clarify the underlying physical mechanism, the inviscid structural sensitivity analysis
proves to be an indispensable tool (§ 5). This approach clearly identifies the core of the
instability with the vortex centre of the primary recirculation region, thereby assessing the
elliptical nature of the instability.

In summary, our findings indicate that the classical structural sensitivity (S) effectively
identifies the wavemaker within the primary recirculation bubble (see figure 6 of §4).
However, it is only the inviscid structural sensitivity field (S*) that reveals that the
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instability core is concentrated in the centre of an elliptical vortex (see figure 8d). We stress
here that the structure of the sensitivity field observed in the original analysis is affected
by viscous effects, which spread and shift the core of the instability. While the classical
structural sensitivity is capable of locating the region where the instability mechanism
is acting, when the mechanism is inviscid the presence of viscosity blurs the picture,
preventing a precise assessment of the active mechanism. To remove this ambiguity, one
has to isolate the inviscid effects to shed light on the instability mechanism. In this respect,
the inviscid structural sensitivity helps to clarify the picture, and it allowed us to clearly
identify the instability mechanism by highlighting the vortex core as responsible for the
instability.

Referring to the energetic approach developed by Lanzerstorfer & Kuhlmann (2012a),
both methods lead to the same conclusion for large expansion ratios, where the instability
is oscillatory (as discussed in 5.3). However, for moderate expansion ratios, such as
the 1:3 sudden expansion case (which is the focus of the present study, characterised
by a stationary critical mode), the energetic approach does not provide evidence of an
inviscid mechanism. Indeed, the authors attributed the physical nature of the instability to
a combination of streamline convergence, shear stress and deceleration, as all the integral
production rates were found to be positive, thus preventing them from assessing the
inviscid mechanism and its specific location. Through the inviscid structural sensitivity
analysis, we demonstrate that an elliptic instability is already present in the steady
regime (i.e. for moderate expansion ratios), thereby completing the picture provided by
Lanzerstorfer & Kuhlmann.

Subsequently (in § 6), the geometric optics technique is introduced to validate the
predictions given by the global approach. In particular, the amplification rate, evaluated
in the centre of the primary vortex by the local theory, is in complete agreement with that
obtained from the sensitivity protocol, confirming the inviscid character of the instability.
Thereby, we precisely identify, through both methods, an elliptic mode instability. To the
best of our knowledge this is the first time that inviscid structural sensitivity analysis
has been successfully employed to detect an elliptic type instability, in agreement with
predictions from geometric optics.

In conclusion, inviscid structural sensitivity analysis, discussed in this paper, is a
general concept that can be applied whenever the instability in question is of an inviscid
nature. The flow in a plane symmetric sudden expansion represents a prototype of
geometrical configurations characterised by a finite region of separated flow. Therefore,
a natural question arises regarding how the breakdown of these eddies would occur,
influencing the overall behaviour of the system. Identifying the operating instability
mechanism and determining whether it is viscous or inviscid is important because
different instability mechanisms involve distinct behaviours of the flow dynamics. Inviscid
instability mechanisms underlie many important phenomena (Pierrehumbert 1986), such
as the vortex breakdown: ‘a universal mechanism whereby complex three-dimensional
motion can arise directly from large-scale two-dimensional coherent structures’ (Bayly
1986).
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Appendix A. Numerical method for the global analysis

The numerical methodology is the same as that of Citro et al. (2015), where details and
references can be found. The open-source FreeFEM++ software (Hecht 2012), based on a
finite element method, has been used to solve both the base-flow problem and the stability
EVP.

A.l. Base flow

The Navier—Stokes equations, written in weak formulation, are discretised by projecting
the flow field upon a basis of Taylor—Hood finite elements, using quadratic elements (P2)
for the velocity and linear elements (P1) for the pressure.

The base flow is obtained by solving the two-dimensional, steady version of the Navier—
Stokes equations, (3.3), along with the boundary conditions, using the standard Newton—

Raphson procedure: given an initial guess wéo), the linear system
NS(Repr, W3 ) - wy = —rhs®, (A1)

is solved at each iteration step using the multifrontal massively parallel sparse solver

(Amestoy et al. 2001, 2006) for the matrix inversion. In particular, Wl(,") denotes the base
flow at the nth iteration, while s indicates the right-hand side of the governing equations.
The base flow is then updated as

1
Wit —wi L™ (A2)

The initial guess is chosen to be the solution of the Stokes equations and the process is
continued until the LZ?—norm of the residual of the governing equations becomes smaller
than a given tolerance.

A.2. Eigenvalue solver

Once the base flow is obtained, the EVP (3.7) is used to perform the stability analysis.
The governing equations (3.7) and their boundary conditions can be recasted into the
algebraic generalised EVP

[A(Restp, Wp(Regr)) +yB]-w=0, (A3)

where w is the right (or direct) eigenvector and A, B are the two matrices obtained from
the spatial discretization of the differential operators. The system (A3) is solved using the
implicitly restarted Arnoldi method (Arnoldi 1951) implemented in the ARPACK library
(Lehoucq, Sorensen & Yang 1998) in FreeFem++.

The solution of the linear systems in the Arnoldi iterations is obtained by the same
sparse solver (Amestoy et al. 2001, 2006) used for the base-flow calculations. The adjoint
eigenmodes, necessary to evaluate the sensitivity tensor and to inspect the receptivity of
the mode, have been computed as the left eigenvectors of the discretised system. Then,
the sensitivity function is computed by the product of the direct and adjoint fields. In
particular, the right (direct) and left (adjoint) eigenvectors are normalised by requiring

maxy ep (liCx, Y} =1. ffﬁ.azl. (Ad)
D

Appendix B. Validation of the local solver

The asymptotic inviscid stability analysis (§5) relies on the same steady base flow
used for the global stability computations. The system of ODEs (6.2) is solved using a
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classical fourth-order, Runge—Kutta scheme, starting from the initial conditions. Then, the
fundamental Floquet matrix .7 is evaluated.

In the present section, we provide a validation test to assess the effectiveness of this
numerical tool, by reproducing the analytical results of Bayly (1986) that, inspired by
Pierrehumbert’s findings (Pierrehumbert 1986) on elliptical instability, proposed a simple
mathematical model to shed light on the feedback mechanism involved.

He examined the stability of a two-dimensional inviscid flow, described by the following
velocity field:

1
ulx,y,z2)=% <—Ey, Ex,O), with £2 >0, E > 1, (B1)

which approximates the flow near an elliptical stagnation point in the x—y plane.

The streamlines of (B1) constitute a family of similar ellipses, with the major ( x) and
minor ( y) axes in the ratio E, that represents a measure of the eccentricity of the elliptical
streamlines. In particular, if E = 1, the flow given by (B1) becomes a state of rigid rotation
about the z-axis at a rate of £2. While E > 1 indicates the elliptic case.

Recalling the system of (6.2), presented in § 6 and reproduced here for convenience

Dk

— =—-2Tk, (B2a)
Dt
Da_ (2kk__ .\ 4 (B2b)
Dr  \ kP @
the general solution of (B2a) is
k(t) =k (sin 6 cos (Q (t — to)), E sin 6 sin (.Q (r— to)), cos 9), (B3)

which describes the motion on an ellipse parallel to the x—y plane.

In particular, kg is a measure of the magnitude of the wave vector and fq is the delay
time, i.e. an arbitrary quantity that serves only to specify the phase angle of the rotation.
The wave vector k precesses elliptically with a circular frequency §2 and (minimum)
inclination angle 6 with respect to the z-axis.

Since k(t) is periodic in time, (B2b) is a Floquet problem for a(z). Thus, the instability
problem reduces to the calculation of the monodromy matrix 2/ and its non-trivial
eigenvalues, that depend only on the eccentricity £ and the inclination angle 8. Given
E, we are particularly interested in the maximum value of the growth rate (o) and the
angle (6,,4x) at which it is attained. Following Bayly, we have computed the eigenvalues of
the fundamental Floquet matrix ( /) for any reasonable values of E > 1 and 0 < 6 < 7r/2.
The comparison between our results and those obtained by Bayly is illustrated in the plane
(E, 09) of figure 11. The three curves (indicated with letters a, b and c¢) are the results
obtained by Bayly. In particular, the dashed (a), solid (») and dotted (c) curves indicate,
respectively, the largest angle giving the instability 6, (E), the angle at which the growth
rate is maximised 6,,,, (E) and the smallest angle giving instability 6_(E). Curves a and
c are the so-called ‘neutral’ curves, since they separate the stable (S) and unstable (1)
regions in the plane (E, 0).

The contour plot shows our findings, i.e. the maximum value of the asymptotic growth
rate o, for each eccentricity E and angle 6. It is evident that for any £ > 1, there is a band
of angles 6 for which there is a real positive Floquet exponent o. This interval shrinks
down to the point § =7n/3 as E — 1 and remains bounded away from both 6 =0 and
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Figure 11. Validation of the numerical implementation used for the asymptotic analysis: the three curves
indicate the analytical outcomes of Bayly (1986), while the contour plot displays our numerical results.

0 =m/2 for all 1 < E <4. Our results lie very closely to Bayly’s curves, confirming the
correctness of our numerical implementation.
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