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Abstract. The standard theory of the solar cycle in terms of an alpha-Omega dynamo hinges
on a proper understanding of the nonlinear alpha effect. Boundary conditions play a surprisingly
important role in determining the magnitude of alpha. For closed boundaries, the total magnetic
helicity is conserved, and since the alpha effect produces magnetic helicity of one sign in the
large scale field, it must simultaneously produce magnetic helicity of the opposite sign. It is this
secondary magnetic helicity that suppresses the dynamo in a potentially catastrophic fashion.
Open boundaries allow magnetic helicity to be lost. Simulations are presented that allow an
estimate of alpha in the presence of open or closed boundaries, either with or without solar-like
differential rotation. In all cases the sign of the magnetic helicity agrees with that observed at
the solar surface (negative in the north, positive in the south), where significant amounts of
magnetic helicity can be ejected via coronal mass ejections. It is shown that open boundaries
tend to alleviate catastrophic alpha quenching. The importance of looking at current helicity
instead of magnetic helicity is emphasized and the conceptual advantages are discussed.

1. Introduction
The emerging magnetic field of the sun frequently displays strong signs of twist. The

systematic investigation of twist began with the early work of Seehafer (1990) who an-
alyzed the current helicity in active regions and found a hemispheric dependence of its
sign: negative in the north, positive in the south. This dependence has since been con-
firmed and the statistics improved. The investigation of helicity is usually motivated by
the interest in a detailed description of the degree of complexity of the solar magnetic
field. There has also been some interest in understanding the reasons for the observed
twist (or helicity). In recent years, however, a very different question has emerged: how is
it possible that the solar dynamo works as it does? Given that in simulations the value of
the Spitzer resistivity still affects the cycle period (Brandenburg et al. 2002), one would
like to understand how this is avoided in a proper theory of the solar cycle.

The significance of this question is often not very evident, but this is mainly because
in many simulations the values of the magnetic Reynolds number are still not large
enough. It should be emphasized that the involvement of the microscopic diffusivity in
the description of macroscopic properties of a turbulent flow is a highly unusual property
of MHD that is not normally encountered anywhere else in turbulence.

What is so special here is that the magnetic helicity is an almost perfectly conserved
quantity. This can have serious implications for the operation of the large scale dynamo
effect in the nonlinear regime. An example where this is true is the α effect in mean field
electrodynamics (Moffatt 1978; Krause & Rädler 1980). As more and more large scale
field is produced by the α effect, and since the large scale field produced by the α effect
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is helical (with a sign equal to that of α), there must be a simultaneous generation of
magnetic helicity of the opposite sign such that the total magnetic helicity is conserved.
(What actually matters for the α effect is the current helicity, not the magnetic helicity,
but the two are related.)

The quenching of α can also affect the quenching of the turbulent magnetic diffusivity
and this in turn the cycle period. Even though the cycle period of 22 years is significantly
longer than the local turnover time of the turbulence, we do not necessarily expect the
cycle period to depend on the magnetic diffusion time. As pointed out earlier (Branden-
burg et al. 2002), the idea of the cycle period being dependent on the magnetic diffusion
time is not completely unrealistic: The magnetic helicity constraint dictates that the
change ∆HN of the magnetic helicity during the solar cycle, normalized by the magnetic
energy MN, where the subscript N refers to the northern hemisphere, must not exceed
the skin depth if the change in magnetic helicity is brought about by purely resistive
effects (the same applies separately for the southern hemisphere). Models of the solar
dynamo suggest that the ratio ∆HN/(2µ0MN) is about 70 km. In the sun the skin depth
based on the cycle period varies between 10 km at the bottom of the convection zone and
300 km at the top. Thus, unless the dynamo works only in a thin surface layer, ∆HN is
too large compared to the 10 km figure. Therefore one might hope that open boundaries
can alleviate this constraint, although the effect does not need to be very strong.

The effect of open boundaries has already been investigated in the past in a model with-
out differential rotation (Brandenburg & Dobler 2001). It was found that open boundaries
do lead to the expected reduction of the saturation time scale, but the amplitude of the
final field strength was also reduced dramatically. In the following we report on recent
simulations of Brandenburg & Sandin (2004, hereafter referred to as BS), where the effect
of open boundaries has been investigated in a model with solar-like differential rotation.
This was found to lead to an increase of the saturation field strength by a factor of
about 30. Such an increase was associated with the effect of a current helicity flux. In
the following we discuss their model in more detail and present new calculations of the
resulting dynamo action.

2. A cartesian model of the solar differential rotation
In order to model the region below 30◦ latitude, BS have adopted a cartesian geometry

where the x direction corresponds to radius, the y direction to longitude, and the z
direction to latitude. The mean toroidal velocity is given by

U = U0 cos k1x cos k1z, (2.1)

where k1 is the lowest wavenumber in the (x, z) plane with −π/2 � k1x � 0 and 0 �
k1z � π/2. In the following we adopt units where k1 = 1. The equator is assumed to
be at z = 0 and the outer surface at x = 0. The bottom of the convection zone is at
x = −π/2 and the latitude where the surface angular velocity equals the value in the
radiative interior is at z = π/2; see figure 1.

In order to test the properties of this differential rotation, BS investigated first the
resulting dynamo action in a mean field model. This should give some idea of the type of
solutions that one might expect in a three-dimensional model where helical turbulence
is able to sustain dynamo action without explicitly invoking an α effect.

In figure 2 we plot the stability diagram in the (Cα, CS) plane, where Cα = α/ηTk1

and CS = U0/ηTk1 are nondimensional measures of α effect and shear. For Cα < Cα,crit

the solutions are decaying and for Cα > Cα,crit they are growing exponentially and
are oscillatory (Hopf bifurcation), except for a narrow interval around CS = 0. Such a
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Figure 1. On the left hand side a sketch of the solar angular velocity at low latitudes is shown,
with spoke-like contours in the bulk of the convection zone merging gradually into uniform
rotation in the radiative interior. The low latitude region, considered in this paper, is indicated
by thick lines. On the right hand side we show the differential rotation as modeled in our
cartesian box. The equator corresponds to the bottom, the surface to the right, the bottom of
the convection zone to the left and mid-latitudes at the top of the box. The boundary conditions
for the three components of the magnetic field and the vector potential are indicated near the
boundaries of the box.

behavior is quite typical of αΩ dynamos (see, e.g., Roberts & Stix 1972). For CS = 1000
we have also considered the quadrupolar solution by changing the boundary condition
on the equator in the appropriate way. It turns out that it is slightly easier to excite (see
figure 2). As stated earlier, the approximately equal excitation conditions for dipolar and
quadrupolar solutions, seen in figure 2, are typical of αΩ dynamos in spherical shells.
Indeed, the fact that quadrupolar solutions can be preferred has been found in other
solar dynamo models (Dikpati & Gilman 2001).

We may conclude that the present cartesian setup provides a useful representation of a
global model of the sun’s differential rotation. The mean field model reproduces similar
features to those found in global mean field models in spherical shells.

3. Results for α quenching
Next, BS focussed on the investigation of helicity-driven turbulence in the presence of

shear as given by eq. (2.1). Instead of looking for dynamo action, they considered the
case of an imposed magnetic field in the y direction of strength B0y. They determined α
by measuring the turbulent electromotive force, i.e. α = 〈E〉 · B0/B2

0 . They presented a
range of simulations for different values of the magnetic Reynolds number,

Rm = urms/(ηkf), (3.1)

for both open and closed boundary conditions. (Here, urms does not include the mean
shear flow.) In the simulations, U0/urms ≈ 10 and α/urms ≈ 0.1 (figure 3). Using ηT =
cηurms/kf , where cη is a free parameter, we have CS/Cα ≈ 100, which is marked in
figure 2 as a dash-dotted line. The intersection with the sequence of points from the
mean field calculation gives CS ≈ 150, and since

CS ≡ U0

ηTk1
≈ U0kf

cηurmsk1
≈ 50

cη
(3.2)
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Figure 2. Critical value of Cα for dynamo action as a function of shear parameter, CS . Note the
typical decrease of the critical value of Cα with increasing CS . The dash-dotted line corresponds
to the parameter regime of the turbulence simulations discussed below.

and kf/k1 = 5 we find cη ≈ 0.3. This value appears reasonable, although somewhat
smaller that the value of 0.8 obtained from magnetic decay experiments (Yousef et al.
2003). The value of CS ≈ 150 suggests that our simulations should be in an oscillatory
regime, which is indeed confirmed (see § 4).

There is a striking difference between the cases with open and closed boundaries which
becomes particularly clear when comparing the averaged values of α for different magnetic
Reynolds numbers; see figure 3. With closed boundaries α tends to zero like R−1

m , while
with open boundaries α shows no such immediate decline; only for larger values of Rm

there is possibly an asymptotic α ∝ R−1
m dependence. There is also a clear difference

between the cases with and without shear. In the absence of shear (dotted line in figure 3)
α declines with increasing Rm, even though for small values of Rm it is larger than with
shear. This suggests that the presence of shear combined with open boundaries might be
a crucial prerequisite of dynamos that saturate on a dynamical time scale.

The difference between open and closed boundaries can be explained in terms of a
current helicity flux through the two open open boundaries of the domain. Instead of
going through the mathematical formalism, we just present the argument in words. First
of all, in the kinematic regime (i.e. for weak fields) the α effect is a negative multiple of
the kinetic helicity. As the magnetic field grows, there will also be a growing small scale
magnetic field which itself is helical and it too enters in the calculation of α. The relevant
quantity is the mean current helicity of the small scale, j · b. Its sign is that of the kinetic
helicity, i.e. negative in the northern hemisphere, and it enters with a minus sign, so it acts
in such a way as to quench the total α effect (Pouquet et al. 1976). The next important
step is to find the evolution equation for j · b in terms of the mean field. This can be done
in the same way as in the calculation of the kinematic α effect, e.g. by using the first order
smoothing approach, or by other techniques (see Brandenburg & Subramanian 2004 for
a review). It is simpler, however, to use magnetic helicity conservation, so one has to
convert from current helicity, j · b, to magnetic helicity, a · b. Under isotropic conditions
we have j · b = k2

f a · b, where kf is the wavenumber of the fluctuating (small scale) field.
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Figure 3. Dependence of |〈α〉|/urms on Rm for open and closed boundaries. The case with open
boundaries and negative helicity is shown as a dashed line. Note that for Rm ≈ 30 the α effect
is about 30 times smaller when the boundaries are closed. The dotted line gives the result with
open boundaries but no shear. The vertical lines indicate the range obtained by calculating α
using only the first and second half of the time interval.

The time dependence of the magnetic helicity equation cannot usually be ignored. It is
important to explain the slow saturation behavior found in helical dynamos in closed
and periodic boxes. But after a resistive time scale (which can be very long) the time
dependence can be ignored. In that case the magnetic helicity equation says that the
production of small scale magnetic helicity (which is equal and opposite in sign to the
production of large scale magnetic helicity and hence large scale magnetic field) must
be balanced by the magnetic helicity dissipation term (i.e. the current helicity times the
resistivity). The latter term is hence resistively small, which is why the electromotive
force, and hence the α effect, are catastrophically quenched. However, when there are
open boundary conditions, the situation changes and the electromotive force can now be
balanced by the divergence of the current helicity flux. The fact that even for the open
boundary conditions the curves tend to bend downward might suggest that the current
helicity flux term itself could depend on the small scale magnetic diffusivity. If this turns
out to be the case, it may indicate that the vertical field boundary conditions used here
do not represent a sufficiently realistic representation of the solar surface conditions.

In figure 4 we also show the small scale current helicity fluxes on the two boundaries
(fat lines). There is a tendency for the difference between incoming flux at the equator
(fat dotted line) and outgoing fluxes at outer surface (fat solid line) to cancel, but the
net outgoing flux is again negative.

A full investigation of the magnetic and current helicity losses associated with dynamo
action may really require global models in spherical geometry. However, some preliminary
information can already now be gained by studying local models with imposed solar-
like differential rotation. In mean field models such a geometry reproduces many of the
features that are known from corresponding mean field models in full spherical geometry.

Models with helically driven turbulence and an imposed toroidal magnetic field allow
the determination of the α effect. It turns out that the catastrophic quenching of the α
effect is alleviated (at least by a factor of about 30) when magnetic and current helicity
is allowed to leave the domain. The simulations have shown that a reasonable estimate
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Figure 4. Normal components of the current helicity flux on the outer surface (Fx) and at the

equator (Fz), averaged over the corresponding surfaces. The fat lines denote the fluxes from the

small scale field, FSS
C , while the thin lines denote the fluxes form the large scale field, FLS

C . The
dotted lines near the two FLS

C curves show the result of the approximation FLS
C ≈ −2(JyUy)B.

Figure 5. Sketch illustrating the directions of large scale (LS) and small scale (SS) negative

current helicity fluxes and their approximate magnitudes (in units of F 0). Note that at the
outer surface negative current helicity is ejected both via small and large scale fields, while at
the equator the contributions from small and large scale fields have opposite sign. The small
scale losses at surface and equator partially cancel, giving a net loss of negative current helicity
of only about 4 F 0.

for the current helicity flux at the outer surface is

FC ≈ 30urmskfB
2
0 . (3.3)

Applying this to the sun using urms ≈ 50m/s for the rms velocity in the deeper parts of
the convection zone, kf ≈ 10−9 cm−1 based on the inverse mixing length, and B0 ≈ 3G
for the mean field at the solar surface, we have FC ≈ 10−3 G2/s. The current helicity flux
integrated over the northern hemisphere of the sun is then 4×1019 G2 cm2 s−1. Integrated
over the 11 yr solar cycle we have 1028 G2 cm2.

https://doi.org/10.1017/S1743921304005101 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921304005101


Helical coronal ejections and their role in the solar cycle 63

Figure 6. The toroidally averaged field from a simulation without imposed field. Poloidal field
lines are superimposed on a color/grey scale representation of the mean toroidal field. The
coronal buffer layer is to the right of the dashed line. The frames are separated by about 40
turnover times, i.e. ∆t/(urmskf) = 40. Note the migration of magnetic field toward the surface.

Figure 7. Gray/color scale plot of the total current helicity density, J ·B+j · b in the meridional
plane. Dark/blue represents negative values, and intermediate/red shades indicate zero. The
coronal buffer layer is to the right of the dashed line. Note that the total current helicity density
is mostly negative, but it’s magnitude tends to be smaller near the boundaries.

For the sun only magnetic helicity fluxes have been determined. As a rough estimate
we may use FH ≈ k−2

f FC for the magnetic helicity flux. Using the same estimate for kf

as above we obtain about 1046 Mx2 over the 11 yr solar cycle. This is indeed comparable
to the magnetic helicity fluxes estimated by Berger & Ruzmaikin (2000) and DeVore
(2000).

4. Three-dimensional dynamo action
In order to study the full dynamo operation we now present simulations without im-

posed field. In figure 6 we show an example of such a simulation where, in addition to
the helically driven turbulence (with negative helicity), an outer coronal buffer layer has
been added to allow the magnetic field to be expelled from the turbulent dynamo zone.

These studies are still preliminary and need to be carried out for a range of different
magnetic Reynolds numbers before we are able to tell whether the open boundaries
are really able to alleviate the catastrophic α quenching that occurs in the presence of
closed or periodic boundaries; see Table 5 of Brandenburg et al. (2002). Nevertheless, a
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few interesting aspects can already be recognized. Firstly, there is some migration-like
evolution of the toroidally averaged magnetic field in the meridional plane – similar to
what is expected from the mean field model (BS). Secondly, by looking at the toroidally
averaged current helicity (mean and fluctuating parts together), one sees mostly negative
values (corresponding to dark shades in figure 7). On the open boundaries the current
helicity is close to zero. Only near the outer surface there is occasionally a dominance of
negative values.

5. Conclusions
Finally, in the absence of an imposed toroidal field a large scale magnetic field is

generated that shows features of field migration toward the surface, similar to what the
mean field shows. More work is obviously required to test the dependence of the cycle
period on the magnetic Reynolds number. Also, it would be interesting to allow for a
(nearly) force-free coronal magnetic field that permits a more direct connection between
the helicity losses and the field geometry associated with these losses. Ideally, of course,
one would like to model proper coronal mass ejections in the context of this model.
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