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ABSTRACT. Motivated by the ponding refreezing of meltwater in firn, we

analyze the interaction of liquid water and non-reactive gas with porous ice by

developing a unified kinematic wave theory. The wave theory is based on the

conservation of composition and enthalpy, coupling advective heat and mass

transport in firn, and encompasses cases of meltwater perching where the con-

ventional kinematic wave approximation fails. For simple initial conditions

(Riemann problems), this model allows for self-similar solutions that reveal

the structure of melting/refreezing fronts, with analytical solutions provided

for 12 basic cases of physical relevance encountered in the literature. These

solutions offer insights into processes such as the formation of frozen fringes,

the perching of meltwater on low porosity layers, and conditions for imperme-

able ice layer formation. This theoretical framework can enhance our under-

standing of the partitioning between meltwater infiltration and surface runoff,

which influences surface mass loss from ice sheets and contributes to sea level

rise. Furthermore, these analytic solutions serve as benchmarks for numerical

models, and can aid in the improvement and comparison of firn hydrology,

ice-sheet, and Earth system models.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided

the original article is properly cited.
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1 INTRODUCTION

Large fractions of the Greenland and Antarctic ice sheets are covered in porous firn (Verjans and others,

2021; Noël and others, 2022). Increasingly, this firn is experiencing periods of surface melting and even

rainfall and infiltration of (melt) water (Van Angelen and others, 2013; Bell and others, 2018; Harper and

others, 2023). Refreezing of this melt within the firn has the capacity to absorb a significant fraction of this

water and prevent mass loss to the ocean (Harper and others, 2012; Van Angelen and others, 2013; de la

Peña and others, 2015). However, the increasing frequency of infiltration events had led to a rapid increase

in large-scale ice layers within the firn that may buffer its water storage capacity, leading to increased

lateral water flow and eventually mass loss from the ice sheet to the ocean (Pfeffer and others, 1991; Van

Angelen and others, 2013; Noël and others, 2017). Additionally, significant amounts of liquid water are

stored in firn aquifers, which heat the surrounding firn and delay meltwater runoff (Forster and others,

2014; Amory and others, 2024). The critical role of firn in modulating melt runoff has led to increased

interest in flow and transport processes in wet firn or firn hydrology (Amory and others, 2024).

Of particular interest is the formation of ice layers which requires the localization of freezing in a

narrow vertical interval within the firn. Localization can either occur by ponding of melt on pre-existing

discontinuities within the firn (Marsh and Woo, 1984; Pfeffer and Humphrey, 1998; Wever and others,

2016; Humphrey and others, 2021a) or due to the rapid arrest of the wetting front after a melting event as

the liquid water content declines and conduction becomes dominant to freeze melt in place (Shadab and

others, 2024a). Impermeable ice layers likely form gradually and require multiple refreezing events to reduce

porosity below the pore close-off. As the permeability of the ice layer decreases, melt percolation slows

sufficiently for the infiltrating melt to pond and form a perched aquifer that spreads laterally. Within

the perched aquifer the melt will fully saturate the firn. To understand the evolution of ice layers and

aquifers, it is therefore important to understand the interaction of melt with layers of lower permeability,

the transition from unsaturated to saturated flow and the conditions that reduce ice layer permeability

to zero. Currently there is no physics-based model that can describe the formation of an ice layer with

zero permeability (hereafter referred to as an impermeable ice layer). Here we aim to develop a first-order

model that captures this process, based on a theoretical framework for the coupling of energy and mass

transport in firn.
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1.1 Modeling melt infiltration into firn

Modeling the infiltration of water from both rainfall and surface melting into firn is still a challenging

problem and model predictions diverge due to different approaches to representing melt percolation in firn

and poorly characterised constitutive relations (Stevens and others, 2020; Vandecrux and others, 2020;

Amory and others, 2024). Models for firn hydrology must include both mass and energy transport and

incorporate both the non-linearity inherent in unsaturated flow in porous media and the non-linearity of

the phase change during freezing and melting.

The most commonly used approach to unsaturated flow in firn, so-called bucket models, combine mass

conservation with a discrete percolation model, based on the concept that the melt needs to reach a

maximum holding capacity or irreducible water content before it advances to the next layer of the firn

(Coléou and Lesaffre, 1998; Bartelt and Lehning, 2002; Ligtenberg and others, 2011; Kuipers Munneke

and others, 2015; Vionnet and others, 2012; Verjans and others, 2019). A second approach combines

mass balance with the two-phase extension of Darcy’s law to obtain a kinematic wave model (Colbeck,

1974a; Jordan, 1991; Singh, 1997; Clark and others, 2017; Shadab and others, 2024a). This approach can

be extended to include the effects of capillary suction leading to Richards’ equation (Illangasekare and

others, 1990; Wever and others, 2014; Meyer and Hewitt, 2017). More complex and multi-dimensional

models have been developed to capture the process of preferential flow and ice pipe formation in snow and

firn (Marsh and Woo, 1984; Schneebeli, 1995; Katsushima and others, 2013). These models build upon

Richards’ equation by extending it to include either an imbibition water entry pressure (Hirashima and

others, 2014; Leroux and Pomeroy, 2017), a dynamic capillary pressure (Hassanizadeh and others, 2002;

Leroux and Pomeroy, 2019) or apparent surface tension at the wetting front (Cueto-Felgueroso and Juanes,

2008; Moure and others, 2023).

Similarly, phase change and the associated latent heat is handled with different approaches in firn

hydrology. Most models assume thermal equilibrium between melt and ice and the main difficulty in

treating the phase change is that temperature is not an independent variable at the melting point (Anderson

and Crerar, 1993). Percolation or bucket models are inherently discrete and handle the phase change with

a discrete algorithm comparing the heat content of the melt with the cold content of the firn layer (Bartelt

and Lehning, 2002; Ligtenberg and others, 2011; Kuipers Munneke and others, 2015). Darcy models treat

phase change either discretely (Illangasekare and others, 1990), avoid the degeneracy by distributing the

phase change over a finite temperature interval (Clark and others, 2017), employ the enthalpy method
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(Jordan, 1991; Meyer and Hewitt, 2017; Shadab and others, 2024a), or allow for thermal disequilibrium

(Moure and others, 2023; Jones and others, 2024).

The coupling between energy and mass transport and the inherent non-linearities of both unsaturated

flow and phase change, together with the different modeling strategies summarized above lead to wide

discrepancies between predictions of different firn models (Vandecrux and others, 2020). Improving these

models therefore requires a comprehensive and systematic evaluation strategy (Clark and others, 2017).

Analytic solutions to synthetic test cases are an important element of model evaluation because they allow

evaluation of numerical implementation, such as the discretization and coupling strategies. In this context,

kinematic wave models are useful for firn hydrology because they contain both the essential non-linearities

of unsaturated flow and phase change as well as the coupling between mass and energy transport, yet

they allow for analytical solutions for simple initial conditions. Past work on kinematic waves has been

restricted to unsaturated conditions, but understanding the formation of impermeable ice layers that lead

to ponding and the formation of saturated regions is crucial for estimating meltwater runoff versus storage

in firn. Shadab and Hesse (2022) have shown that these saturated regions can be included in an extended

kinematic theory that allows us to investigate these processes. The purpose of this paper is to derive a set

of self-similar analytic solutions and to determine the conditions that lead to the formation of impermeable

ice layers and perched aquifers.

1.2 Kinematic wave theory for firn hydrology

Due to the large porosity and grain size of firn, the vertical flow of water may be primarily governed

by gravity, while capillary suction/diffusion may play a minor role (Colbeck, 1972, 1974b). Neglecting

capillary diffusion results in a non-linear kinematic wave model that describes the evolution of the wa-

ter/melt saturation in the firn (Colbeck, 1972). Kinematic wave theory is a framework used to describe the

propagation of waves in systems where the wave motion is influenced primarily by the kinematics, or the

motion of particles, rather than by the dynamics or forces acting on them (Lighthill and Whitham, 1955).

In case of melt infiltration, the kinematic wave model results in a hyperbolic partial differential equation

that allows analytic solutions in one dimension using the method of characteristics (MOC) (Lighthill and

Whitham, 1955; LeVeque, 1992). These analytic solutions describe non-linear waves, e.g., wetting and

drying fronts, and their interaction which capture the main features of field observations, for example from

melt infiltration in the Seward glacier firn on the St. Elias mountains in Canada (Sharp, 1951).
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Initial work on kinematic models for melt migration focused on temperate snow where phase change

is not important and unsaturated flow models could be adapted directly (Colbeck, 1971, 1972; Colbeck

and Davidson, 1973). Later, Colbeck (1976) added thermodynamics to the kinematic theory to study

infiltration into cold firn that requires refreezing of the melt at the wetting front. He shows that the

retardation of the wetting front is relatively minor in snow because the latent heat of fusion is large. This

model has been applied to analyze the effects of an impermeable basal boundary (Colbeck, 1974a), the

retention of water in snow (Colbeck, 1976) and the effects of layering and heterogeneity (Colbeck, 1979,

1991). The theory has also been used to estimate the permeability of snow using lysimeter data (Colbeck

and Anderson, 1982). Singh and others (1997) and Clark and others (2017) use kinematic theory to study

the interaction of drying and wetting fronts which was recently identified as key to the initiation of ice

layer formation (Shadab and others, 2024a). Singh and others (1997) also investigate the effect of temporal

variability in rainfall rate (for review see also Singh, 1997).

1.3 Contribution of this manuscript

To understand the formation of impermeable ice layers it is important to model variably saturated flows,

i.e., flows that transition from unsaturated to saturated and vice versa. The conventional kinematic wave

theory for infiltration fails in a fully saturated region because the flow of water becomes pressure driven

rather than gravity driven and thus, the model equations are not valid anymore (see Shadab and Hesse

(2022)). Therefore, the kinematic wave theory needs an extension to capture fully saturated regions.

Recently, Shadab and Hesse (2022) showed that saturated regions can be incorporated into an extended

kinematic theory for simple problems, such as a step change in firn porosity. This allows the analysis of a

rising perched water table, a pre-requisite for the formation of impermeable ice layers.

To address the dynamics of ice layer formation and to provide additional analytic solutions for the

evaluation of the models in firn hydrology this manuscript makes the following contributions:

˝ Formulate coupled mass and energy transport as a system of non-linear hyperbolic conservation

equations and analyze their coupling.

˝ Use method of characteristics to develop a set of self-similar analytic solutions for problems with

an initial step change in volume fractions of ice or water (Riemann problems).

˝ Apply unified kinematic wave theory to firn hydrology to describe the formation of perched aquifers

and derive conditions for impermeable ice layer formation.
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We call it a unified theory, as it is not derived from prior kinematic wave theories for melt infiltration, but

it still unifies most previous work and includes extensions to perched aquifers. The remainder of this paper

is divided into four sections. Section 2 presents the model formulation. Section 3 considers the problem

of melt transport across a discontinuity and documents twelve nature-inspired cases with their analytical

solutions. Section 4.1 applies this theory to study a multilayered firn leading to formation of a perched firn

aquifer and validates it with the numerical solution. Finally, Section 5 concludes the paper.

2 CONTINUUM MODEL FORMULATION

In this section, we first define the conserved quantities, then introduce the governing equations and consti-

tutive models, and finally provide the resulting dimensionless continuum model. The related assumptions

will be introduced in this work when required.

2.1 Conserved Quantities

We model firn as a three phase system comprising liquid water (w), ice (i) and gas (g). These three phases

are composed of two components, namely, water (H2O) and air („Nitrogen gas, N2). The water component

partitions into the liquid and ice while the air component is confined to the gas phase. The first conserved

variable is the water (H2O) composition (kg/m3), C, defined as the total mass of water component per

unit representative elemental volume (REV) as

C “ ρiϕi ` ρwϕw. (1)

where ρα is the density (kg/m3), ϕα refers to volume fraction of the phase α P tw, i, gu. The formulation

assumes that the water vapor component is negligible in the gas phase and that ice and water phases

are pure. Assuming same density for ice and water, ρi « ρw “ ρ, and the volume fraction constraint,

ϕi ` ϕw ` ϕg “ 1, Equation (1) further simplifies to

C “ ρpϕi ` ϕwq “ ρp1 ´ ϕgq. (2)
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The second conserved variable is related to the thermodynamics of the system. Since phase change is

involved when ice melts, temperature does not accurately represent all states of the system considered

(Jordan, 1991; Alexiades and Solomon, 1993; Aschwanden and others, 2012; Carnahan and others, 2021).

Therefore the second conserved variable is chosen to be the enthalpy of the system (J/m3), H, which is

defined as

H :“ ρiϕihipT q ` ρwϕwhwpT q ` ρgϕghgpT q, (3)

where hα is the specific enthalpy (J/kg) of the phase α, which is a piecewise linear function of temperature

(K), T . For simplicity we fix the reference enthalpy at the solidus to be H “ 0 where the system is at the

melting temperature, T “ Tm. The specific enthalpy hα of each phase α P tw, i, gu can then be defined as

hipT q “

$

’

’

&

’

’

%

cp,ipT ´ Tmq, T ă Tm por H ă 0q

0, T ě Tm por H ě 0q

, (4)

hwpT q “

$

’

’

&

’

’

%

0, T ă Tm por H ă 0q

cp,wpT ´ Tmq ` L, T ě Tm por H ě 0q

, (5)

hgpT q “ cp,gpT ´ Tmq. (6)

Here cp,α is the specific heat capacity at constant pressure (J/kg¨K) for phase α, Tm is the melting tem-

perature (K) and L is the latent heat of fusion of water (J/kg). The density and specific heat capacity

of gas are much lower than those of liquid water or ice, i.e., ρg ! ρ and cp,g ă cp,i or cp,w (see Table 1).

Hence, we make the simplification that the gas phase contribution to the total enthalpy of the system is

negligible. After substituting Equations (4) and (5) into Equation (3), H can be ultimately formulated as

H “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ρcp,iϕipT ´ Tmq, T ă Tm por H ď 0q

ρϕwL, T “ Tm por 0 ă H ă CLq

ρϕw pcp,wpT ´ Tmq ` Lq , T ą Tm por H ě CLq

. (7)
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Here the maximum enthalpy limit for the three-phase region is the product of composition, C, and the

latent heat of fusion, L because it is the enthalpy of the fully molten system at the melting point (see

Figure 1a). The boundaries of the three-phase region are not included in the region 0 ă H ă CL because

it strictly refers to the three phase region. From the above formulation we classify three regions, where

region 1 (H ď 0) is comprised of ice and gas, region 2 (0 ă H ă CL) contains all three phases and region

3 (H ě CL) corresponds to a no-matrix state consisting of only water and gas phases.

The temperature and volume fractions of water, ice and gas phases can be evaluated from composition,

C, and enthalpy, H, as shown in Figures 1a-1d respectively. As shown in Equation (2), the volume fraction

of gas, ϕg, only depends on the composition, C, as shown in Figure 1d. Next we formulate the governing

equations for this model corresponding to the two conserved variables.

2.2 Transport Model

In a reference frame moving with ice, the conservation equations for water composition and system enthalpy

are respectively given as

BC

Bt
` ∇ ¨ pqρq “ 0 (8)

BH

Bt
` ∇ ¨ pqρhw ´ κ∇T q “ 0, (9)

where q is the volumetric flux of water phase (m3/m2¨s) relative to ice phase. The effective thermal

conductivity of the mixture κ , typically a weighted average of the thermal conductivities of the phases,

κα (W/m¨K).

2.3 Constitutive Relations

The volumetric flux of water relative to ice, q, can be written using extended Darcy’s law,

q “ ´
kpφqkrwpsq

µ
p∇p ´ ρgq (10)

where k is the absolute permeability (m2) which is a function of porosity φ pφ “ ϕw ` ϕg “ 1 ´ ϕiq, the

ratio of void volume to the bulk volume, p is water pressure (Pa), µ is the viscosity of water (Pa¨s) and g is
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(d)

(c)

(b)

I: Gas & Ice

III: Gas & Water

(h)

(g)

(f)

(e)(a)

II: Three phase 

I: Gas & Ice

III: Gas & Water

II: Three phase 

Fig. 1. The dependence of temperature and volume fractions on dimensional and dimensionless enthalpy and

composition, (C, H) and (C, H) respectively. Dimensional C, H: (a) temperature and volume fractions of (b) water,

(c) ice and (d) gas phases. Dimensionless C, H: (e) scaled temperature and volume fractions of (f) water, (g) ice and

(h) gas phases. The contours are restricted to T P r´100˝C, 100˝Cs to avoid phase change at boiling as well as keep

the contour levels consistent. Solid black lines are the level-sets whereas the dashed lines show the boundaries of the

regions, i.e., H “ 0 or H “ 0 and H “ CL or H “ C. The three regions are labeled in panels a and e.
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the acceleration due to gravity vector (m2/s). The relative permeability for multi-phase flow, krw, display

complex hysteresis (Blunt, 2017), but here we only consider the simplest case with power law dependence.

The relative permeability of the water phase, krw, is a function of the water saturation, s, which is the ratio

of water phase volume to void volume, s “ ϕw{1 ´ ϕi. We assume that the water phase becomes immobile

below a certain residual water saturation, swr. Similarly the gas phase becomes immobile below the residual

gas saturation, sgr. As a result, the two-phase fluid flow of both gas and water phases is restricted to regions

where swr ă s ă 1 ´ sgr. We will refer to regions with s “ 1 ´ sgr as saturated in the remainder of this

paper. The residual water saturation during drainage has been determined to be swr „ 0.07 from lysimeter

(Colbeck, 1976) and calorimeter (Coléou and Lesaffre, 1998) techniques. However, as the ice is water-wet

with a near-zero contact angle at the ice-water-air interface (Knight, 1971), the residual water saturation

during saturation rise (imbibition) is zero due to hysteresis in the relative permeability-capillary pressure

curve (Carlson, 1981; Blunt, 2017). The phenomenon of hysteresis has largely been neglected in the firn

hydrology literature but it will affect the speeds of the meltwater fronts.

Next we assume the problem is gravity dominated in unsaturated regions (Colbeck, 1972), such that the

spatial variations in the difference between the water and air pressure (capillary pressure) are negligible at

the problem length scales. See Smith (1983); Shadab and Hesse (2022, 2024) for a more detailed discussion

on neglecting the capillary pressure term in context of soils using scaling analysis. As a result, the pressure

of the water phase in the unsaturated regions becomes a constant, equal to the reference gas pressure, i.e.,

p “ 0 (Colbeck, 1972; Shadab and Hesse, 2022). Plugging it in Equation (10) eliminates the diffusive,

pressure term. The volumetric flux of water, q, finally takes the gravity-driven form

q “
kpφqkrwpsq

µ
ρg. (11)

The absolute permeability of ice (m2), k, and the relative permeability of water, krw, are assumed to be

power laws (Kozeny, 1927; Carman, 1937; Brooks and Corey, 1964; Bear, 2013; Meyer and Hewitt, 2017)

defined as
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kpφq “ k0φm “ k0p1 ´ ϕiq
m, (12)

krwpsq “ k0
rwsn “ k0

rw

ˆ

ϕw

1 ´ ϕi

˙n

, (13)

where k0 is a model constant, which can be considered as an absolute permeability (m2) when there no

ice matrix, and k0
rw is end point relative permeability of water phase. Here we have also assumed that the

residual saturations of both water and gas phases are zero, i.e., swr “ sgr “ 0. It will provide accurate

speeds for the wetting fronts moving into dry firn, due to hysteresis in the relative permeability. Plugging

Equations (12) and (13) in Equation (11) finally gives

qpϕi, ϕwq “

$

’

’

&

’

’

%

0, H ď 0

k0k0
rw

µ ρgp1 ´ ϕiq
m

´

ϕw

1´ϕi

¯n
ĝ “ Khp1 ´ ϕiq

m
´

ϕw

1´ϕi

¯n
ĝ, 0 ă H ă CL & C ă ρ

(14)

where the acceleration due to gravity vector is g “ gĝ with ĝ being the unit vector in the direction of

gravity. The symbol Kh “
k0k0

rw
µ ρg is a known constant which can be considered as the maximum gravity-

dependent volumetric flux of water, |q|, at unity porosity. Note that the dynamics at unity porosity is

not Darcy-type as the constitutive relationships (10-12) are only valid for a porous medium. Therefore we

will restrict our analysis to the porous media where φ ă 1 and the flow is laminar, thus, Darcy’s law is

applicable (Tek, 1957).

2.4 Scaling

We non-dimensionalize the model to make it scale-independent and find dominant terms governing the

physics of the problem. The model is scaled using dimensionless variables for composition, C, enthalpy, H,

temperature, T , depth, ζ, and time, τ , which are defined as

C “
C

ρ
, H “

H

ρL
, T “

T ´ Tm

Tm
, ζ “

z

δ
, and τ “

tKh

δ
. (15)

Here the spatial coordinates (for example, the depth coordinate z) are non-dimensionalized by length scale

of heterogeneity or the REV scale of the problem, δ. Time variable is scaled by the shortest time of water

seepage across the characteristic length through a medium with unity porosity, i.e., δ{Kh. The definitions
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of conserved quantities C and H, given in Equations (2) and (7) respectively, thus transform into the

dimensionless forms

C “ ϕi ` ϕw “ 1 ´ ϕg, (16)

H “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

C Ste cp,rT , H ď 0

ϕw, 0 ă H ă C

CpSteT ` 1q, H ě C

, (17)

where Ste is the Stefan number defined as ratio of sensible heat of water at melting temperature to the

latent heat of fusion of H2O, i.e., Ste“ cp,wTm{L and cp,r “ cp,i{cp,w is the ratio of specific heat of ice to

that of water. From the formulations of dimensionless enthalpy (17) and dimensional specific enthalpy of

water phase (5), the dimensionless temperature, T , and dimensionless specific enthalpy of water phase,

hw “ hw{L, can be derived as

T pC, Hq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

H
C Ste cp,r

, H ď 0

0, 0 ă H ă C

1
Ste

`H
C ´ 1

˘

, H ě C

, and hwpC, Hq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0, H ď 0

1, 0 ă H ă C

H
C , H ě C

. (18)

Subsequently the volume fractions of the phases, ϕα, and the porosity of the medium, φ, can be rewritten

as functions of C and H as

Downloaded from https://www.cambridge.org/core. 23 Jul 2025 at 01:18:19, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Shadab and others: Unified kinematic wave theory for melt infiltration 13

ϕwpC, Hq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0, H ď 0

H, 0 ă H ă C

C, H ě C

, ϕipC, Hq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

C, H ď 0

C ´ H, 0 ă H ă C

0, H ě C

, (19)

ϕgpCq “ 1 ´ C and φpC, Hq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 ´ C, H ď 0

1 ´ C ` H, 0 ă H ă C

1, H ě C

. (20)

The scaled temperature and volume fractions of water, ice and gas phases can be evaluated from dimension-

less composition, C, and dimensionless enthalpy, H, as shown in Figures 1e-1h respectively. As shown in

Equation (2), the volume fraction of gas, ϕg, only depends on the dimensionless composition as illustrated

in Figure 1h.

The composition and enthalpy transport equations (8 and 9) thus take the dimensionless form

BC
Bτ

` ∇ ¨

ˆ

p1 ´ ϕiq
m

ˆ

ϕw

1 ´ ϕi

˙n

ĝ
˙

“ 0, (21)

BH
Bτ

` ∇ ¨

ˆ

hwp1 ´ ϕiq
m

ˆ

ϕw

1 ´ ϕi

˙n

ĝ ´
κ

κw

Ste
PeH

∇T
˙

“ 0. (22)

Here κw is the thermal conductivity of the water phase. The ratio of heat convected to heat diffused is

defined as the Peclet number for enthalpy equation, PeH “ Khδ{αT , where αT “ κw{ρcp,w (m2/s) is the

thermal diffusivity of water. Moreover, the divergence and gradient operators are now scaled with inverse

of characteristic depth, 1{δ.

While both conduction and advection can be important heat transport processes in firn (Shadab and

others, 2024a), conduction does not affect the steady propagation of wetting and drying fronts analyzed

here. This can be shown using thermodynamic and fluid flow parameters from Table 1. The value of

Peclet number, PeH, comes out to be 4 ¨ 103 for δ “ 1 m. The ratio κ{κw ď 1 as its maximum value

of unity is achieved when the REV only contains liquid water. The Stefan number Ste is a constant of

value 3.43. Therefore, the value of κ
κw

Ste
P eH

indicates about three orders of magnitude higher heat advection

compared to heat conduction for gravity-driven infiltration in firn. Therefore, we can neglect the second
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or

Fig. 2. The dimensionless flux of composition or enthalpy in CH phase space for m “ 3 and n “ 2. In region 1

consisting of water and gas region (H ď 0) as well as region 3 comprising of three phase region (0 ă H ă C), the flux

of dimensionless enthalpy and composition are identical, i.e., fC “ fH. Region 3 with water and gas (H ě C) is not

considered in the present work.

order heat conduction term in Equation (22), which is also the necessary condition in the three phase region

(0 ă H ă C or T “ 0) as ∇T “ 0. Assuming local thermodynamic equilibrium, in the limit PeH Ñ 8, the

system of dimensionless governing equations (21 and 22) then reduces to quasi-linear system of coupled

hyperbolic equations,

Bu
Bτ

` ∇ ¨ fpuq “ 0 (23)

where u “ rC, HsT is the vector of dimensionless conserved variables and fpuq “ rfC , fHsT is the vector of

their corresponding nonlinear flux vectors. Here the flux vector functions for the dimensionless composition

and enthalpy are given as

f :“ fC “ fH “

$

’

’

&

’

’

%

0, H ď 0,

p1 ´ C ` Hqm
´

H
1´C`H

¯n
ĝ, 0 ă H ă C.

(24)
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Table 1. A summary of simplified thermodynamic properties as well as flow properties of water in porous ice used

in present work

Parameter Value Units

ρ 1000 kg/m3

cp,w 4186 J/(kg K)

cp,i 2106.1 J/(kg K)

κw 0.606 W/(m K)

κi 2.25 W/(m K)

L 333.55 kJ/kg

Tm 273.16 K

αT 1.45 ¨10-7 m2/s

cp,r 0.503 -

Ste 3.43 -

k0 5.56 ¨10-11 (Meyer and Hewitt, 2017) m2

k0
rw 1.0 -

m 3.0 -

n 2.0 -

g 9.81 m/s2

µ 10-3 Pa s

Kh 5 ¨10-4 m/s

The above analysis shows the distinct system behaviors in the different regions based on fluxes (see Figure

2). In this work, region 3 with no solid matrix is not considered since the constitutive relation for volumetric

flux (Darcy’s law) is not valid anymore. From Equation (24), it can be observed that the fluxes of enthalpy

and composition in the system of governing equations (23) are identical in regions 1 and 2 defined by the

symbol f for brevity. This is the result of scaling owing to the fact that the composition changes only when

water infiltrates or convects while carrying the enthalpy in form of latent heat (and specific heat) along

with it.

In the next section, we will consider a simple problem of melt transport across a discontinuity to utilize

the method of characteristics (MOC) for solving the system of hyperbolic partial differential equations

(Lighthill and Whitham, 1955; LeVeque, 1992) given in Equation (23).

Downloaded from https://www.cambridge.org/core. 23 Jul 2025 at 01:18:19, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Shadab and others: Unified kinematic wave theory for melt infiltration 16

(c)

(b)

(a)

Fig. 3. One-dimensional Riemann problem: (a) Schematic representation of u across a discontinuity within or at

the boundary of a porous firn. Initial conditions for the Riemann problem for conserved variables (b) C and (c) H

plotted against dimensionless depth coordinate, ζ.

3 MELT TRANSPORT ACROSS A DISCONTINUITY IN FIRN

This section considers the reaction front arising from melt flow across a discontinuity in dimensionless

composition and enthalpy at a depth, say ζ “ 0, as shown in Figure 3. The dynamics of such problems

can be understood using hyperbolic analysis of the coupled system of partial differential equations in one

dimension (Lighthill and Whitham, 1955; LeVeque, 1992; Venkatraman and others, 2014; Jordan and Hesse,

2015; Ghaderi Zefreh and others, 2019).

3.1 General structure of reaction fronts

Consider the following one-dimensional initial value problem with two constant states, known as a Riemann

problem. See LeVeque (1992) for a pedagogical introduction to Riemann problems and their analysis. Let

the spatial dimension be the direction of gravity, ĝ, which aligns with the (dimensionless) depth coordinate,

z (ζ). In that case, the dimensionless flux vector (24) reduces to
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f :“

$

’

’

&

’

’

%

0, H ď 0

p1 ´ C ` Hqm
´

H
1´C`H

¯n
, 0 ă H ă C

(25)

The system of dimensionless composition and enthalpy conservation equations (23) can be written in one-

dimensional depth coordinates, ζ, as

uτ ` fpuqζ “ 0, τ P R`, ζ P R, (26)

with initial conditions

u “

$

’

’

&

’

’

%

ul, ζ ă 0

ur, ζ ą 0
(27)

where the flux vector in ζ direction is fpuq “ rf, f sT and the subscripts τ and ζ refer to the partial

derivatives with respect to the dimensionless time and depth respectively. The subscripts l and r refer to

the state of the system on the left and right sides of a discontinuity. During melt infiltration into firn the

left (right) state corresponds to the top (bottom) layer around a discontinuity. An example of an initial

discontinuity with left state, ul, and right state, ur, is shown in Figures 3b and 3c. The flow is towards

the direction of gravity, assumed to be in `ζ-direction. The solution to the Riemann problem for well-

behaved systems of two coupled nonlinear partial differential equations is characterized by the formation

of an intermediate state, ui, bounded by two waves W1 and W2 (LeVeque, 1992). This solution structure,

observed in Figure 4, can be represented as

ul
W1
ÝÝÑ ui

W2
ÝÝÑ ur (28)

In the context of reactive meltwater transport, the waves W1 and W2 are the reaction fronts and the

intermediate state, ui, corresponds to a state between the fronts. The system (26) can be recast into a
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(a)

(b)

Fig. 4. Solution of the Riemann problem introduced in Figure 3. (a) Evolution of dimensionless composition, C,

in space, ζ, and time, τ . (b) The same self-similar solution plotted as a function of similarity variable η “ ζ{τ .
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quasilinear form using chain rule as

uτ ` ∇ufpuquζ “ 0 (29)

where ∇ufpuq is the gradient of flux, fpuq, with respect to the conserved variables, u, which takes the

matrix form

∇ufpuq “

»

—

–

f,C f,H

f,C f,H

fi

ffi

fl

(30)

where the subscripts , C and , H refer to the partial derivatives with respect to dimensionless composition

and enthalpy respectively. The derivatives of the flux gradient above can be evaluated explicitly, and which

are given in Appendix A. The system of advection equations (29) results in waves (fronts) propagating

with their characteristic velocities. These fronts have self-similar stretching patterns, because of their own

characteristic velocities given by the flux gradient.

3.2 Self-similarity of reaction fronts

The recognition of the constant stretching morphology of the reaction fronts from an initial step change

allows the introduction of the similarity variable

η “
ζ

τ
(31)

Physically, η describes the dimensionless propagation velocity of the reaction front. The solution generally

collapses into a single profile when plotted as a function of η (see Figure 4b). Therefore, the system of

partial differential equations (29) can be transformed into a system of ordinary differential equations by

considering the nonlinear eigenvalue problem

pA ´ λpIq rp “ 0, p P t1, 2u, (32)

where the flux gradient is A “ ∇ufpuq and the eigenvector is rp “ du{dη corresponding to the eigenvalue

λp. Here the eigenvalues λ1 and λ2 are the characteristic propagation speeds of the waves W1 and W2
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respectively. The associated eigenvectors, rp “ du{dη, give the pathways through the C ´ H plane, also

referred to as the hodograph plane, that satisfy the conservation equations (see Figure 5b for example).

Constant solutions of the conservation laws (29) satisfy (32) trivially because du{dη “ 0. Solutions of

the conservation laws (29) that vary continuously must instead satisfy the eigenvalue problem (32). Finally,

discontinuities in the solution of (29) must satisfy the Rankine-Hugoniot (R-H) jump condition (LeVeque,

1992), which is derived from the discrete conservation of mass and enthalpy around the discontinuity, and

given by

ΛS pu`, u´q “
fpu`q ´ fpu´q

u` ´ u´

“
rfpuqs

rus
, (33)

where ΛS is the shock speed, r ¨ s refers to the jump condition across the shock and subscripts ` and ´

refer to the state on the left and right sides of a shock wave. Note that the left (l) and right (r) states might

not necessarily be the left (´) and right (`) sides of a shock front, due to the presence of an intermediate

state.

3.3 Construction of the solution in the C ´ H hodograph plane

The self-similar solutions are constructed by identifying directions in the C ´ H hodograph plane that

satisfy conservation laws and the equation of state. One such direction allows a continuous variation in

u, which can be found by integrating the eigenvectors of the flux gradient. Another set of directions

is determined by the nonlinear algebraic system of equations arising from the R-H jump condition (33),

described by shock fronts. First, we consider a system where both left state, ul “ rCl, Hls
T , and right state,

ur “ rCr, HrsT , reside in the same region. Then we investigate more complicated cases where left and right

states can lie in different regions. Lastly we discuss the cases where a fully-saturated region forms, leading

to the failure of the current hyperbolic PDE analysis. This theory is then further extended to analyze the

formation and evolution of fully-saturated regions which are governed by a different, elliptic PDE (Shadab

and Hesse, 2022). Although there can be at most one moving wave for simple cases where the medium

remains unsaturated (C ă ρ, C ă 1 or ϕg ą 0), there can be two moving waves when a fully-saturated

region appears, i.e., C “ 1. Below we enumerate twelve distinct self-similar solutions to the Riemann

problem that describe a variety of firn hydrological processes and summarize them in Table 2.
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Fig. 5. Contour plots of (a) second eigenvalue, λ2, and (b) propagation velocity of second front with respect to

the melt given by ϕwλ2 in the C ´ H hodograph plane for m “ 3 and n “ 2. The slow path r1 and fast path r2 are

shown with dashed and solid lines respectively in panel b.

3.3.1 Region 2 only (Three-phase region)

Region 2 (0 ă H ă C) consists of all three-phases, which is relevant for temperate glaciers where T “ 0 or

T “ Tm. In the three-phase region, the eigenvalues of the flux gradient (30) are

λ1 “ 0 and λ2 “ f,C ` f,H “ nHn´1p1 ´ C ` Hqm´n. (34)

where the subscripts C and H refer to the partial derivatives with respect to the corresponding conserved

variable.

The first reaction front is a stationary contact discontinuity as λ1 “ 0. The eigenvalue λ2 gives a

dimensionless propagation speed of the second reaction front W2 as a function of C and H, as plotted in

Figure 5a for m “ 3 and n “ 2. Therefore, all solutions governed by hyperbolic PDEs (26) will have

at most a single moving reaction front. Due to variable porosity, the dimensionless system is scaled with

respect to the largest saturated hydraulic conductivity, Kh, which corresponds to the volumetric flux of

water (Darcy’s flux), rather than the melt velocity. Hence, the propagation speed of the second reaction
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front relative to the melt is ϕwλ2, as shown in Figure 5b. As expected, the propagation velocity ϕwλ2

decreases towards the lower boundary of the three-phase region (H “ 0). These eigenvalues yield two

corresponding, linearly independent eigenvectors in the C ´ H hodograph plane given by

r1 “

»

—

–

´f,H
f,C

1

fi

ffi

fl

“

»

—

–

pnp1´Cq`mHq

pm´nqH

1

fi

ffi

fl

and r2 “

»

—

–

f,H
f,H

1

fi

ffi

fl

“

»

—

–

1

1

fi

ffi

fl

. (35)

These eigenvectors can be used to find the integral curves using the system of ODEs

du
dη

“
1

∇uλp ¨ rp
rp (36)

which can be further integrated to obtain the solution pathways upu0, ηq as

upu0, ηq “ u0 `

ż η

λppu0q

1
∇uλp ¨ rp

rp dη1. (37)

These paths in the C ´ H hodograph plane comprise the set of states that can be connected to the initial

state u0 by a reaction front with a continuous variation in u. In the three phase region, the family of

integral curves corresponding to first eigenvector r1 is referred to as slow path as λ1 ă λ2 and is given by

C “ 1 ` H ` CH´ n
m´n . (38)

where C is the constant of integration, which can be found for the initial point u0. The slow path lines are

the same as constant flux lines, as shown in Figure 5b. Next, the family of integral curves corresponding

to the second eigenvector is known as fast path and is given by

C “ H ` C. (39)

The speed of second characteristic λ2 is non-negative and increases monotonically in the direction of integral
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curves corresponding to the second eigenvector r2 (fast paths) in three-phase region for n ą 1 (see Lemma

Appendix 1.1 and Figure 5b). Additionally, the slow path corresponds to constant flux contours as λ1 “ 0

and the fast path corresponds to constant porosity, φ, contours (Lemma Appendix 1.2).

Solutions in the three-phase region

We will now discuss the different analytical solutions within the three-phase region, tailored to glaciological

scenarios. All scenarios are summarized in Table 2. The discussion below assumes that u0 is the left state,

ul, and describes the set of permissible right states ur. We begin with cases that lead to solutions with a

single front before considering cases leading to two fronts and the formation of an intermediate state.

(a.) Stationary linear reaction front (Case I): This case resembles a steady meltwater flux into

a temperate firn with a step reduction in porosity at shallow depth (Figures 6d-f ). The integral curves

associated with λ1 and r1, known as the first characteristic field (λ1, r1), are constant flux lines in the

C ´ H hodograph plane. Any right state ur, along the integral curve, connected to u0 by a stationary

discontinuity is a weak solution of Equation (29). Because λ1 “ 0, the first wave is a stationary contact

discontinuity C1. The fluxes of C and H on both sides are the same so that the melt transport does not

change C and H and the front does not evolve. So, a contact discontinuity is the solution for the left and

right states lying on the slow path (38) (constant flux lines) satisfying

φl

φr
“

1 ´ Cl ` Hl

1 ´ Cr ` Hr
“

ˆ

Hl

Hr

˙´ n
m´n

or fpulq “ fpurq. (40)

The complete solution in this case takes the form

u “

$

’

’

&

’

’

%

ul, ζ ă 0

ur, ζ ą 0
. (41)

Figures 6a-c (green color) illustrate an example of a system that results in a stationary contact discontinuity.

This system corresponds to a steady meltwater flux of f “ 0.112 inside temperate porous firn with a jump

in porosity from 70% at ζ ă 0 to 55.3% in ζ ą 0 (coarse-to-fine transition in firn) leading to liquid water

contents of 0.4 and 0.45 respectively in these regions. These values correspond to ul “ rCl, Hls
T “ r0.7, 0.4sT
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Fig. 6. The simple solutions of a Riemann problem leading to a contact discontinuity C (green), rarefaction R

(blue), and shock waves S (red). (a) Construction of solution in the hodograph plane and their corresponding

self-similar analytical solutions for (b) dimensionless composition and (c) dimensionless enthalpy with dimensionless

velocity η. The evolution of the volume fractions of the three phases in the system for different configurations at

dimensionless times τ “ 0, 0.5, 1.0: (d-f) Case I - contact discontinuity, (g-i) Case II - drying front/rarefaction wave,

and (j-l) Case III - wetting front/shock wave.

and right state ur “ r0.897, 0.45sT . The resulting system illustrated by the volume fractions of the three

phases highlights a porosity jump in the temperate firn that has a constant steady meltwater flux on both

sides, as shown in Figures 6d-f at different times.

(b.) Moving nonlinear reaction front: The integral curves associated with the second characteristic

field (λ2, r2) are the constant porosity φ contours. Thus, a nonlinear characteristic wave is the solution for

the left and right states lying on the fast path (39) satisfying
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Cr “ Cl ` pHr ´ Hlq. (42)

(i.) Rarefaction wave (Case II): This case resembles a sudden drop of meltwater influx into a

temperate firn with constant porosity (Figures 6g-i). If the characteristic speed λ2 varies smoothly from left

to right state, any right state u along the fast path is connected to left state u0 by a continuously varying

saturation front (Figure 6a, blue lines). The propagation velocity, λ2, along these continuous reaction

fronts increases monotonically such that the reaction front spreads with time. These self-smoothening

drying fronts are referred to as rarefaction waves, denoted by the symbol R. The term drying front refers

to drying due to meltwater drainage instead of refreezing (Clark and others, 2017). Rarefaction waves are

a weak solution of Equation (32) if the resultant profile of u is single-valued. This condition is satisfied if u

lies on the branch of the integral curve r2 emanating from u0 in the direction of increasing λ2 (see Figures

5 and 6a, blue lines). The analytical solution concerning the self-similar variable η for a rarefaction wave

on an integral curve can be evaluated from Equation (37), which comes out to be

H “ n´1

c

η

np1 ´ Cl ` Hlq
m´n

and (43)

C “ Cl ´ Hl ` n´1

c

η

np1 ´ Cl ` Hlq
m´n

. (44)

The final solution in this case takes the form

u “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

ul, η ă λ2pulq
»

—

—

–

Cl ´ Hl ` n´1
b

η
np1´Cl`Hlq

m´n

n´1
b

η
np1´Cl`Hlq

m´n

fi

ffi

ffi

fl

, λ2pulq ă η ă λ2purq

ur, η ą λ2purq

. (45)

where the speed of the second characteristic λ2p¨q is evaluated from Equation (34). An example of this case

is when meltwater flux instantly drops, leading to a smoothing drainage front. Figures 6a-c (blue line) show

a moving rarefaction developed inside a 70% porous firn due to an instantaneous reduction in meltwater

flux, captured by lower (40%) and higher (55%) liquid water content layers on top and bottom respectively.
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These numbers translate to left (top) ul “ r0.7, 0.4sT and right (bottom) states being ur “ r0.85, 0.55sT .

The resulting evolution of volume fractions is shown in Figures 6g-i. The leading edge of the rarefaction

front moves faster than the trailing edge connected by a gradual, linear smoothening. In this case, it is

a linear profile (straight line) as the power law exponents in Equation (45) are m “ 3 and n “ 2. This

drying/rarefaction front has been studied by Clark and others (2017) and was observed in models studying

the Dye-2 site in Greenland on 12 August 2016 after the meltwater flux ceased (Samimi and others, 2020;

Vandecrux and others, 2020; Colliander and others, 2022; Shadab and others, 2024a).

(ii.) Shock wave (Case III): This case resembles a sudden increase of meltwater influx into a

temperate firn with constant porosity (Figures 6j-l). If the right state u lies on the opposite branch of

the integral curve (shown by red line in Figure 6a for example), a continuous reaction front would result

in unphysical solutions as the characteristics will cross each other. Therefore, in this case u is connected

to left state u0 by a discontinuous reaction front that propagates with a velocity, ΛS pu0, uq, which can

be calculated from the R-H jump condition (33) using initial conditions (ul, ur). Such fronts are referred

to as wetting/shock fronts, denoted by the symbol S . The set of permissible right states u that can be

connected to the left state u0 by shocks lie on the segment of the Hugoniot-locus that satisfies the entropy

condition. In the three-phase region for the system of equations considered, the Hugoniot-locus is the same

as the integral curve, which is found to be the fast path r2 (39) from the Hugoniot jump condition (33),

since the flux of enthalpy and composition are the same. The dimensionless velocity of the shock from

Equation (33) is then

ΛS pu`, u´q “
dζ

dτ
“

fpu`q ´ fpu´q

H` ´ H´

“
fpu`q ´ fpu´q

C` ´ C´

, (46)

where the subscript ´ refers to the left (top) state and ` is the right (bottom) state for this particular

configuration where fpulq ą fpurq. The final solution thus takes the form

u “

$

’

’

&

’

’

%

ul, ζ{τ ă ΛS pur, ulq

ur, ζ{τ ą ΛS pur, ulq

. (47)
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When meltwater flux instantly increases, it leads to a sharp wetting front propagating in the direction of

gravity. Figures 6j-k show a moving shock front developed inside a 70% porous firn due to an instantaneous

increase in meltwater flux, captured by higher (40%) and lower (20%) liquid water content ϕw in top and

bottom layers respectively. These numbers translate to left (top) state being ul “ r0.7, 0.4sT and right

(bottom) state being ur “ r0.5, 0.2sT sketched analytically in Figures 6a-c. The wetting front has been

discussed (Colbeck, 1972; Humphrey and others, 2012; Meyer and Hewitt, 2017; Clark and others, 2017,

e.g.) and observed in models (Vandecrux and others, 2020; Samimi and others, 2021; Colliander and

others, 2022, e.g.) and field observations including at the Dye-2 site in Greenland on 9 August 2016 when

meltwater percolates in temperate firn (Heilig and others, 2018; Samimi and others, 2020).

(c.) Two fronts with an intermediate state: The solution profile contains a single reaction front if

ul and ur share the same integral curve or Hugoniot-locus. In all other cases in the three-phase region

without complete saturation, a different state than left or right state forms which is referred to as an

intermediate state, ui, in the hodograph plane. At this intermediate state, the solution switches from the

first characteristic field pλ1, r1q to the second pλ2, r2q. In other words, at the intermediate state ui, the

solution changes from the stationary front along constant flux lines (slow path) to the advancing reaction

front along the path of constant porosity contours (fast path) that are parallel to the upper boundary

of the three-phase region (H “ C). The two possible intermediate states are given by the intersections

of the integral curves emanating from ul and ur (see Figure 7a for example). Only one intersection

yields a physically realistic single-value solution. The correct intersection is selected by requiring that the

propagation speed increases monotonically from ul and ur. A single-valued solution is ensured if and only

if ul and ui lie on the slow path first and then ui is connected to ur along the fast path. The reactive

melt transport system considered here only allows two solutions for this case:

ul
C1
ÝÑ ui

R2
ÝÝÑ ur and ul

C1
ÝÑ ui

S2
ÝÝÑ ur, (48)

because the first characteristic is linearly degenerate and the reaction front along the slow path is always

a contact discontinuity C1. The reactive melt transport across an initial discontinuity is characterized by

the formation of a reacted zone corresponding to ui that is bounded between a stationary front C1, and

an advancing front that is either a rarefaction wave R2 or a shock wave S2. Below we will discuss these

two cases.
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Fig. 7. Formation of an intermediate state ui or u˚
i for Case IV - C1R2 or Case V - C1S2 respectively. An asterisk

is used to differentiate the two intermediate states corresponding to the two cases. (a) Construction of solution in

the hodograph plane and their corresponding self-similar analytical solutions for (b) dimensionless composition and

(c) dimensionless enthalpy with dimensionless velocity η. The evolution of the volume fractions of the three phases

in the system at dimensionless times τ “ 0, 0.5, 1.0 for the two configurations: (d-f) Case IV - C1R2 and (g-i) Case

V - C1S2.
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(i.) 1-Contact discontinuity and 2-Rarefaction (Case IV): This case resembles a sudden drop

in meltwater flux inside temperate firn where porosity also reduces with depth (Figure 7d-f ). In this

case fpulq ă fpurq and the resulting first characteristic wave is a contact discontinuity, C1, which satisfies

Equation (38) for left state ul and the intermediate state ui. The second characteristic wave is a rarefaction

which is governed by Equations (39), (43) and (44) for intermediate state ui and right state ur. Combining

all these equations results in a nonlinear algebraic equation to evaluate Hi that is given by

1 ` Hr ´ Cr ´ H
´ 1

n´1
i Hl

n
n´1

ˆ

1 ´ Cl ` Hl

1 ´ Cr ` Hr

˙
m´n
n´1

` Hi “ p1 ` Hl ´ Clq

ˆ

Hi

Hl

˙´ n
m´n

(49)

which can be re-written in terms of porosities, φ, as

φr ´ H
´ 1

n´1
i Hl

n
n´1

ˆ

φl

φr

˙
m´n
n´1

` Hi “ φl

ˆ

Hi

Hl

˙´ n
m´n

. (50)

Next, the composition at intermediate state, Ci, can be computed from Equations (39) and (34) which

corresponds to the fast path and the speed of the second characteristic, λ2, respectively. The final solution

in this case takes the form

u “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ul, ζ ă 0

ui, 0 ă ζ{τ ă λ2puiq
»

—

—

–

Ci ´ Hi ` n´1
b

η
np1´Ci`Hiqm´n

n´1
b

η
np1´Ci`Hiqm´n

fi

ffi

ffi

fl

, λ2puiq ă η ă λ2purq

ur, η ą λ2purq

. (51)

Physically, the first contact discontinuity represents the constant flux of water entering the bottom, low

porosity layer (Figures 7e,f ). The rarefaction shows the drainage of the wetter firn due to gravity. Figure 7a

shows the construction of the solution C1R2 in the blue line for the left (top) state which is more porous

φl “ 80%, and has less water content (LWC) ϕw,l “ 0.1. The right (bottom) state is less porous φr “ 58%

but has more liquid water content ϕw,r “ 0.528. These values correspond to left and right states being
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ul “ p0.3, 0.1qT and ur “ p0.948, 0.528qT respectively shown in Figures 7a-c. The intermediate state comes

out to be ui “ p0.538, 0.117qT which corresponds to LWC ϕw,i “ 11.7% and the same porosity as the

right state, i.e., φi “ 58.0%. Figures 7b and 7c show the corresponding self-similar analytical solutions for

composition and enthalpy respectively for this case with blue lines which only depend on the dimensionless

velocity. The rarefaction moves down with a characteristic velocity that can be computed analytically.

Figures 7d-f show the resulting evolution of volume fraction of each phase at different times showing

self-similar expansion of the rarefaction wave.

(ii.) 1-Contact discontinuity and 2-Shock (Case V): This case is similar to Case IV but with a

sudden rise in meltwater flux (Figure 7g-i), and as such fpulq ą fpurq. As a result, the first characteristic

wave is a contact discontinuity, C1, that satisfies Equation (38) for the left state ul and intermediate state

ui. Since the second characteristic lies on the Hugoniot locus, the result is a shockwave, S2, which satisfies

the Hugoniot-jump condition (33) for the intermediate state and right state. Combining Equations (38)

and (39) gives a simple relation for dimensionless enthalpy at intermediate state, Hi, to be

Hi “ Hl

ˆ

φl

φr

˙
m´n

n

“ Hl

ˆ

1 ` Hl ´ Cl

1 ` Hr ´ Cr

˙
m´n

n

. (52)

Then Equation (39) for the intermediate state, ui, and right state, ur, provides the value of dimensionless

composition at intermediate state, Ci. The final solution in this case takes the form

u “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ul, ζ ă 0

ui, 0 ă ζ{τ ă ΛS pui, urq

ur, ζ{τ ą ΛS pui, urq

. (53)

Physically, the first contact discontinuity represents the increased, constant flux of water entering the

bottom, low porosity layer. The second shock shows the wetting front advancing the water content to

dryer firn because of gravity (Figures 7h,i). Figure 7a shows the construction of the solution C1S2 with

red line for the left state which is less porous, i.e., φl “ 58.0%, but has more water content (ϕw,l “ 52.8%),

and the right state is more porous and less wet corresponding to φr “ 80% and LWC ϕw,r “ 10%.
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These values correspond to ul “ p0.948, 0.528qT and ur “ p0.3, 0.1qT in Figures 7a-c. The intermediate

state comes out to be u˚
i “ p0.648, 0.448qT which corresponds to the wetter intermediate region behind

the wetting front with LWC ϕw,i “ 44.8% but the same porosity as the right state, i.e., φi “ 80% (see

Figures 7g-i). Figures 7b and 7c show the corresponding self-similar analytical solutions for composition

and enthalpy respectively for this case with red lines which only depend on the dimensionless velocity.

(d.) Two fronts and a jump with two intermediate states (formation of a saturated region,

Case VI): This case resembles a temperate firn with a step decrease in porosity at depth receiving a

sudden increase of meltwater influx (Figure 8d-f ), which results in ponding at the porosity contrast and a

rising water table. The initial conditions of this case are similar to Case V (C1S2). However, in this case,

the slow path emanating from the left state does not intersect with the fast path from the right state in

the three-phase region where C ă 1, as shown in Figure 8a. In other words, the bottom layer is unable to

accommodate the flux of meltwater from the top layer, as discussed for soils in Shadab and Hesse (2022). If

the intermediate state leads to complete saturation, i.e., Ci “ 1, then the proposed hyperbolic PDE solution

framework breaks down. This happens because inside the fully-saturated region, the dynamics of the water

phase change from gravity-driven to pressure-driven as the governing model changes from hyperbolic (local)

to elliptic (global) partial differential equations (see Shadab and Hesse (2022) for a detailed analysis). In

this case, the dynamics becomes complicated as the complete solution cannot be directly interpreted from

the hodograph plane because the flux in the saturated region may not simply be the hydraulic conductivity

(24) anymore.

Nevertheless, we can still construct a full analytical solution to this problem using the extended kine-

matic wave approximation proposed by Shadab and Hesse (2022). In this case, the solution consists of three

waves including a backfilling shock moving upwards (Figures 8d-f ), denoted by symbol S ˚
1 , a stationary

jump at the initial location of the jump, denoted by J2, and a downward moving shock (wetting front),

S3, into the less porous and temperate layer. Note that the jump J2 lies in the saturated region and

therefore does not represent any hyperbolic wave. Therefore, it is represented by a broken arrow in the

full solution given by

ul
S ˚

1
ÝÝÑ ui1

J2999K ui2
S3
ÝÝÑ ur.

Downloaded from https://www.cambridge.org/core. 23 Jul 2025 at 01:18:19, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Shadab and others: Unified kinematic wave theory for melt infiltration 32

The solution is explained in detail as follows and illustrated in Figures 8a-c. First, the backfilling shock

on the fast path (constant porosity line) connects to the first intermediate state, i1, which lies on the line

C “ 1. Therefore, the first intermediate state variables are

Ci1 “ 1 and Hi1 “ 1 ´ Cl ` Hl. (54)

This state is observed right next to the left state and can be considered as the rising perched water table

in the region ζ ă 0. The speed of this backfilling, upper shock in dimensionless form is again given by the

Rankine-Hugoniot jump condition as

ΛS ˚
1

“
dζU

dτ
“

fpulq ´ qspτq

Hl ´ Hi1

“
fpulq ´ qspτq

Cl ´ Ci1

ă 0, (55)

where ζU is the location of the upper shock. The shock moves upwards due to choking as the numerator is

positive, because flux fpulq is larger than the time-dependent dimensionless flux in the saturated region,

qspτq, which is also scaled by Kh. Note that the flux in the saturated region qspτq is not the saturated

hydraulic conductivity but instead, it is governed by the dynamics of the saturated region.

Next, the first intermediate state i1 is connected to the second intermediate state i2 through a stationary

jump J2 at the location of initial jump at ζ “ 0. Both intermediate states lie in the fully-saturated region

and therefore the jump J2 does not represent a hyperbolic wave. The flux inside the isothermal saturated

region qspτq is found to be uniform in this case (Shadab and Hesse, 2022). Therefore, the flux between

the two intermediate states is also same, equal to qspτq. The state variables C and H for the second

intermediate state, i2, are provided by the right state. The second intermediate state also lies at C “ 1 on

the fast path (39) (Hugoniot locus) emanating from right state, i.e., Cr ´ Hr “ Ci2 ´ Hi2 . Therefore, the

second intermediate state variables are simply,

Ci2 “ 1 and Hi2 “ 1 ´ Cr ` Hr. (56)

Similarly, the velocity of the downward-moving lower shock (wetting front) is
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ΛS3 “
dζL

dτ
“

qspτq ´ fpurq

Ci2 ´ Cr
“

qspτq ´ fpurq

1 ´ Cr
ą 0 (57)

where ζL is the dimensionless location of the lower shock. Similar to a two-layer soil discussed in Shadab

and Hesse (2022), the dimensionless flux in the saturated region is a depth-based harmonic mean of the

dimensionless saturated hydraulic conductivities at the two intermediate states given by

qspτq “
ζU pτq ´ ζLpτq

ζU pτq

Ki1
´

ζLpτq

Ki2

, (58)

where Ki1 and Ki2 are the dimensionless saturated hydraulic conductivities at the first and second inter-

mediate states given by

Ki1 “ φm
i1 “ p1 ´ Cl ` Hlq

m and Ki2 “ φm
i2 “ p1 ´ Cr ` Hrqm (59)

using Equations (54) and (56). Note that the porosities at the first and second intermediate states are

the porosities of the left and right state respectively. Solving the system of coupled ordinary differential

equations (57) & (55) along with the definition of flux in the saturated region (58) gives the location of the

shocks and the flux in the saturated region. Similar to the case of two-layered soils in Shadab and Hesse

(2022), to find the analytic value of qspτq, the ratio of shock speeds can be considered a constant as an

ansatz given by

ΛS ˚
1

ΛS3

“
ζU pτq

ζLpτq
“ R for 0 ă τ ď τp. (60)

where R is the constant ratio of shock speeds which is negative and τp is the dimensionless time of ponding

when the upward moving shock reaches to the surface. In the special case when this jump condition

happens to exist at the surface, R “ 0, τp “ 0 and qs “ Ki2 which is saturated hydraulic conductivity of

the second intermediate state. Otherwise, by substituting equations from the shock speed ratio definition

(60), shock speeds (55) and (57), and flux in the saturated region (58), R comes out to be the solution of

a quadratic equation
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Rpul, urq “
´b ´

?
b2 ´ 4ac

2a
where (61)

a “

ˆ

1 ´ Cl

1 ´ Cr

˙ „

1 ´

ˆ

1 ´ Cr ` Hr

1 ´ Cl ` Hl

˙m ˆ

Hr

1 ´ Cr ` Hr

˙nȷ

,

b “ ´

ˆ

1 ´ Cl

1 ´ Cr

˙ „

1 ´

ˆ

Hr

1 ´ Cr ` Hr

˙nȷ

`

ˆ

Hl

1 ´ Cl ` Hl

˙n

´ 1 and

c “ 1 ´

ˆ

1 ´ Cl ` Hl

1 ´ Cr ` Hr

˙m ˆ

Hl

1 ´ Cl ` Hl

˙n

.

Subsequently, substituting Equations (59) and (60) in (58) gives the time-invariant dimensionless flux in

the saturated region qs during 0 ă τ ď τp as

qs “
R ´ 1

R{p1 ´ Cl ` Hlq
m ´ 1{p1 ´ Cr ` Hrqm

. (62)

The time and space invariant flux qs leads to the result using Equations (55) and (57) that the shock speeds

are constant for 0 ă τ ď τp. Therefore, the shock locations before ponding vary linearly with time. Lastly,

the full solution for this case can be summarized as

u “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ul, ζ ă ΛS ˚
1

ui1 “

»

—

—

–

1

1 ´ Cl ` Hl

fi

ffi

ffi

fl

, ΛS ˚
1

ă ζ{τ ă 0

ui2 “

»

—

—

–

1

1 ´ Cr ` Hr

fi

ffi

ffi

fl

, 0 ă ζ{τ ă ΛS3

ur, ζ{τ ą ΛS3

. (63)

Here the shock speeds ΛS ˚
1

and ΛS3 depend on both left and right states due to formation of the saturated

region as the flux is governed by an elliptic PDE. In terms of firn processes, the lower (low porosity) layer

is unable to accommodate the flux of water from the upper layer and therefore leads to a rising perched

water table as well as a wetting front (Figures 8e,f ). In this example, the top layer has 50% porosity and

40% liquid water content (ϕw,l) and the bottom layer is 30% porous and has only 10% LWC. These values
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correspond to left and right states being ul “ p0.9, 0.4qT and ur “ p0.8, 0.1qT respectively (Figures 8a-c).

Consequently, the first and second intermediate states, ui1 “ p1, 0.5qT and ui2 “ p1, 0.3qT respectively,

lie in the expanding saturated region (Figures 8d-f ). The speeds of both fronts S ˚
1 and S3 are constant

before ponding occurs.

3.3.2 Region 1 only (Ice and gas region), Case VII

While the previous cases consisted of temperate firn, this case resembles a cold firn with a step reduction

in porosity at depth (e.g. porous firn on top of less porous firn or glacier ice), and no meltwater influx,

resulting in a dry, static system Figures 9d-f. In region 1 (H ď 0), since both fluxes are zero the system is

not strictly hyperbolic and leads to a single wave. As the characteristic speed, λp, is constant, this wave

is linearly degenerate and since λ1 “ λ2 “ 0, the characteristic is stationary. The resulting wave is a

stationary contact discontinuity C . There won’t be any transport between the two states since the fluxes

of both composition and enthalpy are zero on either side. In other words, ul will be connected to ur by a

stationary contact discontinuity C as

ul
C
ÝÑ ur.

The resulting solution thus takes the form

u “

$

’

’

&

’

’

%

ul, ζ ă 0

ur, ζ ą 0
. (64)

In this example, a temperate, 40% porous firn lies on top of a cold (T “ ´19.8˝C), 20% porous firn

corresponding to ul “ p0.6, 0.0qT and ur “ p0.8, ´0.1qT , as shown in Figures 9a-c (blue lines) and 9d-f.

However, in reality the firn may compact due to overburden (Cuffey and Paterson, 2010) which is not

considered in the present model. Note that the temperatures (not shown) in the two layers are the same

as the initial condition with sharp transition at ζ “ 0 due to the absence of heat conduction.
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Fig. 8. Formation of a fully-saturated region in temperate firn (Case VI): (a) Construction of solution in the

hodograph plane and their corresponding self-similar analytical solutions for (b) dimensionless composition and (c)

dimensionless enthalpy with dimensionless velocity η. The result shown with dark blue line consists of a backfilling

shock, S ˚
1 , a jump, J2, and another wetting shock, S3, along with two intermediate states ui1 “ pCi1 , Hi1 qT and

ui2 “ pCi2 , Hi2 qT . The left and right states are ul “ p0.9, 0.4qT and ur “ p0.8, 0.1qT respectively. The first and

second intermediate states, ui1 “ p1, 0.5qT and ui2 “ p1, 0.3qT respectively. The evolution of the volume fractions of

the three phases in the resulting system at dimensionless times (d) τ “ 0, (e) 0.5, (f) 1.0.
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Fig. 9. Solutions when the left state lies in Region 1 (ice and gas): either only a contact discontinuity appears

(Case VII) or an intermediate state, ui, along with a rarefaction wave R2 also forms in a C1R2 fashion (Case

VIII). (a) Construction of solution in the hodograph plane and their corresponding self-similar analytical solutions

for (b) dimensionless composition and (c) dimensionless enthalpy with dimensionless velocity η. Blue and red lines

respectively show the solutions when the right states are in Regions 1 and 2 respectively. The evolution of the volume

fractions of the three phases in the resulting system at dimensionless times τ “ 0, 0.5, 1.0 for the two configurations:

(d-f) Case VII - C and (g-i) Case VIII - C1R2.
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3.4 Solutions transitioning between regions

3.4.1 From Region 1 (ice and gas) to Region 2 (three-phase region), Case VIII

This case resembles a dry, porous cold firn layer on top of wet temperate firn (Figure 9g-f ), without

additional meltwater influx. In this case, the left state lies in region 1 corresponding to the cold firn and

the right state resides in the three-phase region (region 2). The result is a contact discontinuity C1 onto

the lower boundary of the three-phase region (H “ 0) where the intermediate state lies (see Figure 9a for

example), i.e.,

Hi “ 0. (65)

Moreover, the intermediate state, Ci, lies on the fast path (constant porosity line) in region 2 satisfying

Equation (39) which gives

Ci “ Cr ´ Hr. (66)

Simultaneously, the intermediate state is connected to the right state on the fast path, resulting in a

rarefaction wave R2. It is important to note that the second wave, W2, is supposed to be faster than the

first and that is why the slow path is avoided in the three-phase region (region 2). The final solution to

this case is the same as given in Equation (51).

As an example, the left state corresponds to a 30% porous cold layer at T“ ´22.63˝C lying on top of

the layer corresponding to wet, temperate firn similar to liquid storage with 80% porosity and 60% LWC

(ϕw,r), as shown in Figure 9g. This configuration corresponds to ul “ p0.7, ´0.1qT and ur “ p0.8, 0.6qT

with intermediate state ui “ p0.2, 0.0qT (Figure 9a, red line). As a result, the porosity jump remains

stationary but the liquid storage drains downwards due to gravity forming a self-similar rarefaction wave

as shown in Figures 9b-c (red lines) and 9g-i. In a nutshell, this case describes the evolution of a more

saturated firn layer below a previously formed less permeable, cold frozen fringe.
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3.4.2 From Region 2 (three-phase region) to Region 1 (ice and gas)

This corresponds to temperate and wet firn overlying initially cold firn (see Figures 10-12). In this case,

the left state corresponding to the top layer lies in the three-phase region (region 2) and the right state

corresponding to the bottom layer lies in region 1. Note that the temperature remains subzero only in

the cold region (region 1, H ă 0) which lies only in the right state with a sharp transition from the left

or intermediate state as heat conduction is not considered in this model. There can be four scenarios

corresponding to this initial condition:

(i.) Shock (Case IX): This case corresponds to a sudden increase in meltwater flux into temperate,

wet firn overlying cold firn, resulting in meltwater percolation into the deeper layers and formation of a

frozen fringe (Figures 10d-f ). When the right state in region 1 lies on the fast path in region 2 (three-phase

region) extended to region 1 (ice and gas region) referred to as extended fast path, it results in only a

single moving shock S (see Figure 10a, blue line). Note that the extended fast paths are not the constant

porosity contours in Region 1 (Figures 1c,g). Mathematically, the left and right states are connected by

the relation

Cr “ Hr ` Cl ´ Hl. (67)

The shock speed ΛS can then be evaluated using the Rankine-Hugoniot condition (46). The final solution

of this case is provided in Equation (47). Physically, the water seeps from the top layer to the bottom layer

due to gravity and a part of it precipitates due to heat loss to the surrounding cold firn. Since the flux in the

right state is zero, the evaluation depends on the difference of either dimensionless composition or enthalpy.

Figures 10a-c (blue line) shows an example of the solution where temperate firn with 45% porosity (φl) and

25% LWC (ϕw,l) initially lies on a cold layer of porosity 50% at T“ ´15.84˝C (Figure 10d). These initial

conditions correspond to a left state, ul “ p0.8, 0.25qT and a right state ur “ p0.5, ´0.05qT (Figures 10a-c,

blue line). A refreezing shock S that results moves downwards while warming up the surrounding snow

by partially refreezing (Figures 10d-f ). This reduces the porosity behind the wetting front from 50% to

45%, equal to the same value as the left state thereby extending the previously formed frozen fringe in the

top layer into the bottom layer.
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Fig. 10. Solutions when the left state lies in region 2 (three-phase) and the right state lies in region 1 without

formation of saturated regions: either only a refreezing front S (Case IX) appears or a contact discontinuity, C1,

an intermediate state, ui, along with a refreezing front S2 forms in a C1S2 (Case X) fashion. (a) Construction

of solution in the hodograph plane and their corresponding self-similar analytical solutions for (b) dimensionless

composition and (c) dimensionless enthalpy with dimensionless velocity η. Red and blue lines respectively show the

solutions when the right states are in region 2 and region 1 respectively. The evolution of the volume fractions of the

three phases in the resulting system at dimensionless times τ “ 0, 0.5, 1.0 for the two configurations: (d-f) Case VII

- C and (g-i) Case VIII - C1R2.
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(ii.) 1-Contact discontinuity and 2-Shock (Case X): This is similar to Case IX (wet firn

overlying cold firn), but with a decreased porosity in the underlying cold firn leading to formation of a

frozen fringe (Figures 10g-i). Here, the left state cannot be directly connected to the right state along the

extended fast path as discussed in Case IX. So in this case, the left state ul in region 2 is more porous

and connected to an intermediate state, ui, along the slow path where the dimensionless composition of

the intermediate state, Ci, is less than unity, to keep the medium unsaturated (see Figure 10a, red line).

Similar to the only shock S case (Case IX), the intermediate state lies on the extended fast path from

region 2 to region 1. Therefore the solution is a combination of a stationary contact discontinuity C1 and

a moving shock S2. The first characteristic wave, contact discontinuity C1, satisfies Equation (38) for left

state ul and intermediate state ui. Since the second characteristic lies on the Hugoniot locus, a shockwave

S2 results, that satisfies the Hugoniot-jump condition (33) for the intermediate state ui and right state

ur. Combining all these equations gives a simple relation for dimensionless enthalpy and composition at

the intermediate state as

Hi “ Hl

ˆ

1 ´ Cl ` Hl

1 ´ Cr ` Hr

˙
m´n

n

and Ci “ Hi ` Cr ´ Hr. (68)

The dimensionless velocity of the shock wave S2 (refreezing front) is

ΛS2 “
fpuiq ´ fpurq

Hi ´ Hr
“

Hn
i p1 ´ Ci ` Hiq

m´n

Hi ´ Hr
(since fpurq “ 0). (69)

The full solution is given in Equation (53) with shock speed (69). Since Hr ă 0, Hi ą 0 and fpurq “ 0,

the speed of the refreezing front S2 is slower than the temperate firn case (Case V) due to refreezing.

Figures 10a-c (red line) shows an example of such a solution for light rainfall on a multilayered firn with

coarse to fine transition. The left state corresponds to the wetter, temperate firn on top with a porosity

of 70% and a liquid water content ϕw,l “ 0.1. The right state corresponds to a cold and dry firn layer

with 35% porosity and a temperature of T“ ´19.49˝C. These values for left and right states correspond to

states being ul “ p0.4, 0.1qT and ur “ p0.65, ´0.08qT , respectively. Here, a stationary contact discontinuity

C1 stays at the surface leading to a growing intermediate state ui “ p0.893, 0.163q formed due to partial

refreezing of the rainwater which warms the surrounding firn (Figures 10g-i). The intermediate state with
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27% porosity and 16.3% LWC expands with time as the refreezing front S2 infiltrates further into the

right state. Note that the porosity in the intermediate state is smaller than the right state which decreases

further due to meltwater refreezing leading to the formation of a fresh frozen fringe. This phenomenon has

been observed in the model by Meyer and Hewitt (2017) who used the dimensional form of Equation (69)

with distinct densities of ice and water phases to explain the field data from Humphrey and others (2012).

(iii.) 1-Backfilling shock, 2-Jump and 3-Shock (formation of a saturated region, Case XI):

This is similar to Case X, where wet and temperate firn layer lies on top of cold and less porous firn, and

the system receives sudden increase in meltwater flux (Figures 11d-f ). However, the temperature of the

underlying cold firn is reduced, and the liquid water content in the above temperate layer increased which

leads to the formation of a rising perched water table. The slow path originating from the left state and the

extended fast path emanating from the right state do not intersect where C ă 1, making it different from

Case X. If the intermediate state lies on the saturated region, then the hyperbolic nature of the solution

breaks down, similar to Case VI for temperate firn (see Table 2). So the analytic solution (63) is the same

as provided for the temperate firn (Case VI) consisting of a backfilling shock S ˚
1 moving upwards with

speed (55), a stationary jump J2 at the location of initial jump ζ “ 0 and a “refreezing” front S3 moving

downwards with speed provided in Equation (57). The flux in the saturated region qs is again provided

by Equation (58). Note that the flux at the right state is fpurq “ 0 since it lies in region 1. Invoking the

ansatz for a constant shock speed ratio, similar to Case VI, provides an analytic relation for a constant

flux in the saturated region, qs, same as Equation (62) with both shocks moving in opposite directions at

constant speeds. However since the flux at the right state is zero, the relation for the ratio of shock speeds,

R, earlier provided by Equation (61), now simplifies to

Rpul, urq “
´b ´

?
b2 ´ 4ac

2a
where (70)

a “

ˆ

1 ´ Cl

1 ´ Cr

˙

,

b “ ´

ˆ

1 ´ Cl

1 ´ Cr

˙

`

ˆ

Hl

1 ´ Cl ` Hl

˙n

´ 1 and

c “ 1 ´

ˆ

1 ´ Cl ` Hl

1 ´ Cr ` Hr

˙m ˆ

Hl

1 ´ Cl ` Hl

˙n

.
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Fig. 11. Formation of a fully-saturated region when right state lies in region 1: (a) Construction of solution in the

hodograph plane and their corresponding self-similar analytical solutions for (b) dimensionless composition and (c)

dimensionless enthalpy with dimensionless velocity η. The result shown with dark blue line consists of a backfilling

shock, S ˚
1 , a jump, J2, and another refreezing shock, S3, along with two intermediate states ui1 “ pCi1 , Hi1 qT and

ui2 “ pCi2 , Hi2 qT . The evolution of the volume fractions of the three phases in the resulting system at dimensionless

times (d) τ “ 0, (e) 0.1, (f) 0.2.
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Figure 11 shows an example of this case where the left state corresponds to wet and temperate layer with

80% porosity (φl) and 65% LWC (ϕw,l) lying on top of very cold and less porous (T“ ´30˝C, φr “ 50%)

firn. This corresponds to the left and right states being ul “ p0.85, 0.65qT and ur “ p0.5, ´0.095qT . The

first and second intermediate states are ui1 “ p1, 0.8qT and ui2 “ p1, 0.405qT respectively. The upper

shock, also called a rising perched water table, is almost four times faster than the lower, refreezing front

(see Figures 11b-f ). Below the initial jump at ζ “ 0 the porosity is further reduced by refreezing, leading

to formation of a frozen fringe (Figures 11e-f ). The second intermediate state below jump J2 with a

newly formed frozen fringe is unable to accommodate the whole volumetric flux of water, leading to the

formation of a rising perched water table (see Figures 11e-f ). Once the rising perched water table reaches

the surface, it will lead to ponding and can eventually form runoff.

(iv.) 1-Backfilling shock, 2-Jump, 3-Contact discontinuity (formation of an impermeable

ice layer, Case XII): This final case captures the formation of an impermeable ice layer through

advection of meltwater and associated latent heat. An ice layer forms through the construction in Case XI,

if the extended fast path (H “ C ` C) emanating from the right state reach C ě 1 at the solidus (H “ 0)

or the porosity of the second intermediate state reaches 0. This case is entirely governed by the right state

and an ice layer will form if and only if the right state satisfies

1 ´ Cr ` Hr ď 0. (71)

The exact location of the right state does not matter if it lies in the region of ice layer formation (grey region

in Figure 12a). In other words, an impermeable ice layer via heat advection will form if and only if the cold

content of the firn exceeds the latent enthalpy of incoming meltwater. The mathematical condition (71) in

dimensional form has been given in Humphrey and others (2021b) for distinct densities of ice and water. In

this limit, the solution for Case XI breaks down due to the formation of an impermeable ice layer. Figure 12

shows the region of ice layer formation which requires either very low firn porosity or temperatures in the

right state. The final solution for this case is a backfilling shock, S ˚
1 to the intermediate saturated region

i1. The first saturated region is connected to the second intermediate state i2 through the jump J2. The

second intermediate state i2 is the infinitesimally thin ice layer (see Figures 12e-f ) which blocks the further

meltwater. The solution in this case can be written as
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ul
S ˚

1
ÝÝÑ ui1

J2999K ui2
C3
ÝÑ ur

where the state solution is quantified as

u “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ul, ζ ă ΛS ˚
1

ui1 “

»

—

—

–

1

1 ´ Cl ` Hl

fi

ffi

ffi

fl

, ΛS ˚
1

ă ζ{τ ă 0

ui2 “

»

—

—

–

1

0

fi

ffi

ffi

fl

, 0 ă ζ ă dζ

ur, ζ ą dζ

, (72)

where dζ is the infinitesimally small thickness of the ice layer.

In this case, only a single shock moves upwards similar to the filling of a bucket. The flux in the

saturated region is simply zero from the mass balance at the ice layer, i.e., qs “ fpui1q “ fpui2q “ 0. The

speed of the rising perched water table (first shock S ˚
1 ) is then

ΛS ˚
1

pulq “
dζU

dτ
“

fpulq

Cl ´ 1
“

Hnp1 ´ Cl ` Hlq
pm´nq

Cl ´ 1
(73)

which depends only on the left-state variables.

It can be deduced that either a cold firn (lower H) or a nearly non-porous firn with C close to unity will

induce the formation of an impermeable ice layer via refreezing caused by heat advection. For example,

Figure 12 shows such a solution when a wet and temperate layer of 70% porosity and 65% LWC lies on

top of a cold layer with 5% porosity at T“ ´30˝C. These conditions correspond to ul “ p0.95, 0.65qT and

ur “ p0.95, ´0.180qT (Figures 12a-c). Here the intermediate states lie at ui1 “ p1, 0.7qT and ui2 “ p1, 0qT

respectively. An impermeable ice layer forms as a result (see Figures 12e-f ) that blocks the flow of meltwater

downwards. Since there is no meltwater percolating in the lower layer, the backfilling occurs very rapidly.
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Impermeable ice layer,      thick

Fig. 12. Impermeable ice layer formation: (a) Construction of solution in the hodograph plane and their cor-

responding self-similar analytical solutions for (b) dimensionless composition and (c) dimensionless enthalpy with

dimensionless velocity η. The result shown with dark blue line consists of a backfilling shock, S ˚
1 , a jump, J2 and

a contact discontinuity, C3 along with two intermediate states ui1 “ pCi1 , Hi1 qT and ui2 “ pCi2 , Hi2 qT . The second

intermediate state ui2 corresponds to the impermeable ice layer. The grey region corresponds to 1´C `H ď 0 where

the right state resides to cause impermeable ice layer formation. The evolution of the volume fractions of the three

phases in the resulting system at dimensionless times (d) τ “ 0, (e) 0.02, (f) 0.04.

Downloaded from https://www.cambridge.org/core. 23 Jul 2025 at 01:18:19, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Shadab and others: Unified kinematic wave theory for melt infiltration 47

T
ab

le
2.

Su
m

m
ar

y
of

al
la

na
ly

tic
so

lu
tio

ns
pr

es
en

te
d

in
th

is
pa

pe
r

al
on

g
w

ith
re

la
te

d
w

or
ks

th
at

ei
th

er
st

ud
ie

d
or

ob
se

rv
ed

th
e

co
rr

es
po

nd
in

g
sc

en
ar

io
.

C
as

e
R

eg
io

n
St

at
e

pr
op

er
tie

s
So

lu
tio

n
Ph

ys
ic

al
re

le
va

nc
e

R
el

at
ed

w
or

k(
s)

u l
u r

Su
m

m
ar

y
Eq

ua
tio

n(
s)

C
on

st
ru

ct
-

io
n

fig
ur

e

I
2

2
f

pu
lq

“
f

pu
r
qô

u l
,u

r
co

nn
ec

te
d

by
slo

w
pa

th
u l

C ÝÑ
u r

38
,4

0,
41

6
(g

re
en

lin
e)

St
ea

dy
m

el
tw

at
er

flu
x

in
sid

e
a

te
m

pe
ra

te
fir

n

w
ith

a
ju

m
p

in
po

ro
sit

y.

´

II
2

2
f

pu
lq

ă
f

pu
r
q;

u l
,u

r
co

nn
ec

te
d

by
fa

st
pa

th
;

C l
ă

C r

u l
R ÝÑ

u r
39

,4
5

6
(b

lu
e

lin
e)

A
su

dd
en

de
cr

ea
se

in
m

el
tw

at
er

flu
x

in
sid

e
a

te
m

pe
ra

te
fir

n
w

ith
co

ns
ta

nt
po

ro
sit

y.

C
ol

be
ck

(1
97

6)
;

Si
ng

h

(1
99

7)
;

C
la

rk
an

d
ot

he
rs

(2
01

7)

II
I

2
2

f
pu

lq
ą

f
pu

r
q;

u l
,u

r
co

nn
ec

te
d

by
fa

st
pa

th
;

C l
ą

C r

u l
S Ý
Ñ

u r
39

,4
6,

47
6

(r
ed

lin
e)

A
su

dd
en

in
cr

ea
se

in
m

el
tw

at
er

flu
x

in
sid

e
a

te
m

pe
ra

te
fir

n
w

ith
co

ns
ta

nt
po

ro
sit

y.

C
ol

be
ck

(1
97

1,
19

72
);

Si
ng

h
(1

99
7)

;S
am

im
ia

nd

ot
he

rs
(2

02
1)

IV
2

2
f

pu
lq

ă
f

pu
r
q;

u l
,u

r
ca

nn
ot

be
co

nn
ec

te
d

by

ei
th

er
pa

th
s;

C i
ă

1

u l
C

1
ÝÝ

Ñ
u i

R
2

ÝÝ
Ñ

u r
49

,5
1

7
(b

lu
e

lin
e)

A
su

dd
en

de
cr

ea
se

in
m

el
tw

at
er

flu
x

in
sid

e
a

te
m

pe
ra

te
fir

n
w

ith
a

st
ep

ch
an

ge
in

po
ro

sit
y.

´

V
2

2
f

pu
lq

ą
f

pu
r
q;

u l
,u

r
ca

nn
ot

be
co

nn
ec

te
d

by

ei
th

er
pa

th
s;

C i
ă

1

u l
C

1
ÝÝ

Ñ
u i

S
2

ÝÝ
Ñ

u r
52

,5
3,

46
7

(r
ed

lin
e)

A
su

dd
en

in
cr

ea
se

in
m

el
tw

at
er

flu
x

in
sid

e
a

te
m

pe
ra

te
fir

n
w

ith
a

st
ep

ch
an

ge
in

po
ro

sit
y.

´

V
I

2
2

f
pu

lq
ą

f
pu

r
q;

u l
,

u r
ca

nn
ot

be
co

nn
ec

te
d

by
th

e
co

m
bi

na
tio

n
of

tw
o

pa
th

s
in

R
eg

io
n

2;

slo
w

pa
th

em
an

at
in

g
fr

om
u l

do
es

no
t

in
te

r-

se
ct

w
ith

fa
st

pa
th

em
an

at
in

g
fr

om
u r

w
he

re

C
ă

1

u l
S

˚ 1
Ý
Ý
Ñ

u i
1

J
2

99
9K

u i
2

S
3

ÝÝ
Ñ

u r
55

,
57

,

58
,

59
,

61
,6

2,
63

8
A

su
dd

en
in

cr
ea

se
in

m
el

tw
at

er
flu

x
in

sid
e

a

te
m

pe
ra

te
fir

n
w

ith
a

st
ep

de
cl

in
e

in
po

ro
s-

ity
w

ith
de

pt
h

le
ad

in
g

to
fo

rm
at

io
n

of
a

ris
in

g

pe
rc

he
d

w
at

er
ta

bl
e.

Sh
ad

ab
an

d
H

es
se

(2
02

2)

V
II

1
1

f
pu

lq
“

f
pu

r
q

“
0

u l
C ÝÑ

u r
64

9
(b

lu
e

lin
e)

A
co

ld
fir

n
w

ith
a

st
ep

ch
an

ge
in

po
ro

sit
y

w
ith

no
m

el
tw

at
er

flu
x.

´

V
II

I
1

2
´

u l
C

1
ÝÝ

Ñ
u i

R
2

ÝÝ
Ñ

u r
51

,6
5,

66
9

(r
ed

lin
e)

A
co

ld
fir

n
w

ith
no

m
el

tw
at

er
flu

x
ov

er
ly

in
g

a

w
et

,t
em

pe
ra

te
fir

n.

´

IX
2

1
u l

,u
r

co
nn

ec
te

d
by

ex
te

nd
ed

fa
st

pa
th

u l
S Ý
Ñ

u r
46

,4
7,

67
10

(b
lu

e

lin
e)

A
su

dd
en

in
cr

ea
se

in
m

el
tw

at
er

flu
x

in
to

a
co

ld

fir
n

w
ith

co
ns

ta
nt

po
ro

sit
y

le
ad

in
g

to
th

e
fo

r-

m
at

io
n

of
fr

oz
en

fr
in

ge
.

C
ol

be
ck

(1
97

6)
;C

la
rk

an
d

ot
he

rs
(2

01
7)

;
M

ey
er

an
d

H
ew

itt
(2

01
7)

X
2

1
u l

,u
r

ca
nn

ot
be

co
nn

ec
te

d
by

ex
te

nd
ed

fa
st

pa
th

,C
i

ă
1

u l
C

1
ÝÝ

Ñ
u i

S
2

ÝÝ
Ñ

u r
53

,6
8,

69
10

(r
ed

lin
e)

A
su

dd
en

in
cr

ea
se

in
m

el
tw

at
er

flu
x

in
to

a
co

ld

fir
n

w
ith

a
st

ep
ch

an
ge

po
ro

sit
y

le
ad

in
g

to
th

e

fo
rm

at
io

n
of

fr
oz

en
fr

in
ge

.

C
ol

be
ck

(1
97

6)
;C

la
rk

an
d

ot
he

rs
(2

01
7)

;
M

ey
er

an
d

H
ew

itt
(2

01
7)

X
I

2
1

u l
,u

r
ca

nn
ot

be
co

nn
ec

te
d

by
ex

te
nd

ed
fa

st

pa
th

;
slo

w
pa

th
fr

om
u l

do
es

no
t

in
te

rs
ec

t

w
ith

ex
te

nd
ed

fa
st

pa
th

fr
om

u r
w

he
re

C
ă

1

u l
S

˚ 1
Ý
Ý
Ñ

u i
1

J
2

99
9K

u i
2

S
3

ÝÝ
Ñ

u r
55

,
57

,

58
,

59
,

60
,

70
,

62
,6

3

11
A

su
dd

en
in

cr
ea

se
in

m
el

tw
at

er
flu

x
in

to
a

co
ld

fir
n

w
ith

a
st

ep
de

cr
ea

se
po

ro
sit

y
le

ad
in

g

to
th

e
fo

rm
at

io
n

of
fr

oz
en

fr
in

ge
an

d
a

ris
in

g

pe
rc

he
d

w
at

er
ta

bl
e.

H
um

ph
re

y
an

d
ot

he
rs

(2
02

1b
)

X
II

2
1

u r
lie

s
in

im
pe

rm
ea

bl
e

ic
e

la
ye

r
re

gi
on

sa
tis

-

fy
in

g
1

´
C r

´
H

r
ď

0

u l
S

˚ 1
Ý
Ý
Ñ

u i
1

J
2

99
9K

u i
2

C
3

ÝÝ
Ñ

u r
72

,7
3

12
A

su
dd

en
in

cr
ea

se
in

m
el

tw
at

er
flu

x
in

to
a

co
ld

fir
n

w
ith

a
st

ep
de

cr
ea

se
po

ro
sit

y
le

ad
in

g
to

th
e

fo
rm

at
io

n
an

im
pe

rm
ea

bl
e

ic
e

la
ye

r
an

d
a

ris
in

g
pe

rc
he

d
w

at
er

ta
bl

e.

H
um

ph
re

y
an

d
ot

he
rs

(2
02

1b
)

Downloaded from https://www.cambridge.org/core. 23 Jul 2025 at 01:18:19, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Shadab and others: Unified kinematic wave theory for melt infiltration 48

4 COMPARISON AGAINST NUMERICAL SOLUTIONS AND LIMITATIONS OF

THE THEORY

All of the analytic solutions described in Sections 3.3 and 3.4 show excellent comparison against the

corresponding numerical solutions of Equations (8) and (9) in the absence of heat conduction (not shown

for brevity). In this section we demonstrate the application of this theory to a more realistic multilayered

firn leading to the formation of a perched firn aquifer. The analytic solutions are compared against the

corresponding numerical solution without heat conduction. Finally, we summarize the potential limitations

of the theory for consideration and future development.

4.1 Meltwater infiltration into a multilayered firn - Formation of a perched water

table

This final test shows the infiltration into multilayered firn after a melt event combining two cases proposed

in Section 3 that are summarized in Table 2 (see Figure 13a). This problem summates the commonly

studied wetting front propagation in a temperate region (Case III) with the wetting front in a cold region

and the formation of a perched water table (Case XI) that has not been studied in the firn literature. This

problem demonstrates a delay in meltwater ponding at the surface due to a decay in both firn porosity and

temperature with depth. The firn is 70% porous, dry and at 0˝C, above a dimensionless depth of ζ “ 1

(Figures 13a). At time τ “ 0, the meltwater is generated at the surface (ζ “ 0), which keeps the liquid

water content (denoted by LWC or ϕw) to 40% making the firn very wet at the surface, ζ “ 0. The analytic

solution of this problem can be constructed in the C ´ H hodograph plane in two parts (Figure 13b).

First, a wetting front S initially propagates downwards with a constant dimensionless speed ΛS “ 0.28,

as given in Case III (Figures 13c-e, red dashed line). The dimensionless time when the initial front reaches

the depth of transition ζt “ 1 to form a saturated region is τs “
ζt

ΛS
“ 1{0.28 “ 3.57, as shown in Case XI.

Afterwards the saturated region forms due to large meltwater flux compared to the hydraulic conductivity

of the second intermediate region formed due to refreezing below the jump ζ ą 1, making the flow pressure

driven instead and enforcing qspτq ď Ki2 . This saturated region expands in both directions as a perched

water table (upper shock shown by green dashed line in Figure 13) rising to the surface and the wetting

front S3 that percolates in the cold region (lower shock shown with blue dashed line) while refreezing a part

of meltwater to warm the surrounding firn. Thus, it shows a reduction in porosity from 30% to 21.2% for

ζ ą 1 behind the wetting front S3 at τ ą τs (Figure 13c). The perched water table S ˚
1 rises upwards with
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constant dimensionless velocity ΛS ˚
1

“ ´0.268 until ponding occurs. Meanwhile, the wetting front keeps

percolating in the cold firn with reduced velocity ΛS3 “ 0.105. Lastly, the ponding starts at a time when

the rising perched water table reaches the surface so the dimensionless ponding time can be calculated

theoretically as τp “ ζt{ΛS ` p´ζtq{ΛS ˚
1

“ 1{0.28 ` p´1q{p´0.268q “ 7.30. All of these dimensionless

shock speeds and times are computed analytically and the resulting locations are graphed with dashed

lines in Figures 13c-e.

These theoretical results show an excellent comparison with the numerical solutions shown in contour

plots. The numerical solutions are obtained by solving the governing model (26) performed in the absence

of capillary effects in between water and gas phases as well as heat conduction along with the treatment

in the saturated region given by Shadab and Hesse (2024) and implementation of the enthalpy method in

Shadab and others (2024a). Further, the densities of the water and the ice phases are assumed to be the

same. The computational domain ζ P r0, 2s is divided uniformly into 400 cells. The boundary condition at

the top surface (ζ “ 0) is prescribed as the “Top condition" in Figure 13a whereas the bottom boundary

condition is not required. This problem constitutes a very specific benchmark test for firn hydrology

simulators that are able to simulate variably saturated flows. It shows how vertical heterogeneity in firn

may lead to formation of perched aquifers that can cause ponding at a later stage. It also illustrates that

an impermeable layer is not required to cause meltwater perching and subsequently, ponding.

4.2 Limitations of the present theory and further work

The unified kinematic wave theory makes necessary hydrologic and thermodynamic simplifications to make

the system hyperbolic and amenable to solution using the method of characteristics. Some of these sim-

plifications can be relaxed, but doing so will make the solutions more involved. On the hydrologic side,

the theory neglects capillary forces in unsaturated firn, which may introduce significant errors at small

spatial scales and grain sizes. Thus, it assumes that meltwater advection occurs faster as a wavefront

than through diffusion via capillary suction. Capillary forces account for less than 10% of the total force,

including gravity, when the meltwater flux is 10´8 m/s, although the percentage rapidly increases for

smaller fluxes (Colbeck, 1974b). The theory assumes that the density of water and ice are the same, which

underestimates the porosity reduction due to refreezing when a wetting front percolates into a cold, dry

firn. The kinematic model could easily be extended to account for different densities. The present model

does not assume compaction of ice due to factors such as overburden, temperature, time, and initial snow
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properties (e.g., crystal shape, packing geometry), which is present in both wet and dry firn (Bader, 1954;

Mellor, 1977; Herron and Langway, 1980; Amory and others, 2024). Lastly, the present theory assumes a

one-dimensional flow in the direction of gravity with piecewise homogeneous firn, and does not consider

preferential flow which might enhance the speed and depth of meltwater percolation at higher melt fluxes

Wever and others (2016); Vandecrux and others (2020); Jones and others (2024).

On the thermodynamic side, the present theory assumes local thermodynamic equilibrium, which may

not be a suitable assumption for rapid infiltration. Further, the theory neglects heat conduction, which

may be dominant at smaller spatial scales and meltwater fluxes. Heat conduction leads to the formation

of a conductive boundary layer ahead of the wetting front (Shadab and others, 2024a). The width of the

thermal boundary layer is controlled by the Peclet number for enthalpy transport, as defined in Section

2.4. A high Peclet number typically leads to a thinner thermal boundary layer, indicating the dominance

of heat advection over heat conduction.

However, the kinematic theory could be extended to incorporate several additional physical processes.

It could be extended to account for hysteresis in relative permeabilities, which allows melt to enter dry

snow without having to overcome a saturation threshold but to leave behind residual melt during drying.

The method of characteristics can also be applied to study the kinematics of non-equilibrium processes,

though the solutions are no longer self-similar. This could be used to analyze percolation of melt that is not

in thermal equilibrium with the ice or the coarsening of ice grains due to interaction with melt. The theory

could be extended to add tracer transport that could be used to study changes in isotopic composition of

the ice or dissolved gases in the melt and their effect on the climatic record in ice cores. Finally, the theory

could be extended to incorporate salt and used to study the effect of colligative melting point depression

in firn processes or sea water intrusion into firn. As such, the kinematic theory is a useful tool to probe the

physics of advective processes in firn and to provide benchmark analytic solutions to a range of coupled

non-linear processes.

5 CONCLUSIONS

This work introduces a unified kinematic wave theory for meltwater infiltration into firn that helps construct

analytic solutions in the hodograph plane. The theory neglects heat conduction and capillary forces while

assuming a constant density for water and ice phases. We provide a suite of 12 cases of melt infiltration

into firn, inspired by nature, and construct their analytic solutions while connecting most of the cases given
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Fig. 13. Infiltration into a multilayered firn with porosity and temperature decay with depth: (a) Schematic

diagram showing all of the layers (b) Construction of solution in the hodograph plane. The contours showing

evolution of the firn (c) porosity φ, (d) liquid water content LWC or volume fraction of water ϕw and temperature

T evaluated by the numerical simulator. Here all dashed lines show analytic solutions computed from the proposed

theory. The thin, grey dashed lines show theoretically calculated dimensionless times of saturation τs and ponding

τp. The theoretical evolution of the initial wetting front S (red dashed line) is computed from Case III whereas the

dynamics of saturated region after wetting front S reaches ζ “ 1 shown by blue and green dashed lines is computed

by Case XI. Here δ and tc “ δ{Kh are characteristic times with former being calculated from their definition 15.

For example, the characteristic depth is δ “ 5 m and for Kh “ 5 ¨ 10´4 m/s (see Table 1), the characteristic time

comes out to be tc “ 2.53 hours. The dimensionless wetting front speeds can be redimensionalized by multiplying

with saturated (and no-matrix) hydraulic conductivity Kh.
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in the literature. The previous works were predominantly limited to unsaturated wetting fronts in cold and

temperate firn. We consider cases that have not been studied previously such as the formation of a perched

water table (Case VI and Case XI) and the formation of an impermeable ice layer (Case XII). The simple

cases discussed here can be combined to study more realistic problems, as was demonstrated for the case of

infiltration into multilayered firn. The combined solutions can help construct time-varying solutions with

more complexity such as variable surface conditions. There are several consequences of this work. First,

one can interpret the physics of the meltwater infiltration into firn without running expensive numerical

simulations. This can be used to better constrain the process of firn densification, and the partitioning of

meltwater runoff versus storage, which is crucial when deriving surface mass balance. Second, these analytic

solutions can help in developing better, cost-effective physics-based firn hydrological models which can then

be integrated with ice-sheet and Earth system models. Further, these problems can serve as a benchmark

for the next generation of wet firn hydrological models which currently show significant deviation due to a

lack of benchmark problems. This comprehensive framework can significantly enhance our understanding

of wet firn hydrology, a component that has been poorly understood, ultimately aiding in constraining its

contribution to surface mass balance loss from glaciers and, consequently, sea-level rise.
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A FLUX GRADIENT AND LEMMA RELATED TO EIGEN-DECOMPOSITION

The partial derivatives of the flux function given in equation (24) give:

f,H “
BfC
BH

“

$

’

’

&

’

’

%

0, H ď 0

Hn´1p1 ´ C ` Hqm´n´1pnp1 ´ Cq ` mHq, 0 ă H ă C
(74)

f,C “
BfH
BC

“

$

’

’

&

’

’

%

0, H ď 0

´pm ´ nqHnp1 ´ C ` Hqm´n´1, 0 ă H ă C
(75)

Lemma A.1. Prove that λ2 is non-negative and increases monotonically in the direction of integral curves

corresponding to the second eigenvector r2 (fast paths) in the three phase region, 0 ă H ă C.

Proof. Since H ą 0, ´C ă H ´ C, and 0 ď C ă 1,

λ2 “ nHn´1p1 ´ C ` Hqm´n ą 0 (76)

Along the fast path, C “ H ` C,

λ2 “ nHn´1p1 ´ C ` Hqm´n (77)

“ nHn´1p1 ´ pH ` Cq ` Hqm´n (78)

“ nHn´1p1 ` Cqm´n (79)
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Now, taking the derivative with respect to H, we get

dλ2
dH

“ npn ´ 1qHn´2p1 ` Cqm´n (80)

As H ą 0 and C “ C ´ H ă 1 in three phase region,

dλ2
dH

ą 0, for n ą 1 (81)

Therefore, λ2 is non-negative and increases monotonically in the direction of r2 when n ą 1.

Lemma A.2. Prove that fast paths are parallel to constant porosity φ contours in three phase region,

0 ă H ď C.

Proof. In the three-phase region, the porosity φ “ ϕw ` ϕg “ H ` p1 ´ Cq. For a constant porosity dφ “ 0,

therefore

dφ “ dpH ` p1 ´ Cqq (82)

0 “ dH ´ dC (83)

1 “
dH
dC

(84)

C “ H ` C (85)

where C again is an integration constant. Therefore, the constant porosity φ contours are the integral

curves corresponding to second eigenvector r2 (fast paths) in three-phase region.
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