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Abstract

B-mode ultrasound (US) is often used to noninvasively measure skeletal muscle architecture, which contains human
intent information. Extracted features from B-mode images can help improve closed-loop human–robotic interaction
control when using rehabilitation/assistive devices. The traditional manual approach to inferring themuscle structural
features from US images is laborious, time-consuming, and subjective among different investigators. This paper
proposes a clustering-based detection method that can mimic a well-trained human expert in identifying fascicle and
aponeurosis and, therefore, compute the pennation angle. The clustering-based architecture assumes that muscle
fibers have tubular characteristics. It is robust for low-frequency image streams.We compared the proposed algorithm
to two mature benchmark techniques: UltraTrack and ImageJ. The performance of the proposed approach showed
higher accuracy in our dataset (frame frequency is 20 Hz), that is, similar to the human expert. The proposed method
shows promising potential in automatic muscle fascicle orientation detection to facilitate implementations in
biomechanics modeling, rehabilitation robot control design, and neuromuscular disease diagnosis with low-
frequency data stream.

1. Introduction

The human musculoskeletal system plays an essential role in enabling various functional human limb
movements in daily life, for example, sit-to-stand, walking, reaching, and grasping. Neuromuscular
disorders, including spinal cord injury (SCI) and stroke, paralyze skeletal muscles, thus impairing normal
activities of daily living. Muscle architectural features of the paralyzed muscles such as muscle fascicle
length, fascicle orientation, pennation angle (PA), and muscle thickness can potentially reveal residual
motor intent, which can be compensated effectively through neuroprosthetic or robotic intervention
(Jahanandish et al., 2019; Zhang et al., 2020a). In addition, examining the skeletal muscle architectural
features can also help diagnose muscle degenerative conditions, for example, sarcopenia (Mueller et al.,
2016; Ticinesi et al., 2017; Chang et al., 2018).

The extraction of skeletal muscle architectural features depends on the detection of muscle fascicles
(i.e., bundles of skeletal muscle fibers) and aponeuroses (i.e., connective tissues). Ultrasound
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(US) imaging has been widely applied to detect muscle architectural features given different tissues with
different acoustic impedance. In US imaging, the tissues can be visualized as hyperechoic tubular
structures (Zhao and Zhang, 2011). Compared with magnetic resonance imaging (MRI), US imaging
is a low-cost, radiation-free, and time-efficient real-time display technology. Therefore, US imaging has
been widely used in research and clinical studies to investigate muscle architectural features for
biomechanics modeling and neuromuscular disease diagnosis. Manual detection is robust and reliable
across a broad range of experimental conditions (Kwah et al., 2013). However, this traditional method is
time- and energy-consuming, particularly when massive temporal sequences of US imaging frames need
to be analyzed (O’Brien et al., 2010; Giannakou et al., 2011; Baroni et al., 2013). Moreover, the detection
performance is relatively subjective among different investigators (Darby et al., 2012; Zhou et al., 2015).

In recent years, several semiautomatic and fully automatic muscle fascicle tracking algorithms have
been proposed to efficiently and effectively extract muscle architectural features (Cronin et al., 2011;
Damon et al., 2011; Gillett et al., 2013; Zhou and Zheng, 2015; Marzilger et al., 2018; Liu et al., 2019;
Wang et al., 2019; Yuan et al., 2020). In Zhou et al. (2015), the authors developed a Gabor wavelet
with Hough transform (GWHT) method to achieve a successful detection of PA. This method
simulated human vision as the investigator selected the muscle fascicles. With prior knowledge about
the distribution and shape of fascicles and aponeuroses, the correlation between the manually measured
angle and the automatically detected angle could be as high as above 0.9, and the error was approximately
1.5°. However, it has a relatively long processing time (20 s with an Intel Core 2 Q8400 2.66-GHz
processor) due to the complexity of the Hough transform, which still leaves room for improvement.

Marzilger et al. (2018) developed a semiautomated algorithm for measuring vastus lateralis muscle
architecture, and its inter-day reliability was effectively validated. However, pixel brightness
(i.e., intensity, echo intensity, or echogenicity), an important factor for selecting the target fascicle, was
not considered in that paper. In addition, although the computation time for a typical video with
approximately 500 frames and a region of interest (ROI) of 614�140 pixels was approximately 2 min,
an additional 10–15min period was necessary to control and adjust possible alternations within the video.
Thus, its long processing and tuning time limits the fully automatic applications in real time.

A belt linear summation transform (BLST) method was derived by Wang et al. (2019) that considers
the pixel brightness and does not require any extra domain knowledge. However, its time complexity,
O T �N2
� �

, where T denotes the resolution of the rotation and N 2 denotes the resolution of the image, is
still too high. Radon transformation (RTF) is also a well-developed and applied technique for muscle
fascicle orientation or PA detection fromUS imaging (Zhao and Zhang, 2011; Liu et al., 2019; Yuan et al.,
2020). However, its complexity is higher than BLST, as proven by Wang et al. (2019).

As one of the most successful methods, the optical flow algorithms (Cronin et al., 2011; Gillett et al.,
2013) have been commercialized as a Matlab toolbox UltraTrack (Farris and Lichtwark, 2016). This
toolbox has been updated from the first generation that can only track a single muscle fascicle to the recent
fourth generation that enables the tracking of multiple fascicles. The toolbox can detect and track the
orientations and lengths of fascicle and aponeurosis, thus, computing the PA sequence using the
orientations (Darby et al., 2012; Kawamoto et al., 2014). The core technique of UltraTrack is to
implement affine flow algorithms and pursue features from one frame to another using Lucas–Kanade
or cross-correlation approaches (Cronin et al., 2011; Darby et al., 2012; Gillett et al., 2013; Farris and
Lichtwark, 2016). In general, this method requires a manual determination of the tracking features in the
initial image frame. Then, the locations of key points defined in the initial image frame are automatically
tracked through image frames (Van Hooren et al., 2020). In some cases, for example, when movements of
the selected key points between consecutive images are not sufficiently small which is usually seen in low-
frequency image frames, it may lose the good tracking (Zhou et al., 2015). Another limitation of optical
flow is the drift error. But it was addressed in a recently developed method, that is, TimTrack (van der Zee
and Kuo, 2022).

Another flagship method to measure muscle fascicle orientation or PA is ImageJ (Abràmoff et al.,
2004; Seynnes and Cronin, 2020), which can be conveniently implemented across platforms. The
consensus-based algorithm rotates the detection angle for the image and observes which one reeves
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the most data points, and this angle is regarded as the fascicle orientation. However, tracking accuracy
cannot be guaranteed when the image contains noises.

This paper proposes a clustering-based detection method, which can balance the fascicle/aponeurosis
tracking accuracy, computational load, and robustness for low-frequency US imaging data. This method
aims to mimic a human investigator in labeling the architectural features in an unsupervised learning
fashion and thus estimate the PA. This method is derived based on the following facts that fascicles and
aponeuroses can be distinguished by clustering the pixels of the US image and they are in tubular shape so
that lining the left and right points can be used to determine their orientations.

A human expert likely assigns the tubular shape, that is, cluster, with the highest brightness and length
as the targeted muscle fascicles or aponeuroses. Therefore, we can assign values to each cluster based on
the length and brightness, and then the cluster with the highest value is selected as the intended muscle
fascicle.

The proposed method was tested on the tibialis anterior (TA) muscle US image time sequence data
obtained during isometric ankle dorsiflexion experiments from three participants without neuromuscular
disorders. One dominant fascicle and the deep aponeurosis in each US image were labeled manually by a
human expert. The labeled fascicle’s and aponeurosis’s orientations and the resultant PA measures were
treated as the ground truth.We initially investigated the performance of three clusteringmethods, density-
based spatial clustering of applications with noise (DBSCAN) (Ester et al., 1996), K-means (Hartigan and
Wong, 1979), and hierarchical agglomerative clustering (HAC) (Lukasová, 1979), which are represen-
tatives of density-based, partitioning, and hierarchical clustering, on one out of three human participants.
The result indicates that DBSCAN performs superiorly to the others, and theUltraTrack outperforms the
ImageJ on this dataset. Therefore, we compared the result collected from DBSCAN-based clustering and
theUltraTrack, and the former showed higher accuracy in our low-frequency image datawhile processing
time was approximately 0.2 s per image with an Intel Core i7 Processor. The preliminary results shown in
this paper imply that the clustering methods may have value in extracting muscle structural features for
their potential use in human–robot interaction control or diagnosing degenerative muscular diseases.

2. US Imaging data and ground truth acquisition

Experimental data that were collected in our previous study (Zhang et al., 2020b), including isometric
ankle dorsiflexion force at seven ankle joint postures and corresponding TA muscle US imaging signals
from three able-bodied participants, were implemented here to test the proposed unsupervised clustering
approach in this paper. The detailed experimental setup, US transducer placement, and data collection can
be referred to Zhang et al. (2020b). During the experiments, the ankle joint dorsiflexion force signals were
collected at 1000 Hz while the B-mode US images of the TA muscle were synchronously collected at a
frame rate of 20 Hz. In the experimental data collection procedure, a trigger signal from the data
acquisition board (DAQ) was sent to the US machine to synchronize the collection starting time point,
and both force and image data were selected every 0.05 s; thus, signals were aligned.

A typical B-mode US image of the targeted TA muscle is shown in Figure 1, where the x-axis is the
distance away from the US transducer center along the longitudinal direction, and the y-axis is the depth
from the skin surface. The brightness and darkness of the US image represent the normalized gray-scaled
value (between 0 and 255) of each pixel, which is calculated from a logarithmically compressed imaging
signal. For simplicity, only the upper pennate section is taken into consideration for determining the
structural features like fascicle orientation and PA. The upper pennate section is selected as in the red
dashed rectangular area in Figure 1, where PA is defined as the angle between the most visualized fascicle
and the aponeurosis. The orientation of the fascicle and the middle aponeurosis with respect to the
horizontal level is calculated separately to get PA by using the manual label approach and the proposed
clustering-based detection approach.

A professionally trained expert labeled the fascicle and aponeurosis in each image as shown in
Figure 1. The manual fascicle and aponeurosis selections were based on the brightness, length, position
of the former detected fiber, and so forth, which can help design the rules for our unsupervised learning.
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3. Method

3.1. US imaging preparation and pre-processing

The pipeline of muscle fiber detection procedures can be divided into three main phases, including image
preparation, clustering and re-clustering, and fiber selection. In this section, the details of the procedures
are presented.

3.1.1. Trim
As discovered in Figures 1 and 2, only local small regions contain the interested muscle fascicle and
middle aponeurosis. In this procedure, we trimmed off the parts from the original image that apparently
did not contain the fascicle or aponeurosis. Then, the remaining image was cut into two sub-images, that
is, the “top” one, which contains the target fascicle, and the “bottom” one, which contains the middle
aponeurosis. The trimmed image can be seen on the right side of Figure 2.

3.1.2. Denoising
In this step, we removed the pixels whose brightness is lower than a predefined threshold, α. This can help
highlight the muscle fascicles and middle aponeurosis.

3.1.3. Augmentation
For some images where the fascicles were not clear, we augmented the brightness in certain regions. The
region is determined based on human judgment. This helped further highlight the target muscle fascicles.
The following content demonstrates its effectiveness.

3.2. Initial clustering

The clustering technique in this paper groups the total N pixels of the ROIs, R, to k clusters based on the
associated parameters, ϑ, where k ≥ 0, and the clustering fails if k¼ 0. Considering the case that k> 0,

let’s define the clusters to be S¼ Si, i¼ 1,2,…,kf g, where ∪
k

i¼1
Si ⊆ R.

Figure 1. A typical B-mode US image of the TA muscle. x-axis is the distance along the probe’s
longitudinal direction (the center line is the zero position, and left and right sides represent proximal and
distal directions), and y-axis is the depth of the TAmuscle. The RGB data of every pixel were transferred to

grayscale values between 0 and 255.
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3.2.1. DBSCAN
DBSCAN is a density-based clustering method, which has two parameters, that is, the minimum points
m∈ℝþ and distance ε∈ℝþ. The clustering rule is that:

(1) For one pixel, x0, group all the neighbors, xif gi¼1,2,…,I , which are within ε to the pixel. If Iþ1 is
greater than m, xif gi¼0,1,2,…,I are defined as the core points.

(2) If a pixel, xj, is within ε of a core point, xi, xj is defined to be directly reachable from xi. Assuming
that there exists a sequence of core points, xif gi¼0,1,2,…,I�1, and xiþ1 is directly reachable from xi, xj
is defined to be reachable from x0 if it is directly reachable from xI .

(3) All the pixels are reachable from a core point and the core point itself forms a cluster.
(4) After each pixel is examined, all the clusters are identified. The pixels that do not belong to any

cluster are treated as noise.

This clustering mechanism leads to a O N logNð Þ computation complexity in average, and the worst
scenario is O N 2

� �
.

3.2.2. K-means
K-means is a partitioning clustering method, which is to find k clusters, S¼ Si, i¼ 1,2,…,kf g, that can
minimize the following within-cluster sum of squares, that is,

argmin
S

Xk
i¼1

X
xin ∈ Si

xin�μi
�� ��2 (1)

where xin (n¼ 1,2,…,N ) denotes the nth pixel position in Cluster i, and μi ¼ 1
N

PN
n¼1x

i
n denotes the mean

of Cluster i. Note that k is usually a user-defined constant. The clustering is applied in an iterative manner.
Initially, μi (i¼ 1,2,…,k) is randomly selected and S is determined by solving (1). Based on the current S,
μi are updated, and thus S are further updated until converge.

The computation complexity is O η � k �Nð Þ, where η is the number of iterations. In this paper, the
dimension of the US image pixel is 2, for example, axial and lateral coordinates in each US image.

3.2.3. HAC
HAC is very similar to K-means, but it does not demand k exact clusters and does not randomly pick up k
initial means. Instead, each pixel is initially treated as a cluster, and each of the neighboring pixels of the
cluster is absorbed into a cluster if the distance, Euclidean distance, is less than a user-defined threshold.
Typically, the computation complexity of the naive HAC is O N3

� �
.

Figure 2. The segmentation of the upper pennate session of TA muscle, where muscle fascicle is in the
“top” sub-image, and middle aponeurosis is in the “bottom” sub-image. These two sub-images are the

two regions of interest (ROIs) to detect the muscle fascicle and middle aponeurosis, respectively.
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3.3. Re-clustering

After the pixels were grouped into k clusters, we performed a re-clustering process to drive them to l new
clusters. The purpose of this process was to update S¼ Si, i¼ 1,2,…kf g toU ¼ Ui, i¼ 1,2,…lf g, where
l ≤ k. The procedures are summarized as the following two steps.

Step 1. For each cluster, find the pixel points in the four corners, that is, right-up, xþþ, right-down, xþ�,
left-up, x�þ, and left-down, x��. Draw the first line, Lþ, that aligns point xþþ and point x��, and the second
line, L�, that aligns point xþ� and point x�þ. Denote the intersection angle of Lþ and horizontal direction to
be θþ, also known as the orientation angle of Lþ. Similarly, the orientation angle of L� is denoted as θ�.
Then, compute the average, θ¼ θþþθ�

2 , which is defined as cluster angle (the definition is visualized in
Figure 3(a)). As the cluster has a tubular shape, the angle θ could roughly represent the orientation.

Step 2. As shown in Figure 3(b), we find each pair of clusters, if one’s most left point is on the right of
the most right point of the other’s, which have similar orientation angles, that is, θ1�θ2j j< ε0. Then, the
connect these two clusters by lining the point x

þþþxþ�
2 of the left cluster and x�þþx��

2 of the right cluster.
Defined the angle between the connection line and the horizontal direction as connection angle, ϕ. Then,
check if the values of ϕ and θ are very close, that is, ϕ� θ1þθ2

2

�� ��< ε1. If so, the clusters are regrouped into
one (see Figure 3(b)). Iterate this procedure until no clusters can be merged. We can remove the
implausible clusters by applying domain knowledge of the general fascicles flow in the US image. For
instance, the fascicle’s most left pixel position should be higher than the most right one; otherwise, the
cluster is not plausible and, therefore, it is discarded.

Then, the orientation of the newly merged clusters, defined as ρ (computed as shown in Figure 3(a)), is
used to represent the orientation of the interested fascicle or aponeurosis.

3.4. Target muscle selection

In this procedure, we assigned a value to each cluster using a user-defined function, and then selected the
cluster with the highest value as the targeted muscle, for example, fascicle. The value function of Ui (the
ith cluster) is defined as

Vi ¼ 1
N

XN
n¼1

b xin
� �þw � xin� �xinþ

���
��� (2)

where N is the pixel number in that cluster, b �ð Þ is the echo intensity of a pixel, xin� is the position of the
most left pixel, xinþ is the most right pixel inUi, and w is the weight. The objective was to find the cluster
that carried the highest value, that is, argmax

Ui ∈U
V i. Then the angle between the line that connects xin� and x

i
nþ

Figure 3. (a) The definition of the tubular shape muscle fascicle orientation angle through clustering,
(b) the criteria of reclustering to merge two clusters into one, and (c) each cluster is assigned a value.
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with respect to the horizontal direction was defined as the orientation angle of the new cluster, which was
also considered as the orientation of the targeted muscle fascicle. By summing the two orientation angles
of muscle fascicle and middle aponeurosis, we obtained the PA for the TA muscle.

4. Analysis of representative samples

4.1. A representative image

We tested the pipeline step by step shown in Figure 4 on a representative image. After the denoise
operation, the sub-images contained much fewer pixels than the original ones. Then the clustering can
be effectively applied to the denoised sub-images as the tubular shapes in the image became clearer.
From the second and third columns in Figure 4, we can see that some tubular segments were grouped
into several clusters. In this representative image, the pixels in the top sub-image are initially clustered
into 15 clusters. After the re-clustering procedure, the clusters in the top sub-image were updated to
eight new clusters. Without losing generality, the fascicle detection results will be highlighted in the
following content. After evaluating the new clusters, the one with the highest evaluation value was
found, and a line that connects its most left-up pixel point and most right-down pixel point was drawn to
represent the muscle fascicle.

4.2. Augmentation filter

Although the fascicle detection performance is satisfactory for the representative image with less noise,
there is a possibility for hindered performance with blur images containing significant noise.

From Figure 5(a), we can see a cluster that does not contain a fascicle but carries a very high value as its
brightness is high. Its high value is very likely to induce a wrong detection in the initial clustering.We can
see that if the detection is attracted by the wrong muscle, which is circled by a red ellipse, the PA is
estimated to be 10.93°. If right, the PA is 11.11°, while the human-annotated PA is 11.90°. To address this
problem, we augmented a local region in the top sub-image that contained the targeted fascicle. This
operation aims to increase the brightness of the pixels in that region so that the fascicle is highlighted. In
this study, we designed an ellipse augmentation region as shown in Figure 5. The focus and vertex of the
ellipse are user-defined. In practice, we usually only need to augment the top sub-image containing
muscle fascicles because the bottom sub-image containing middle aponeurosis is often sufficiently clear.

Figure 4. The pipeline of the muscle fascicle detection and the details of the image processing for each
step. The yellow line in the machine-labeled image represents the orientation of the cluster with the

highest value in the top image, and the purple one is for the down image.
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From Figure 5, we can see that the accuracy of the detection is ensured after applying the augmentation
filter.

Except for the disturbance with higher brightness that may affect the initial clustering, another case
may also cause thewrong initial clustering. As shown in Figure 5(b), the fascicle is not clearly shown. This
is probably because this muscle fascicle is shadowed by the fat or connective tissues. From the results in
Figure 5(b), we can see that after the augmentation is applied the muscle fascicle detection succeeds.

We can consider the augmentation filter as an assistant and optional procedure. When there are some
sliding movements between the US transducer and the skin, the denoising procedure could eliminate
undesired noise tomake the blurred image clearer. However, extremely low and high denoising is likely to
fail the detection task since the filter may either remove useful information or not denoise ineffectively. In
that case, an augmentation filter can also be applied to enhance the local region containing the targeted
fascicle to address the problem.

4.3. Viscosity

For some other situations, the fascicle barely showed in the image, so it could not be detected no matter
how the augmentation was designed. In this case, the investigator would guess the location of the
muscle fascicle based on the previous image. If the loss of detection is only occasional, the tracking was
assumed valid. To mimic this capability of the investigator, we designed a viscosity function, which is
defined as.

ρ∗t ¼ rtρtþ 1� rtð Þρ∗t�1 (3)

where ρt is the measured angle at time t, ρ∗t�1 and ρ
∗
t are the determined angles at t�1 and t, respectively,

and rt is the weight that is defined as

rt ηtð Þ¼
e�

1
2

ηt�hþ
σþ

� �2

ηt ≥ hþ

1 �h�≤ηt < hþ

e�
1
2

ηt�h�
σ�ð Þ2 ηt <�h�

8>><
>>:

(4)

Figure 5. Showing how the augmentation filter improves the detection accuracy in the presence of (a) a
high-value noise cluster and (b) an unclear cluster.
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where ηt ¼ ρt�ρ∗t�1
ρ∗t�1

and h�, hþ, σ�, and σþ are parameters. Therefore, ρ∗t is used as the final angle. This
method means that if the fascicle is not shown properly, the detected PA is abnormal, and thus, the weight
is nearly 0. In this case, the previously-detected PAwill be assigned to the final PA. If the PA is normal, the
weight of the current detection dominates.

We can see that (4) is a skew-Gaussian type distribution function. In this paper, we determined the
parameters depending on the real US imaging data collected from two able-bodied subjects (i.e., A02 and
A03 that will be shown later). In the dataset, we designed a value ηt,i ¼ ρt�ρt�i

ρt�i
, where ρt�i is the human

determined angle at i steps/frames ahead. In this case, the iwas iterated from 1 to 10. The data distribution,
its corresponding kernel function, and our viscosity function are shown in Figure 6. The parameters,
υ¼ h�,hþ,σ�,σþf g, for the viscosity function have to be selected such that the spanwidth of the viscosity
function is wider than that of the kernel function. Therefore, the viscosity function would only eliminate
the outliers but not the normal data.

4.4. Fine-tuned results

We selected the collected data from a trial when the ankle joint posture was set at 5° dorsiflexion (the 0°
posture means that the shank is perpendicular to the sole of the foot), and the US imaging data contained
20 images. We elaborately designated the parameters, Θ¼ α,ε0,ε1,w;ϑf g, and the shape of the augmen-
tation filter for each image. We found four types of augmentation filters and parameter sets that gave a
satisfactory result for fascicle detection. The first onewas used for images 1–6, the secondwas for 7–9, the
third one was for 10–15, and the fourth one was for 16–20. The performance is shown in Figure 7(a).

It is worth noting that the augmentation filter may vary across different images. Therefore, to facilitate
automation, we applied the viscous function again to compute the weighted average, ρwt ,

ρwt ¼
Pnf
n¼1

rnt ρ
n
t

Pnf
n¼1

rnt þ γ
(5)

where ρnt is the angle detected using the n-th filter, nf is the number of the filters, γ is a small value that
prevents the calculation result in (5) from blowing up, rnt is the weight computed using (4) and set
ηt ¼ ρnt �ρwt�1

ρwt�1
. If an augmentation filter is suitable for the image we have rnt ¼ 1. If it is not, rnt will be very

small so that this angle is rolled out. We applied this method to the two other trials for this subject with 5°
dorsiflexion in flow (time sequence), and the results can be seen in Figure 7(b).

Figure 6. The designed viscous function. The vertical bars are samples, that is, the real incremental data.
The Kernel function is the Kernel Density Estimation upon the samples using scikit-learn:
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4.5. US image time sequence tracking

Finally, we also investigated the automatic muscle fascicle detection based on our newly-derived pipeline
with DBSCAN clustering. The promising results can guide us to apply themethod to estimate PA using all
clustering methods (DBSCAN, K-means, and HAC). The pseudo-code of the algorithm is shown in
Table 1 for a clear presentation. Results from three representative trials when the ankle joint posture was
set at 5° and 15° dorsiflexion are shown in Figure 8. Furthermore, to quantitatively evaluate the PA
tracking performance with the proposed method, the root-mean-square error (RMSE) values between the
detection by using the proposed method and the human expert labeling from nine repeated trials when the
ankle joint posture was set as 5°, 10°, and 15° dorsiflexion are summarized in Table 2.

4.6. Comparison with existing algorithms

The detected PA results by using the newly-proposed clustering method were compared with mature
benchmark techniques, for example, UltraTrack and ImageJ.

4.6.1. UltraTrack
As introduced before,UltraTrack detects objects by tracking key points of figures. The operation of using
the Matlab toolbox is to upload the video stream of B-mode US images first, and then, create ROI and
select the starting/ending points for each interested muscle fascicle in the first image frame, and then, start

Figure 7. The accuracy of (a) the detection of the fascicle orientation with fine-tuned parameters using
the DBSCAN clustering method and (b) the image flow with the viscosity function and the fine-tuned
parameters. In (a), four sets of parameters were used individually on different frames to obtain accurate
estimations. In (b), the four sets of parameters were used simultaneously on all frames, and the weighted

average was taken to give the final estimation of the muscle orientations.
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processing. The graphical user interface when using UltraTrack is shown in Figure 9. In our case, one
ROI, one superficial muscle fascicle (upper red line), and the middle aponeurosis (lower red line) were
selected in the initial image frame of each trial. The tracked PAvalues from the US image time sequence
were used for comparison with the PAvalues by using the proposed clustering approach. In addition, the
RMSE values between the UltraTrack-derived PA and human expert-labeled PAwere also calculated to
evaluate the detection performance, as reported in Table 2.

4.6.2. ImageJ
B-mode US image videos from the TA muscle during isometric ankle dorsiflexion movement were also
processed utilizing ImageJ and statistically analyzed viaMatlab. ImageJ’ s open-source image processing
package, Fiji (Schindelin et al., 2012), was used to analyze the orientation distribution of the middle
aponeurosis-like segments and muscle fascicle-like segments from both the lower half and upper half of
the TA muscle. Each image was cropped based on the ROI with the rectangle area section tool to remove
external information such as image edges and unrelated fascicles (Figure 10(a)). According to procedures

Table 1. Showing the algorithm flow of how to detect the PA of the data stream

Algorithm (pseudo code)

1: Set the parameters Θn, n¼ 1,2,…,N
2: Measure ρw0 manually
3: Select the clustering method (DBSCAN, K-means, or HAC)
4: Set augmentation ellipse region (optional).
5: For each image, t¼ 1, 2,…tf , in the trial:
6: Set n¼ 0, ρwt ¼ 0
7: For i¼ 1 to N :
8: trim the image to top and bottom sub-images
9: denoise both sub-images
10: do clustering to obtain S for both sub-images
11: update S toU
12: assign value V i to each Ui in U
13: solve argmax

Ui

V :V ¼V if g to select the cluster U∗
i

14: compute PA ρi from U∗
i for top and bottom sub-images

15: compute ρwt using (5)
16: compute ρ∗t using (3)
17: End
18: End

Figure 8. The PA detection using our method with DBSCAN, K-means, and HAC clustering, and the
benchmark methods, that is,UltraTrack and ImageJ. The data shown here are from the first participant at
dorsiflexion angles 5° (Trial 1 and 3) and 15° (Trial 3). Also, the isometric ankle torques were plotted to

show a high correlation with the PA sequences.
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in Seynnes and Cronin (2020), a custom macro that ran a series of functions was followed to improve
image clarity for better fascicle definition. The Subtract Background function was run to remove large
variations in the background intensities of the video. The Non-Local-Means-Denoising and median filter
was applied to remove extraneous noise, and then the video was converted to 32 bits. The DistributionJ
within the OrientationJ plug-in was then utilized to create a table with the distribution of the orientation
angle of the targeted aponeurosis andmuscle fascicle. The TAmuscle’s PAwas calculated and statistically
analyzed via MATLAB. The PAvalue was calculated by taking the weighted average from the top 5% to
50% (with an increment of 5%, defined as inclusion percentage) of the selected pixel clouds that represent
the middle aponeurosis and the TA muscle fascicle. The sum of the weighted averages for the varying
percentages of the middle aponeurosis and TAmuscle fascicle were then totaled to obtain the PAvalue of
different weighted averages. The correlation coefficient between the ImageJ-derived PA and the human
expert label was calculated for each weighted average. The quantitative results can be seen in
Figure 10(b), where correlation coefficients are relatively higher when selecting the top 5% and 10%
of the pixel clouds for the weighted average PA calculation. Therefore, we selected the top 5% and 10% as
the representatives for the comparison. The RMSE values between the ImageJ-derived PA and human
expert-labeled PA are reported in Table 2.

Table 2. Summary of PA detection results by using the proposed approach on one representative participant’s TA muscle during the
ankle joint at different postures

Results of the PA detection

RMSE [°]

Angle 5° DBSCAN K-means HAC UltraTrack ImageJ-5% ImageJ-10% Data Size

Trial 1 0.419 1.140 0.723 1.939 4.714 6.169 20
Trial 2 0.539 1.171 0.374 2.170 3.373 4.771 26
Trial 3 0.484 1.220 1.210 2.525 3.795 4.138 24

Angle 10°

Trial 1 0.358 0.357 0.994 1.698 2.424 3.848 15
Trial 2 0.892 1.143 0.980 0.934 2.817 3.863 25
Trial 3 1.053 0.632 0.539 1.649 2.787 3.357 23

Angle 15°

Trial 1 0.647 1.134 1.800 1.892 4.077 4.278 20
Trial 2 1.118 0.489 0.538 2.729 3.848 6.327 19
Trial 3 0.523 0.300 0.494 2.115 4.553 5.671 20
Overall 0.727 0.948 0.941 1.951 3.598 4.713 192

Abbreviations: DBSCAN, density-based spatial clustering of applications with noise; HAC, hierarchical agglomerative clustering; PA, pennation angle;
RMSE, root mean square error; TA, tibialis anterior.

Figure 9. The control panel and operation demonstration of using UltraTrack (optical flow).
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5. Result

From those PA tracking comparison results along the US image time sequence, we can observe that the
proposed method with DSCAN as the initial clustering method outperforms other algorithms and
theUltraTrack outperforms ImageJ in our dataset. Quantitative results of the PA tracking RMSE between
the human expert labeling and the detectionwith different methods frommultiple trials andmultiple ankle
joint postures can be seen in Table 2. Therefore, we would select the proposed DSCAN-embedded two-
step clustering approach and the UltraTrack toolbox for further comparison testing.

Then, we tested our proposed method with DBSCAN and the UltraTrack on three able-bodied
participants, that is, A01, A02, and A03. Each subject’s ankle joint initial dorsiflexion posture was set
at three different postures 5°, 10°, and 15°, respectively. We tested three trials under each posture and
plotted the error between the detected PA and the human expert-labeled ground truth in Figure 12.

From the figures, we can see that the mean error values for the three subjects using the proposed
method are 0.03°,�0.55°, and� 0.63°, respectively, while the standard deviation (the red lines) are 0.70°,
0.94°, and 0.96°, respectively. The mean error using the UltraTrack are 0.41°, �1.40°, and � 0.76°,
respectively, while the standard deviation (the red lines) are 1.10°, 1.38°, and 0.97°, respectively. The
figure shows that the proposed method slightly outperforms the UltraTrack method in our dataset.

6. Discussion and conclusion

In this paper, we developed a clustering-based detection method, which mimics a human investigator in
terms of labeling the muscle fascicle on US images in an unsupervised learning fashion. In this
preliminary study, we focused on detecting the orientation of the TA muscle’s fascicle and aponeurosis,
and thus calculating PA automatically.

The results collected by the proposed method were compared with those obtained by applying
benchmark techniques: the optical flow in UltraTrack and ImageJ. The performance of the proposed
clustering methods in our dataset is shown more precise in RMSE when compared to the benchmark
methods.

Although the preliminary study shows promising results for potential real-time implementation, there
are still some limitations given that the method is still at a rudimentary phase. First, both UltraTrack and

Figure 10. (a) The highlighted ROI (the ROI selected for cropping of the TA muscle fascicles), macro-pre-
processingROI (theROI in the image after the imagewent through the functionswithin themacro), and post
DistributionJ processing of anUS image frame (the ROI after the DistributionJ function that can be used to
determine the orientation distribution). (b) The mean and standard deviation of the correlation coefficient

between the ImageJ detection angle and the ground truth across different inclusion percentages.
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ImageJ can alsomeasure the length of fascicle/aponeurosis, while our proposedmethod can onlymeasure
themuscle fascicle/aponeurosis orientation. Also, the orientation detection is very sensitive. For example,
in the case shown in Figure 11, even if the fascicle is correctly detected, the calculation of PA may still
have a non-neglectable error due to the high sensitivity of themuscle orientation. This can perhaps explain
why the PA tracking result with the proposed method does not look as smooth as the tracking results with

Figure 11. Some representative tracking results. It also shows that even if the fascicles are correctly
detected, there is still a considerable error in the PA calculation.

Figure 12. (a) The tracking error of the proposed method, and (b) the UltraTrack. In (a), the mean error
for the three subjects are 0.03°,�0.55°, and�0.63°, respectively, while the standard deviation (the lines)
are 0.70°, 0.94°, and 0.96°, respectively. In (b), the mean error for the three subjects are 0.41°, �1.40°,
and�0.76°, respectively, while the standard deviation (the lines) are 1.10°, 1.38°, and 0.97°, respectively.
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theUltraTrackmethod. In fact, the smoothness of the tracking result is an important index because the PA
is likely to be used for human joint movement intention prediction in a continuous manner, which is an
innovative and noninvasive approach for human–machine interface for implementing rehabilitative and
assistive devices. If the PA tracking smoothness is weak, the continuity of human joint movement
intention prediction could be affected, thus deteriorating the effective performance of those devices. The
method is sensitive to parameter selection, including denoising factors, augmentation filters, viscous
functions, and so forth. In this work, we tried our best to select parameters for the proposed and benchmark
methods to deliver the best performance. But, arbitrary parameters may lead to unsatisfactory results.
Finally, the processing time is still too long to be implemented in real time in terms of a feedback control
system with higher control frequency. The US images were collected at 20 frames per second, but the
processing time for each image with DBSCAN, K-means, and HAC methods can take approximately
0.2–0.4 s per image with an Intel Core i7 Processor (CPU). Potentially, the processing time will be further
reduced by applying a graphical processing unit (GPU). Nevertheless, the complexity of the proposed
method is already low compared to the existingmethodsmentioned in the literature. For example, BLST is
already amethod with the lowest complexity,O T �N2

� �
, among all the aforementioned existing methods,

where the variable T denotes the number of rotations that is usually comparable to the image size N .
Therefore, we can roughly estimate the complexity of BLST to be O N3

� �
, which is equivalent to HAC,

that is, the clustering method with the highest complexity among the methods we investigated. There is
also space for improvement in the experiment design. In this paper, the image data was collected using
isometric contraction, which may cause muscle distortion. In future work, fixed-end contraction will be
adopted (Raiteri and Hahn, 2019). In future work, we will also take the fascicle length into consideration.
It requires an algorithm that can precisely detect the boundary of the muscle fiber, especially the start and
end. Themissing part of themuscle can be extrapolated, and the PA estimated by themethods presented in
this paper may help with this (Franchi et al., 2020).

In conclusion, the proposed clustering-based detection method estimates the PA using US images with
high precision in our dataset. Additionally, it demonstrates that this method can mimic a human
investigator in terms of labeling the skeletal muscle’s fascicle and aponeurosis. Because of the various
merits (e.g., intelligence, robustness, and flexibility) that human investigators possess, the methods
aiming to emulate expertise in inferring US images will be explored further in the future.
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