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STABLE MODEL OF X0(125)

KEN McMURDY

Abstract

In this paper, the components in the stable model of X0(125) over
C5 are determined by constructing (in the language of R. Coleman’s
‘Stable maps of curves’, to appear in the Kato Volume of Doc. Math.)
an explicit semi-stable covering. Empirical data is then offered re-
garding the placement of certain CM j -invariants in the supersingular
disk of X(1) over C5, which suggests a moduli-theoretic interpreta-
tion for the components of the stable model. The paper then concludes
with a conjecture regarding the stable model of X0(p

3) for p > 3,
which is as yet unknown.

1. Introduction

The purpose of this paper is to begin to advance the work of Deligne–Rapoport, Katz–
Mazur, Edixhoven, and others regarding the stable model of X0(p

n). In the simplest case
of X0(p) (p �= 2, 3), the minimal resolution over Zp is always semi-stable, and was
explicitly described in [5, VI.6.16]. Edixhoven later worked out the minimal resolution
of the Katz–Mazur model for X0(p

n) over Zp (a special case of [6, 1.4]), but this model
is never semi-stable when n � 2. However, in the n = 2 case, Edixhoven did go on
to work out a semi-stable model for X0(p

2) over a finite extension of Zunr
p (see [6, 2.1,

2.5]). Unfortunately, as Edixhoven states in his introduction, his methods do not generalize
sufficiently to calculate the stable model when n > 2 because of ‘wild ramification’.

Recently, more progress toward understanding the stable model of X0(p
n) has been

made by Coleman, using a moduli-theoretic approach. In [3], Coleman shows that for
p > 3 the ordinary region of X0(p

n) has exactly 2n connected components (over Cp),
whose reductions can be described using Igusa curves. He was also able to give a moduli-
theoretic interpretation of the horizontal components of Edixhoven’s model for X0(p

2). In
particular, the points on these components correspond to pairs (E, C) such that E/C[p] is
(in the language of [2, 3.3]) ‘too-supersingular’; that is, such that E/C[p] has no canonical
subgroup.

In the first half of this paper we begin with the model for X0(125) constructed in
[9, 4], and we apply techniques of rigid analysis to construct a semi-stable covering. From
this point on, all such statements will always mean that the work takes place over Rp,
the ring of integers in Cp. Paraphrasing [4, 2], this means that we will find a finite set
of disjoint affinoids {Ai} with good reduction, such that the complement in X0(125) of⋃

Ai is simply the disjoint union of annuli. By [4, 2.1], this is equivalent to determining a
semi-stable model for the curve. The goal of the remaining sections, then, is to provide a
moduli-theoretic interpretation of the components, which leads to a conjecture regarding the
stable model of X0(p

3). To do this, we first map the affinoids in the semi-stable covering
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down to X(1) via an appropriate moduli-theoretic map (using formulas from [9]). Then
we show by explicit calculations that the images contain the j -invariants of curves with
a certain type of complex multiplication (CM). Along with similar data for p = 7 and
p = 13, this leads to two conjectures that could be considered the main results of the paper.
Conjecture 3.4.1 concerns the distribution of CM curves inside a given ‘ss disk’ (super-
singular disk) of X(1), and Conjecture 3.4.2 generalizes the stable model description of
X0(125) to a description of X0(p

3). These conjectures will be at least partially proven in
an upcoming joint work with Robert Coleman.

2. Stable model of X0(125)

In this section, we determine the stable model for X0(125) (genus 8) by essentially
constructing in the language of [4] a semi-stable covering for the curve. The initial model
will be the one determined in [9, 4], namely the following system of equations:

f +
125(x, y) = y4 − x5 + 5xy3 + 15x2y2 + 25x3y + 25x4 + 5y3

+ 5xy2 − 25x3 + 15y2 + 25x2 + 25y − 25x + 25 = 0; (1)

xu2 − yu + 5 = 0. (2)

As modular functions, the q-expansions at infinity of x, y, and u can be expressed in terms
of the Dedekind eta-function as follows:

u(q) = η(q)

η(q25)
; x(q) = u(q5)

u(q)
; y(q) = u(q5) + 5

u(q)
.

In [9, 4] it is shown that x and y are functions on X0(125) which are fixed by the Atkin–
Lehner involution, w125. Therefore, Equation (1) actually describes the genus-2 quotient
curve,

X0(125)+ = X0(125)/w125.

Then u is a third function on X0(125) (actually, a pullback of a function on X0(25)), which
generates, by Equation (2), the degree-2 extension from X0(125)+ up to X0(125).

In later sections we will want to interpret the various components of our model in
moduli-theoretic terms, in the hope of conjecturing what happens in general (for X0(p

3),
p �= 5). For this section, however, we will stick to bare-bones rigid analysis. First we show
that X0(125)+ has good reduction, by finding an explicit good-reduction model. Then we
show that the ten ramification points in the degree-2 extension lie in two equidistant sets
of five, all within a wide-open annulus. The result of this information is that the stable
model of X0(125) has five components: four of genus 2, and one of genus 0. In particular,
two components with the same (stable) reduction as X0(125)+ will be switched under the
Atkin–Lehner involution. The other two genus-2 affinoids are fixed by Atkin–Lehner, and
have trivial quotients.

2.1. Good reduction of X0(125)+

At the end of [9] there is a proof that X0(125)+ has good reduction; this is based on
a hyperelliptic model for the genus-2 curve. If we are to understand the extension up to
X0(125), however, this hyperelliptic model is not optimal. For this reason we will now
offer a proof using a different model – one that will be more appropriate for the full analysis
of X0(125). Essentially, we will show that with respect to the parameter y, the affinoid
v5(y) = 3/4 is a genus-2 affinoid (in the sense of [9, 1]) with good reduction. Then, in the
section that follows, we will see that the ten ramification points in the degree-2 extension
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up to X0(125) are actually separated from this affinoid by a wide-open annulus. This is a
key point in understanding the stable model of X0(125).

Proposition 2.1.1. The curve X0(125)+ has good reduction. More specifically, the affinoid
described by v5(y) = 3/4 is a genus-2 affinoid with good reduction.

Proof. We begin by choosing any r ∈ C5 satisfying r5 + 25r − 25, and making the change
of variables x0 = x−r . Plugging this into f +(x, y), we then obtain a polynomial g+(x0, y)

whose coefficients are polynomials in r , as given in Table 1. The entry in the xi
0th row and

the yj th column is the coefficient of xi
0y

j .

Table 1: Coefficients of g+(x0, y) = f +(x0 + r, y).

y4 y3 y2 y1 y0

x5
0 −1

x4
0 −5r + 25

x3
0 25 −10r2 + 100r − 25

x2
0 15 75r −10r3 + 150r2 − 75r + 25

x1
0 5 30r + 5 75r2 −5r4 + 100r3 − 75r2 + 50r − 25

x0
0 1 5r + 5 15r2 + 5r + 15 25r3 + 25 25r4 − 25r3 + 25r2

When v5(y) = 3/4, the Newton polygon for g+, considered as a polynomial in x0, shows
that v5(x0) = 1/2. Consequently, there are three terms with minimal valuation, that on their
own (ignoring other terms) would form the equation

x5
0 + 25x0 = 15y2. (3)

This motivates a second change of variables, which will result in a good reduction model.
We first choose any α and β in C5 with v5(α) = 1/2 and v5(β) = 3/4. Then we make the
following change of variables: αx1 = x0 and βy1 = y. To be completely precise, then, the
final choice of model for the curve X0(125)+ in terms of the parameters x1 and y1 is the
equation

1

15β2 f +
125(αx1 + r, βy1) = 0.

This equation has integral coefficients, and reduces modulo the maximal ideal of R5 to the
following equation over F̄5:

y2
1 = α5

15β2 x1

(
x4

1 + 25

α4

)
. (4)

From Equation 4 we see that (as claimed) the affinoid v5(y) = 3/4 (or, equivalently,
v5(y1) = 0) is a genus-2 affinoid with good reduction. In rigid terms, we have shown that
the entire region v5(y) < 3/4 is simply one residue disk, while v5(y) > 3/4 describes five
residue disks.

2.2. Rigid distribution of ramified points

We now turn our attention to understanding what happens to the curve X0(125)+ in the
quadratic extension up to X0(125). In the light of the previous section, it is crucial that we
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understand where the ramification points lie in relation to the affinoid v5(y) = 3/4. Equation
(2) tells us that the ramification points satisfy y2 = 20x. Substituting this into Equation (1),
we obtain a polynomial in y satisfied by the y-coordinates of these ten ramification points.
The valuations of the coefficients of this degree-10 polynomial, say pram(y) = ∑10

i=0 aiy
i ,

are as shown below.

i 10 9 8 7 6 5 4 3 2 1 0

v5(ai) 0 ∞ 3 4 4 5 5 6 6 7 7

The Newton polygon for pram(y) then tells us that v5(y) = 7/10 at each root. As an
immediate consequence, all ten ramification points lie outside of the affinoid v5(y) = 3/4.
We will now show that the region described by 1/2 < v5(y) < 3/4 is in fact a wide-open
annulus (not parameterized by y, though), and that these ten points lie in two equidistant
sets of five within the circle v5(y) = 7/10. The stable model of X0(125) will then follow
from an argument similar to the one used in [9, 4.6].

Proposition 2.2.1. The region of X0(125)+ described by 1/2 < v5(y) < 3/4 is a wide-
open annulus.

Proof. The main idea here is that (on this region) the terms x5
0 and 15y2 of g+(x0, y) have

minimal valuation (by Newton polygons). In other words, the curve is well approximated
by the equation x5

0 = 15y2. This suggests that we should be able to parameterize the region
using the annulus

As = {s | 1/5 < v5(s) < 1/4}
and a map close to x0 = s2, y = s5/

√
15 (for a fixed square root of 15). This can be

made precise by applying a souped-up version of Hensel’s lemma (see [9, 2.3]). First, set
x0 = s2 exactly, and then consider the polynomial h(y) = s−10g+(s2, s5y/

√
15). Note that

the coefficients of h(y) are integral-valued functions on As . Also, it is straightforward to
check that v5(h(1)) > 0 and v5(h

′(1)) = 0 everywhere on As . Therefore, there is a unique
integral-valued function on As which is a root of h(y) close to y = 1. To parameterize the
region explicitly, then, we simply take y to be s5/

√
15 times this root:

x0 = s2; y = s5

√
15

(1 + smaller terms on As). (5)

It is immediate that this defines a map from As to X0(125)+, that it is an injection, and
that the image is contained in the region 1/2 < v5(y) < 3/4. The onto argument is a little
more subtle, though. Let (x0, y) be any point satisfying 1/2 < v5(y) < 3/4. The Newton
polygon of g+ as a polynomial in x0 shows that 2/5 < v5(x0) < 1/2. But then the Newton
polygon of g+ as a polynomial in y shows that only two of the four points with this x0
coordinate satisfy the condition 1/2 < v5(y) < 3/4. On the other hand, there are two
points with this x0 coordinate in the image of As , identified simply by taking s to be either
square root of x0. Therefore the map must be onto, by this simple counting argument.

We had previously shown that the ten ramified points in the degree-2 extension up to
X0(125) lay in the region v5(y) = 7/10. Now we know from Equation (5) that this region
is in fact a circle, parameterized by v5(s) = 6/25. What we would like to do now is analyze
the geometry of these ten points with respect to the parameter s. One way to do this would
be to work out explicitly enough terms in the power series satisfied by the ten s-coordinates
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to determine the relative distances. It is possible (and much easier), however, to infer the
desired information from the relative distances with respect to x- and y-coordinates. This
is the approach that we will take in proving the following proposition.

Proposition 2.2.2. The ten ramification points of X0(125)+ lie in two equidistant sets of
five, all within the circle v5(s) = 6/25, such that for all i �= j ,

v5(si − sj ) = 6/25 or v5(si − sj ) = 13/50.

Proof. First move one root of pram(y) to 0 by a simple translation, and then look at the
Newton polygon of the resulting polynomial. This polynomial has four roots of valuation
8/10 and five of valuation 7/10. From this, we learn that for a fixedy-coordinate of a ramified
point, sayy0, we havev5(y−y0) = 7/10 at five of the ramified points, andv5(y−y0) = 8/10
at the remaining four. Actually, we know a lot more, because y ≈ s5/

√
15, and we are

working 5-adically. Therefore, when v5(s1) = v5(s2) = 6/25, we have

v5(s1 − s2) > 6/25 ⇐⇒ v5
(
s5

1 − s5
2

)
> 6/5 ⇐⇒ v5(y1 − y2) > 7/10.

It follows that the ten points at least break up into two sets of five under the relation
v5(si − sj ) > 6/25, but it does not follow that within each subset the points are equidistant.
To determine this fact, we now look at the geometry of the x-coordinates.

Similar to what was done for the y-coordinates of the ten ramified points, it is straight-
forward to calculate the polynomial satisfied by the x-coordinates. Then, moving one root
to 0, we find that the difference of any two x-coordinates has valuation precisely 1/2. Of
course, the same can then be said about the x0-coordinates, since x and x0 differ by a con-
stant. So now choose any two ramified points, say with s-coordinates s1 and s2, satisfying
v5(s1−s2) > 6/25. We can determine exactly how close these points are from the following
formula:

1
2 = v5(x0(s1) − x0(s2)) = v5

(
s2

1 − s2
2

) = v5(s1 − s2) + v5(s1 + s2).

The point is that

v5(s1 − s2) > 6
25 =⇒ v5(s1 + s2) = 6

25 =⇒ v5(s1 − s2) = 13
50 .

This proves the remaining part of the proposition.

2.3. Stable model

In this section we finally give a complete description of a semi-stable model of X0(125).
Essentially, this will be done in two steps. First, we show that lying over the two mini-
mal affinoid disks of Proposition 2.2.2 (containing the ramification points) there are two
genus-2 affinoids in X0(125) with good reduction. Since X0(125)+ has good reduction at
v5(y) = 3/4, and the extension is a trivial two-sheeted cover over this region, there will
then be two more genus-2 affinoids in X0(125) that are isomorphic copies of this one. So
just from the fact that the genus of X0(125) is 8, there can be no other nontrivial components
in the stable model. However, in the main part of Proposition 2.3.2 we show that there is
one component of genus 0 that meets the four genus-2 affinoids in distinct residue classes.
This determines the stable model, and a figure summarizing this data along with the results
of [9, 4] then concludes the section.

Proposition 2.3.1. Let s1 be the s-coordinate of any of the ten ramification points in the
extension from X0(125)+ up to X0(125). The region lying over the affinoid disk v5(s−s1) �
13/50 is a genus-2 affinoid with good reduction.
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Proof. For convenience, we reparameterize this disk with the disk described by v5(t) � 0,
by letting t = β(s − s1), where β ∈ C5 is anything satisfying v5(β) = −13/50. This
places one ramification point at t = 0, and the other four on the circle v5(t) = 0. To fix
notation, say the t-coordinates of the other four ramification points are α1, α2, α3 and α4,
where v5(αi) = 0 and v5(αi − αj ) = 0 for i �= j .

Now, we know that the quadratic extension can be obtained by taking the square root of
an appropriate analytic function. For example, if we let z = 2xu − y, Equation (2) simply
becomes z2 = y2 − 20x. The function y2 − 20x has been shown to have simple roots at
the five ramification points, and no other roots (on this disk). Therefore we may rewrite
Equation (2) in terms of t and z as

z2 = t (t − α1)(t − α2)(t − α3)(t − α4)P (t),

where P(t) = a0 + a1t + a2t
2 + · · · is an analytic and non-vanishing function on the disk

v5(t) � 0. But this means that v5(a0) < v5(ai) for all i > 0 (see, for example, [11, 6.2.2]).
Therefore, by making the subsitution z1 = z/

√
a0, we arrive at a model for the quadratic

extension of the disk that has the following reduction:

z2
1 = t (t − α1)(t − α2)(t − α3)(t − α4). (6)

Since the roots of the right-hand side are distinct, this is the equation for a genus-2 curve
over F̄5, which proves the proposition.

Proposition 2.3.2. The stable model of X0(125) has five components: four genus-2 com-
ponents that do not intersect each other, and one genus-0 component, which intersects each
of the others in exactly one place.

Proof. By using the quadratic formula and an appropriate expansion for the square root, it is
straightforward to show that the regions v5(y) < 7/10 and v5(y) > 7/10 of X0(125)+ split
trivially in the degree-2 extension (as in [9, 4.3]). Therefore, over the affinoid v5(y) � 3/4,
which was shown in Section 2.1 to have good reduction and genus-2, we have two isomorphic
copies in X0(125). In addition, we have just shown in Proposition 2.3.1 that there are
two more genus-2 affinoids with good reduction lying over two disks within the circle
v5(s) = 6/25. Since the genus of the whole curve X0(125) is only 8, there can be no other
non-trivial components in the stable model. All that remains, then, is to understand how
these components fit together, and to see whether or not there are also genus-0 components
in the stable model.

To answer this question, it suffices to look at the reduction of Equation (2) over an
appropriate affinoid. So we choose ramification points s1 and s2 as before, with
v5(s1 − s2) = 6/25, and we define an affinoid B ⊆ As by

B = {s ∈ As | v5((s − s1)(s − s2)) = 12/25}.
In other words, B is just the circle v5(s) = 6/25 minus the two residue disks containing the
ramification points in the extension up to X0(125). Let B̂ denote the affinoid of X0(125)

lying over B.
Recall that on this region, v5(x) = 2/5 and v5(x − r) > 2/5 for a particular r ∈ C5 that

satisfies r5 + 25r − 25 = 0. It follows then that if we make the substitutions s0 = s/α and
u0 = u/β, where v5(α) = 6/25 and v5(β) = 3/10, Equation (2) reduces to the following:

u2
0 − α5

√
15βr

s5
0u0 + 5

β2r
= 0. (7)
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Switched by AL

Fixed by AL

Fixed by AL

E
1

E
2

v(y)=.7

+

+

Switched by AL

Figure 1: X0(125)/C5, Semi-stable covering

Equation (7) is nonsingular over the reduction of B̂. Indeed, the two residue disks that were
removed from As correspond precisely to the s0-coordinates of the two (finite) singular
points over F̄5. Therefore, B̂ has good reduction. Furthermore, the four genus-2 affinoids
meet the reduction of B̂ in four distinct residue classes: the two singular points and the two
distinct s0 = 0 points. Therefore this genus-0 component cannot be blown down, and the
stable model can only be as claimed.

Remark. It would be interesting to determine a precise field extension over which the
stable model is defined, as well as the resulting action of the Galois group on the special
fiber. Unfortunately, this does not follow from our calculations. Specifically, we do not have
explicit equations for the two genus-2 components determined in Proposition 2.3.1. What
we do know is that the ramification index of any such field must be divisible by 100, since
the width of each of the four annuli bounding the genus-2 components is in fact 1/100.

Note 2.3.1. Figure 1 reflects all of the information from the preceding propositions re-
garding the stable model of X0(125). In addition, while the entire region described by
v5(y) < 7/10 consists of two residue disks, these two residue disks were shown in [9, 4]
to contain components of great moduli-theoretic import. In particular, this region contains
six trivial ordinary components, which are shaded in the figure. We will also show in the
following section that the two components marked ‘E1’ and ‘E2’ (that is, the two compo-
nents described by v5(y

2 − 5) = 1) map down via appropriate moduli-theoretic maps to
the unique horizontal component of Edixhoven’s model for X0(25). Therefore, while not
essential for a discussion of the stable model of X0(125), these components are essential
to an understanding of the general conjecture regarding X0(p

3) that concludes the paper.
For this reason, these features have also been included in the figure.

3. Moduli-theoretic interpretation

In this section, we begin to formulate a moduli-theoretic interpretation of the components
in the semi-stable model of X0(125) shown in Figure 1. This interpretation will then provide
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the basis for a conjecture regarding the stable model of X0(p
3). Philosophically, the main

idea is to determine the image of each component in X(1) via an appropriate map, and then
to ask what special moduli-theoretic properties are held by the elliptic curves corresponding
to points in that region.

3.1. Image in X(1) of X0(125) components

To begin mapping the components of X0(125) down to X(1), we first need to be very
precise about which maps we are using.

Definition 3.1.1. Let M, N, d ∈ N be such that dM | N . Then we define a map πd from
X0(N) to X0(M) in moduli-theoretic terms by

πd(E, C) = (E/C[d], C[Md]/C[d]).
Note 3.1.1. The map πd satisfies the compatibility condition, πd1 ◦πd2 = πd1d2 , wherever
applicable. For example, one could calculate π5 : X0(25) −→ X(1) by way of either
factorization: π5 = π5 ◦ π1, or π5 = π1 ◦ π5.

Up until now we have simply used u to refer to a parameter on X0(125), but in reality our
u is π∗

1 u, where u is a certain parameter on X0(25) and π1 is the ‘forgetful map’ as above.
So applying π1 : X0(125) −→ X0(25) amounts to just taking the u coordinate. We will
not need a formula for π5 : X0(125) −→ X0(25). For lower-level moduli-theoretic maps,
we will simply borrow the relevant formulas from [9]; we reproduce them for convenience
in Table 2.

Table 2: Moduli-theoretic maps for analysis of X0(5n)

Moduli-theoretic map Equation

π1 : X0(5) −→ X(1) π∗
1 (j) = (t2 + 2 · 53t + 55)3

t5

π5 : X0(5) −→ X(1) π∗
5 (j) = (t2 + 10t + 5)3

t

w5 : X0(5) −→ X0(5) w∗
5(t) = 125

t

π1 : X0(25) −→ X0(5) π∗
1 (t) = u5

u4 + 5u3 + 15u2 + 25u + 25

π5 : X0(25) −→ X0(5) π∗
5 (t) = u(u4 + 5u3 + 15u2 + 25u + 25)

w25 : X0(25) −→ X0(25) w∗
25(u) = 5/u

Proposition 3.1.1. The two components marked E1 and E2 in Figure 1, specifically the
regions described by v5(y

2 − 5) = 1, are exactly the inverse images via π5 and π25 of the
disk v5(j) � 5/2 in X(1).

Proof. From the proof of [9, 4.4], it follows that one component, say E1, is precisely
the inverse image via π1 of the affinoid in X0(25) described by v5(u

2 − 5) = 1. The
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other component, say E2, is the inverse image via π1 of the circle v5(u) = 1/10. To
interpret E1, we first apply π5 : X0(25) −→ X0(5) (using the formula from Table 2) to
see that E1 is precisely the inverse image of the circle v5(t) = 5/2. Then, by composing
with π1 : X0(5) −→ X(1), we find that E1 is actually the inverse image via π5 of the disk
v5(j) � 5/2 inside X(1). Similarly, we interpret E2 by applying π25. First, E2 is the inverse
image via π5 of the circle v5(t) = 1/2 inside X0(5). Then, by composing with π5 again, we
conclude that E2 is actually the inverse image via π25 of that same disk, v5(j) � 5/2.

Proposition 3.1.2. The region v5(y) � 7/10 in X0(125) maps via π5 onto the circle
v5(j) = 3/2 in X(1). The images of the four genus-2 affinoids lie in four distinct residue
classes within this circle, specifically described by v5(j

4 − 56) > 6.

Proof. From Equations (1) and (2) it follows that v5(y) � 7/10 is exactly the inverse
image in X0(125) via π1 of the region v5(u) = 3/10. Then, from the formula for π5 :
X0(25) −→ X0(5), this is the entire inverse image of the circle v5(t) = 3/2 in X0(5).
By the formula for π1 : X0(5) −→ X(1), this in turn maps onto the circle v5(j) = 3/2
inside X(1). Furthermore, since the maps are approximately π∗

5 t = u5 and π∗
1 j = t when

restricted to the circles v5(u) = 3/10 and v5(t) = 3/2, the composition map is one-to-one
on residue classes. Now, in the proof of Proposition 2.3.2 (see Equation (7)), it was shown
that π1 maps the four genus-2 components into four distinct residue disks within the circle
v5(u) = 3/10. Therefore, the only issue remaining is which four residue disks inside the
circle v5(j) = 3/2 contain the images.

Recall that two of the affinoids contain the ten ramification points in the extension up
from X0(125)+. This set of points maps via π5 onto the two points of X0(5) satisfying
the equation t2 = 125. Therefore the images of these two affinoids in X0(5) lie in the
two residue disks described by v5(t

2 − 125) > 3. Of course this means that the affinoids
map via π5 into the residue disks v5(j

2 − 125) > 3 inside of X(1). Now we look at
the other two affinoids, which by Equation (7) land via π1 inside the disks described by
v5(u

2 + 5/r) > 3/5, where r was a root of the equation r5 + 25r − 25 = 0. Doing some
quick arithmetic, we find that this is equivalent to

v5(u
10 + 55/r5) > 3 ⇐⇒ v5(u

10 + 53) > 3.

Then, applying first π5 : X0(25) −→ X0(5) and then π1 : X0(5) −→ X(1), we see that
these disks map onto the two disks of X(1) described by v5(j

2 + 125) > 3. Therefore, all
four residue disks within the circle v5(j) = 3/2 can now be described by v5(j

4 − 56) > 6,
as claimed.

Note 3.1.2. From the formulas for w5 and π1 : X0(5) −→ X(1), the circle v5(t) = 3/2
is the Atkin–Lehner circle of X0(5) (fixed by w5), and v5(j) = 3/2 is its image via the
forgetful map.

3.2. Computing the too-supersingular region of X(1)

In the previous section we defined two affinoids of X0(125), E1 and E2, which mapped
via π5 and π25 respectively onto the disk v5(j) � 5/2 inside of X(1). It is fairly straight-
forward to provide a moduli-theoretic description for the points lying in this disk. In partic-
ular, we will now show that this disk consists of all points corresponding to an elliptic curve
E which is in the language of [2] too-supersingular – that is, a curve that has no canonical
subgroup.

Proposition 3.2.1. The curve E/C5 is too-supersingular if and only if v5(j (E)) � 5/2.
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Proof. Parameterize the supersingular disk using the disk v5(t) > 0 and the map that takes
each t to the j -invariant of the following curve:

Et : y2 = x3 + tx + 1; j (t) = 6912t3

4t3 + 27
.

Strictly speaking, this is a degree-3 covering of the supersingular disk, ramified only at
j = 0.

Working out the (degree-12) polynomial for the x-coordinates of Et [5], we see that
the Newton polygon has vertices {(0, 0), (10, v5(t)), (12, 1)} when v5(t) < 5/6, and
{(0, 0), (12, 1)} otherwise. If we take z = x/y to be a parameter at infinity (containing
all of Et [5] since Et is supersingular), this translates to the following information. When
v5(t) < 5/6 we have v5(z) = v5(t)/20 for twenty of the points in Et [5], and

v5(z) = 1 − v5(t)

4
>

v5(t)

20
for the other four points (the canonical subgroup, along with z = 0). When v5(t) � 5/6,
we have v5(z) = 1/24 for all nonzero points of Et [5], and therefore there is no canonical
subgroup. This proves the claim, since v5(j) = 3v5(t).

Note 3.2.1. Robert Coleman has shown in [3] that the unique horizontal component (for a
given supersingular curve mod p) of Edixhoven’s model for X0(p

2) is exactly the inverse
image via π5 of the corresponding too-supersingular disk. This justifies the choice of the
names E1 and E2, since it now follows from Propositions 3.1.1 and 3.2.1 that these two
components are simply π−1

1 and π−1
5 of Edixhoven’s horizontal component for X0(25).

3.3. Placement data for CM elliptic curves in X(1)

From Propositions 3.1.1 and 3.2.1, we have a clear way to interpret the components
E1 and E2 in the semi-stable model for X0(125). In particular, the component E1 simply
contains all points corresponding to pairs (E, C) such that E/C[5] is too-supersingular.
Likewise, the component E2 simply contains all points corresponding to pairs (E, C) such
that E/C[25] is so. Similarly, there is a clear moduli-theoretic interpretation for the union
of the components of Proposition 3.1.2, as the entire region v5(y) � 7/10 has been shown
to be precisely π−1

5 of the Atkin–Lehner circle of X0(5). What is still unclear at this time
is how to interpret the four special disks inside of the circle v5(j) = 3/2, described by
v5(j

4 − 56) > 6, which contain the images of the four genus-2 affinoids of X0(125). In
this section, we attempt to answer that question with empirical data placing certain types
of ‘CM points’ in those disks. We begin by making a conjecture regarding the placement
of the j -invariants of CM curves E/C5 such that End(E) ⊗ Z5 is the maximal order in a
ramified (quadratic) extension of Q5.

Conjecture 3.3.1. Suppose that E/C5 is an elliptic curve with CM.

(1) If End(E) ⊗ Z5 ∼= Z5[
√−5], then v5(j (E)2 − 125) > 3.

(2) If End(E) ⊗ Z5 ∼= Z5[
√−10], then v5(j (E)2 + 125) > 3.

To provide empirical evidence in support of the conjecture, we have worked out explicitly
the j -invariants of various curves with these two types of CM. For a given endomorphism
ring R, this is done by first determining explicit representatives for the ideal class group
of R (using [8, 8 Section 1] for non-maximal orders). Then, writing each representative as
c(Z + τZ), we use the usual q-expansion formula to approximate j (τ ) sufficiently well.
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From the theory of CM curves, these j -invariants (for a fixed R) are conjugate algebraic
integers, so that the polynomial with these roots is monic and has integer coefficients. The
conjecture is verified, then, if this polynomial in j is sufficiently close 5-adically to a power
of j2 − 125 (Case 1) or j2 + 125 (Case 2). For easy verification of a few of the most basic
examples (and to make the conjecture more concrete), we have included some complete
sets of τ values in Tables 3 and 4.

Table 3: Examples for Case 1 of Conjecture 3.3.1

End(E) Values of τ

Z
[√−5

]
τ = √−5, 1+√−5

2

Z
[
2
√−5

]
τ = 2

√−5, 2(1+√−5)
3 , 2(2+√−5)

3 , 2
√−5

5

Z
[
3
√−5

]
τ = 3

√−5, 3(1+√−5)
2 , 3

√−5
5 , 3(3+√−5)

7

Z
[√−30

]
τ = √−30,

√−30
2 ,

√−30
3 ,

√−30
5

Z
[ 1+√−55

2

]
τ = 1+√−55

2 , 1+√−55
4 , −1+√−55

4 , 5+√−55
10

Z
[√−70

]
τ = √−70,

√−70
2 ,

√−70
5 ,

√−70
7

Table 4: Examples for Case 2 of Conjecture 3.3.1

End(E) Values of τ

Z
[√−10

]
τ = √−10, 1

2

√−10

Z
[
2
√−10

]
τ = 2

√−10, 2
√−10

5 , 2(2+√−10)
7 , 2(1+√−10)

11

Z
[ 1+√−15

2

]
τ = 1+√−15

2 , 1+√−15
4

Z
[√−15

]
τ = √−15,

√−15
3

Z
[ 1+√−35

2

]
τ = 1+√−35

2 , 5+√−35
6

Z
[√−65

]
τ = √−65, 1+√−65

2 , 1+√−65
3 , −1+√−65

3 ,
√−65

5 , 1+√−65
6 , −1+√−65

6 , 5+√−65
10

If true, the preceding conjecture would provide at least the beginning of a moduli-
theoretic description of the components in the stable model for X0(125). However, at the
end of the paper we will seek to propose a general conjecture for the stable model of X0(p

3).
Therefore, we will want to know how Conjecture 3.3.1 generalizes to other primes. For this
reason, we have also checked a number of examples for p = 7 and p = 13, and have found
that the data consistently supports Conjectures 3.3.2 and 3.3.3. All three conjectures will
be tied together with a general conjecture in the next and final section of the paper.

Conjecture 3.3.2. Suppose that E/C7 is an elliptic curve with CM. Let

j0(E) = j (E) − 1728.

(1) If End(E) ⊗ Z7 ∼= Z7[
√−7], then v7(j0(E)4 − 74) > 4.

(2) If End(E) ⊗ Z7 ∼= Z7[
√−21], then v7(j0(E)4 + 74) > 4.
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Conjecture 3.3.3. Suppose that E/C13 is an elliptic curve with CM. Let

j0(E) = j (E) − 5.

(1) If End(E) ⊗ Z13 ∼= Z13[
√−13], then v13(j0(E)14 − 137) > 7.

(2) If End(E) ⊗ Z13 ∼= Z13[
√−26], then v13(j0(E)14 + 137) > 7.

3.4. Conjectural moduli-theoretic interpretation

For a conjecture regarding the components in the stable model ofX0(p
3), it is at least clear

what ‘types’of components are suggested by the X0(125) data. We will naturally conjecture
that in general, for each supersingular elliptic curve (at least defined over Fp), we have
components that look like E1, E2, the four genus-2 components, and the trivial component
that intersects the others. In other words, we will conjecture that there are components that
have the same moduli-theoretic properties that the components in our semi-stable covering
of X0(125) have been either proven or conjectured to have. Of the various ways in which
to improve such a conjecture, one way would certainly be to conjecture the number of such
components, and to give an explanation of the number. This we will do with the help of
Lemma 3.4.1. Conjecture 3.4.1 uses the lemma to generalize the conjectures of the previous
section regarding the placement of CM j -invariants. Conjecture 3.4.2 then takes this into
account in describing the stable model of X0(p

3). Finally, we conclude the paper with a
guess that goes one step farther and predicts the genera of the components.

Definition 3.4.1. Choose α ∈ Fp a quadratic non-residue, and i ∈ Fp2 with i2 = α. Then
we define a finite Fp-algebra

Āp = Fp[i, εj , εk],
where εj εk = εkεj = ε2

j = ε2
k = 0 and iεj = εk = −εj i.

Lemma 3.4.1. F∗
p2 acts on the nilradical N (Āp) = {cεj + dεk} so that:

(1) Sta(x) = F∗
p, and consequently | Orb(x)| = p + 1 for all x �= 0;

(2) for all x1 = c1εj + d1εk and x2 = c2εj + d2εk ,

x1 ∼ x2 ⇐⇒ c2
1 − αd2

1 = c2
2 − αd2

2 .

Proof. The action is simply conjugation, after identifying Fp2 with Fp[i] of course. Now,
for part (1), let x = cεj + dεk and a + bi ∈ Sta(x). Then, by definition,

(a + bi)(cεj + dεk)
a − bi

a2 − αb2 = cεj + dεk.

Solving and setting εj and εk coefficients equal, this leads to the following system of linear
equations in c and d:

(2b2α)c + (2abα)d = 0;
(2ab)c + (2b2α)d = 0.

When b = 0 (that is, when a +bi ∈ F∗
p), the system is trivially satisfied for all (c, d). When

b �= 0, however, the determinant is 4b2α(b2α − a2) �= 0 and therefore x = 0 is the only
solution.

Similarly, it is a straightforward exercise in congruences to verify half of Part (2), namely
that x1 ∼ x2 implies that c2

1 −αd2
1 = c2

2 −αd2
2 . This means that as soon as c2−αd2 = k �= 0
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has one solution, it must have at least p +1 solutions, by part (1). But c2 −αd2 = k always
has a solution, since the set {αd2 + k} has (p + 1)/2 elements and therefore must contain
a quadratic residue. Therefore we are done, since there are p − 1 choices for k �= 0, p + 1
solutions to c2 − αd2 = k, and only p2 − 1 nonzero elements of N (Āp) − {0} to begin
with.

The reason that this lemma is relevant is as follows. Let A be a supersingular curve so
that End(A)⊗Fp

∼= Āp. The isomorphism is non-canonical, but it suffices to choose an iso-
morphism once and for all. Now suppose that E/Cp is a CM curve with p|| Disc(End(E))

and such that Ē ∼= A. Identify End(E) with a subring of Cp via the canonical embed-
ding coming from the action of End(E) on holomorphic differentials. Then, for every
isomorphism λ : Ē −→ A, we obtain an embedding σλ : End(E) −→ End(A). Further-
more, part (2) of Lemma 3.4.1 implies that for any uniformizer u ∈ End(E), the conjugacy
class of σλ(u) inside End(A) ⊗ Fp

∼= Āp is independent of λ. So without taking λ into
account, there are only p + 1 options for the image of σλ(u) inside Āp. To illustrate this
point, consider the following example.

Example 3.4.1. Let E/C7 be a curve with End(E) = Z[√−7], and let A be the unique
supersingular elliptic curve in characteristic 7. From [10, 5.1] we may take End(A) to
be a maximal order in the quaternion algebra Q[i, j, k] with i2 = −1, j2 = −7 and
ij = −ji = k. Let u be the uniformizer 2

√−7 ∈ End(E), and suppose that for a particular
isomorphism λ : Ē −→ A we have σλ(u) = a + bi + cj + dk. Since

(a + bi + cj + dk)2 = a2 − b2 − 7c2 − 7d2 + 2a(bi + cj + dk) = −4 · 7,

we must immediately have a = 0 and b ≡ 0 (mod 7). Therefore we have c2 + d2 ≡ 4,
which means that for this example the image of σλ(u) inside Ā7 must lie in the conjugacy
class (of eight elements) containing

{±2εj , ±2εk, ±3εj ± 3εk}.
However, the precise image of σλ(u) is not independent of λ. So we cannot yet use this

image to put an equivalence relation on the set of curves with a given endomorphism ring.
To obtain an invariant that is independent of λ, we first note that Aut(A) acts transitively
on the set of isomorphisms from End(Ē) to End(A) via conjugation, with ±1 as the kernel
in all cases. So, letting i(A) = | Aut(A)|/2, we see that the conjugacy class defined by u

inside of Āp can be broken down into (p + 1)/i subsets, so that the subset containing the
image of σλ(u) is now independent of λ. Again, we illustrate this point by revisiting the
previous example.

Example 3.4.2. The unique supersingular curve A in characteristic 7 has | Aut(A)| = 4. In
terms of the above identification, the automorphism group is generated by the (invertible)
element i. So, for example, if σλ(u) ≡ 2j for some λ, then σiλ(u) ≡ i(2j)i−1 = −2j .
This means that if we want to associate to u an element of Ā7 that is independent of λ, we
cannot distinguish between ±2εj . Similarly, conjugation by i breaks down the entire set of
eight elements into four subsets of order 2, namely

{±2εj }, {±2εk}, {±(3εj − 3εk)}, and {±(3εj + 3εk)}.
So, independent of λ, it makes sense to say that there are 4 = (7 + 1)/2 options for the
image of σλ(u) in Ā7.
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of discs in ALπ−1
p

π−1
p
(AL)

Six ordinary components

E E
1 2

Figure 2: Conjectural partial graph of X0(p
3) stable reduction

The result of the preceding argument is that we have shown how to put an equivalence
relation with (p + 1)/i (possibly empty) classes on the set of CM curves E, reducing to a
fixed supersingular curve A and with a fixed endomorphism ring such that p|| Disc(End(E)).
Indeed, with the same argument we may even generalize the relation by requiring only that
End(E) ⊗ Zp be fixed. Since there are only two ramified quadratic extensions of Qp, this
makes a total of 2(p + 1)/i classes into which all such CM curves must fall. What we have
not shown, however, is that this equivalence relation is reflected somehow in the geometric
placement of the j -invariants of these CM curves inside of X(1). So we have provided
evidence for Conjecture 3.4.1, which would explain Conjectures 3.3.1, 3.3.2 and 3.3.3 with
a general theory. However, we do not yet have a proof of the result at this time.

Conjecture 3.4.1. Let A be a supersingular elliptic curve defined over Fp, and let i =
i(A) = |Aut(A)|/2.

(1) The j -invariants of all CM curves E/Cp such that Ē = A and

p|| Disc(End(E))

lie in 2(p + 1)/i residue disks inside the corresponding Atkin–Lehner circle, (p + 1)/i for
each ramified quadratic extension of Qp.

(2) Two such curves, E1 and E2, lie in the same residue disk if and only if

End(E1) ⊗ Zp = End(E2) ⊗ Zp

and for any uniformizer u ∈ Cp of the common image we have

σλ1(u) ≡ σλ2(u) ∈ Āp, for some λi : Ēi −→ A, i = 1, 2.

Conjecture 3.4.2. There is a semi-stable covering of X0(p
3) defined over Rp such that

for each supersingular elliptic curve A defined over Fp there is a connected component of
the supersingular locus containing (only) the following:

(1) one component lying via πp over the Atkin–Lehner circle (of A);

(2) two components, E1 and E2, which are π−1
p and π−1

p2 of the too-supersingular disk
(of A); and

(3) 2(p + 1)/i components lying via πp over the CM disks of Conjecture 3.4.1.

The intersections of these components with each other, and with the six ordinary components
of X0(p

3) are as pictured in Figure 2.

It is important to acknowledge that Conjecture 3.4.2 is based on just one very well-
understood example. Ironically, however, if we make a more precise conjecture, it is easy to
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0

Eight genus-3 components 11

0
0
0

0
0

Figure 3: Conjectural graph of X0(73) semi-stable model, g = 26.

Twenty-eight genus-6 components

00

6 6

1
1

1
1

Figure 4: Conjectural graph of X0(133) semi-stable model, g = 184.

0

Twelve genus-8 components

Thirty-six genus-8 components

2 2

8 8

0 2 2 2 2 0
0

Figure 5: Conjectural graph of X0(173) semi-stable model, g = 417.

obtain far more corroborating data. In particular, from looking more closely at the X0(125)

example, one might go so far as to hazard the following guess.

Guess. The component lying over AL is trivial, E1 and E2 are analytically isomorphic
copies of Edixhoven’s horizontal component, and each component lying over a CM disk
has genus (p − 1)/2 (and is hyperelliptic).

These statements also hold for X0(125), and with the guess it becomes possible to
generate complete graphs of conjectural semi-stable models for X0(p

3). The genera of E1
and E2 each come directly from [6, 2.5]. The genera of the ordinary components come from
[6, 2.5] and the fact (from [3, Section 1, the ‘coup de grâce’]) that the four nontrivial ordinary
components of X0(p

3) are isomorphic copies of the two nontrivial ordinary components of
X0(p

2). Using this approach, we have generated graphs for X0(73), X0(133), and X0(173)

(see Figures 3, 4, and 5). In each of these cases, and in fact even in the general case, it is
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easy to show that the total genus of the curve is at least correct. While it is perhaps too early
to make the guess an official conjecture, the corroborating data of this genus calculation
seems to be very promising.
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