
1 The Failure of Classical Physics

At the beginning of the twentieth century, classical physics – Newtonian mechanics and electromag-
netic theory (Maxwell’s equations, wave phenomena, and optics) – could not explain a number of
experimental facts, including the observed black-body radiation spectrum, the photoelectric effect,
the stability of atoms and the associated spectral lines, the heat capacities of solids, and several
others. The following problems are intended to illustrate the failure of classical physics to explain
these phenomena and how this failure pointed to the need for a radically new treatment.

1.1 Problems

Problem 1 Black-Body Radiation Spectrum

Consider an enclosure of volume V whose walls are kept at temperature T, and define as u(ν, T) dν
the energy density (energy per unit volume) of electromagnetic radiation in the frequency interval ν
to ν + dν. In the mid nineteenth century (at the height of classical physics!), Gustav Kirchoff was
able to show, on the basis of purely thermodynamic arguments, that the distribution u(ν, T) has a
universal character. He also calculated the energy per unit time of radiation of given frequency that
strikes a small area A of the enclosure walls. He introduced polar coordinates r, θ, and φ, where r
is the distance from a point P in the enclosure to the area A, the polar angle θ is measured from the
normal to A and the azimuthal angle φ is measured around the normal to A. The area subtends a solid
angle at P given by A cos θ/r2 and the fraction of radiation energy from P that is directed to A is
given by A cos θ/(4πr2). The total energy in the frequency interval ν to ν + dν that strikes the area
A at time t is then obtained as∫ 2π

0
dφ

∫ π/2

0
dθ sin θ

∫ ct

0
dr r2 A cos θ

4πr2 u(ν, T) dν =
ctA
4

u(ν, T) dν ,

where the integration is restricted to a hemisphere of radius ct, c being the speed of light, with θ
varying in the range 0 to π/2. Given the finite velocity c of propagation, only radiation within this
hemisphere will reach the area A in the time t. Denoting by f (ν, T) the fraction of this energy that is
absorbed by the enclosure walls, we have that the total absorbed energy per unit time and area is

E(ν, T) =
c
4

f (ν, T) u(ν, T) dν .

In a situation of equilibrium, E(ν, T) must equal the energy per unit time and area emitted by the
enclosure walls in the same frequency interval. The fraction f (ν, T) of absorbed radiation can be at
the most equal to unity. Indeed, a material for which f (ν, T) = 1 is called black, and hence the name
“black-body radiation” used to describe the present phenomenon.
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2 The Failure of Classical Physics

Electromagnetic radiation in an enclosure can be described in terms of an infinite set of uncoupled
harmonic oscillators. The equipartition theorem of classical statistical mechanics then leads to a
prediction for u(ν, T) that is in contradiction with the experimental data and produces nonsensical
results in the limit of high frequency ν, leading to the so-called ultraviolet catastrophe. The goal of
the present problem is to see how this comes about.

1. Write down Maxwell’s equations for the electric and magnetic fields, E(r, t) and B(r, t), in the
absence of charge and current distributions (use CGS units).

2. Consider the enclosure to be a cubical box of side V1/3, and impose periodic boundary conditions
on the fields, namely

E(x + V1/3, y, z, t) = E(x, y, z, t) , B(x + V1/3, y, z, t) = B(x, y, z, t) ,

and similarly for y and z. Given that the E and B components are periodic functions, they can be
expanded in Fourier series of the form

Ei(r, t) =
∑

k
Ẽi(k, t) eik·r , Bi(r, t) =

∑
k

B̃i(k, t) eik·r ,

where the quantities carrying tildes are coefficients and the wave number k =(kx, ky, kz) is given by

k =
2π
V1/3 n , n = (nx, ny, nz) , ni = 0,±1,±2, . . .

Insert these expansions into Maxwell’s equations and show that Ẽ(k, t) satisfies

∂2Ẽ(k, t)
∂t2

= −ω2
k Ẽ(k, t) , ωk = c|k| = c

2π
V1/3 |n| .

How many independent directions of Ẽ are there? Further, show how to obtain B̃(k, t).
3. In the limit of large V1/3, the wave numbers k are densely distributed. Show that in this limit the

number of independent harmonic oscillators (normal modes) in dk is as follows:

number of modes in dk = ρ(k) dk = 2
V

(2π)3 dk .

Recalling that in classical statistical mechanics the average energy of a harmonic oscillator kept at
temperature T is simply kBT, where kB is Boltzmann’s constant, and that the frequency ν is related
to the wave number |k| via c|k|/(2π), show that the energy density of radiation with frequencies
between ν and ν + dν is given by the Rayleigh–Jeans law

u(ν, T) dν = 8π
kBT
c3 ν2 dν .

For a fixed temperature the above prediction is in agreement with the data only for small values of
the frequency; it fails spectacularly at larger values. Furthermore, the total energy density of the
radiation, obtained by integrating over ν, is found to be infinite – the aforementioned ultraviolet
catastrophe; see Fig. 1.1.

4. Following Einstein, suppose that the radiation energy of frequency ν is quantized in integer
multiples of hν, where h is Planck’s constant. Calculate the average energy of radiation of
frequency ν, given that the probability that there are n quanta is

pn =
e−nhν/kBT∑∞

n=0 e−nhν/kBT .
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Fig. 1.1 The black-body radiation energy density per unit frequency: classical (Rayleigh–Jeans) versus quantum (Planck) description.
The experimental data are in agreement with the quantum description.

Obtain the energy density in this case – the correct black-body radiation formula first derived by
Planck. Show that the total energy density, that is, the energy density integrated over frequency ν,
is proportional to T4.

Solution

Part 1

In the absence of charge and current distributions, Maxwell’s equations read (in the CGS system of
units)

∇ · E(r, t) = 0 , ∇ × E(r, t) = −∂B(r, t)
c ∂t

,

∇ · B(r, t) = 0 , ∇ × B(r, t) =
∂E(r, t)

c ∂t
,

where c is the speed of light.

Part 2

By inserting Fourier expansions into the set of Maxwell’s equations, we obtain∑
k

i k · Ẽ(k, t) eik·r = 0 ,
∑

k
i k × Ẽ(k, t) eik·r = −

∑
k

∂B̃(k, t)
c ∂t

eik·r ,

∑
k

i k · B̃(k, t) eik·r = 0 ,
∑

k
i k × B̃(k, t) eik·r =

∑
k

∂Ẽ(k, t)
c ∂t

eik·r ,

from which we deduce that the vectors Ẽ and B̃ are perpendicular to the wave number k,

k · Ẽ(k, t) = 0 , k · B̃(k, t) = 0 ,

and satisfy the differential equations

∂B̃(k, t)
c ∂t

= −i k × Ẽ(k, t) ,
∂Ẽ(k, t)

c ∂t
= i k × B̃(k, t) .
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4 The Failure of Classical Physics

By taking the partial derivative ∂/(c ∂t) of both sides of the second equation above, we find

∂2Ẽ(k, t)
c2 ∂t2

= i k × ∂B̃(k, t)
c ∂t

= i k ×
[
−i k × Ẽ(k, t)

]
= k

[
k · Ẽ(k, t)

]
︸���������︷︷���������︸

vanishes

−k2 Ẽ(k, t) ,

where we have used the cross product property A × (B × C) = B (A · C) − C (A · B). The equation
above reduces to

∂2Ẽ(k, t)
∂t2

= −ω2
k Ẽ(k, t) , ωk = c|k| = c

2π
V1/3 |n| ,

which shows that Maxwell’s equations in the absence of sources are equivalent to an infinite set
of uncoupled harmonic oscillators. The initial condition Ẽ(k, t0) and that on ∂Ẽ(k, t)/∂t at time t0,
which follows from ic k×B̃(k, t0), determine Ẽ(k, t). For each wave number k and angular frequency
ωk there are two harmonic oscillators, corresponding to the two possible independent directions of
the vector Ẽ(k, t) in the plane perpendicular to k, that is, the two independent polarizations of the
electric field. Once the electric field Ẽ(k, t) has been determined, the magnetic field B̃(k, t) follows
from direct integration of the equation obtained above,

∂B̃(k, t)
c ∂t

= −i k × Ẽ(k, t) .

Part 3

In the limit of large V1/3, we can describe the distribution of modes with a function ρ(k). Since there
is a single wave number in each cell centered at k and with volume (2π)3/V, given that the allowed
k values are close to each other, the function ρ(k) must satisfy the condition

ρ(k)
(2π)3

V
= 2 =⇒ ρ(k) = 2

V
(2π)3 ,

where the factor 2 accounts for the two independent polarizations associated with each given k. We
then obtain

number of modes in dk = ρ(k) dk = 2
V

(2π)3 dk ,

and the energy density of radiation between ν and ν + dν is given by

u(ν, T) dν =
1
V

kBT × (number of modes in dν) .

Recalling the relation between |k| and ν, it follows that

number of modes in dν = 2
V

(2π)3 4πk2 dk = 8π
V
c3 ν

2 dν ,

yielding the Rayleigh–Jeans law for the energy density of radiation:

u(ν, T) dν = 8π
kBT
c3 ν2 dν .
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Part 4

Setting γ = hν/(kBT) for the time being, the average energy is now given by

〈energy〉 = hν
∑∞

n=0 ne−n γ∑∞
n=0 e−n γ = −hν

d
dγ

ln ��
∞∑

n=0

e−n γ�	 = −hν
d

dγ
ln

(
1

1 − e−γ

)
,

where the last step follows from summing the geometric series (here e−γ < 1):
∞∑

n=0

(
e−γ

)n
=

1
1 − e−γ

.

After carrying out the derivative in γ, we find

〈energy〉 = hν
ehν/kBT − 1

,

and therefore

u(ν, T) dν =
1
V
〈energy〉 × (number of modes in dν) =

8πh
c3

ν3

ehν/kBT − 1
dν ,

the correct black-body radiation formula first derived by Planck. Comparison with observation gives
kB ≈ 1.38 × 10−16 erg/K and h ≈ 6.63 × 10−27 erg sec. The formula above reproduces the Rayleigh–
Jeans law at small hν/(kBT) but predicts an exponential fall-off at large frequency, in agreement with
experimental data; see Fig. 1.1. In particular, the total energy density is now finite and is proportional
to T4, since

∫ ∞

0
u(ν, T) dν =

8πh
c3

(
kBT
h

)4

π4/15︷������������︸︸������������︷∫ ∞

0

x3

ex − 1
dx =

8π5

15
k4

B
h3c3 T4 ,

where in the integral we have introduced the non-dimensional variable x = hν/(kBT). Thus, the
successful explanation of the black-body energy spectrum sketched above suggests that light of
frequency ν consists of quanta of energy hν.

Problem 2 Compton Scattering for an Electron in Motion in the Lab Frame

Consider the scattering of monochromatic photons by free electrons (Compton scattering).

1. Assuming that the electron is initially at rest and using energy and momentum conservation, show
that the shift in the photon wavelength Δλ = λγ

f
− λγi is given by

Δλ = 2λe sin2 θ0/2 with λe =
h

mc
,

where m is the electron mass, c is the speed of light, and θ0 is the angle between the momentum
of the scattered photon and the momentum of the incident photon. Determine (under the same
assumption) the magnitude and direction of the recoil momentum of the electron as a function of
the incident-photon energy Eγi and scattering angle θ0.

2. Assume that the electron has an initial momentum pi parallel to the incident-photon momentum
pγi . Using energy and momentum conservation, show that the wavelength shift is given by

Δλ = 2λγi
pγi + pi

Ei/c − pi
sin2 θ/2 ,
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6 The Failure of Classical Physics

where λγi is the wavelength of the incident photon, θ is the angle of the scattered photon, and

Ei = c
√

p2
i + (mc)2 is the initial energy of the electron.

3. Show that the result in part 2 can be derived from the expressions in part 1 when the electron is
initially at rest, by a suitable Lorentz transformation.

Solution

Part 1

In the rest frame of the electron, let pγ ′i and pγ ′
f

be the incident- and scattered-photon momenta.
Energy and momentum conservation give

pγ ′i = pγ ′
f
+ p′f , Eγ ′i + mc2 = Eγ ′

f
+ E′f ,

where p′f and E′f denote the scattered-electron momentum and energy. Exploiting momentum
conservation, we have

Eγ ′i + mc2 − Eγ ′
f
= c

√
(mc)2 + (pγ ′i − pγ ′

f
)2 .

Squaring both sides and recalling that the photon is massless (and hence Eγ = c |pγ |), we arrive at

2mc2 (
Eγ ′i − Eγ ′

f

) − 2Eγ ′i Eγ ′
f
= −2Eγ ′i Eγ ′

f
cos θ0 ,

yielding

Eγ ′
f
=

Eγ ′i

1 + (Eγ ′i /mc2)(1 − cos θ0)
=

Eγ ′i

1 + 2(Eγ ′i /mc2) sin2(θ0/2)
,

where θ0 is the photon scattering angle (in the electron rest frame). Recalling that for a photon

Eγ = �ωγ = �c|kγ | = 2π�c
λγ

=
hc
λγ

,

the relationship between the initial and final photon energies can be cast in terms of the initial and
final wavelengths as

hc
λ
γ′
f

=
hc
λ
γ′
i

1
1 + 2(hc/(λγ′i mc2)) sin2(θ0/2)

=⇒ λ
γ′
f
= λ

γ′
i + 2

h
mc︸︷︷︸
λe

sin2(θ0/2) ,

the required expression for the wavelength shift Δλ′ = λγ′
f
− λγ′i is

Δλ′ = 2λe sin2(θ0/2) ,

where λe is the Compton wavelength of the electron. In order to determine the electron scattering
angle in the initial electron rest frame, we use momentum conservation to obtain

pγ′i = pγ′
f

cos θ0 + p′f cos θe
0 , 0 = pγ′

f
sin θ0 + p′f sin θe

0 ,

where θe
0 is the electron scattering angle. We have

p′f sin θe
0 = −pγ′

f
sin θ0 , p′f cos θe

0 = pγ′i − pγ′
f

cos θ0 ,
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yielding

tan θe
0 = −

pγ′
f

sin θ0

pγ′i − pγ′
f

cos θ0
= − sin θ0

Eγ′i /Eγ
′

f
− cos θ0

.

Using

Eγ ′i /Eγ′
f
= 1 + (Eγ ′i /mc2)(1 − cos θ0) ,

we arrive at

tan θe
0=−

sin θ0

1 + (Eγ ′i /mc2)(1 − cos θ0) − cos θ0
=− sin θ0

1 − cos θ0

1
1 + Eγ ′i /mc2

=− cot(θ0/2)

1 + Eγ ′i /mc2
.

To determine the magnitude of the electron’s final momentum, we square both sides of the energy-
conservation relation to find

c2(p′2f + m2c2)︸������������︷︷������������︸
E′2
f

= Eγ′2i + Eγ′2
f
+ m2c4 + 2mc2(Eγ′i − Eγ′

f
) − 2Eγ′i Eγ′

f︸�������������������������������������������������������������︷︷�������������������������������������������������������������︸
(Eγ′i +mc2−Eγ′

f
)2

,

which reduces to

c2p′2f = (Eγ′i − Eγ′
f

)(Eγ′i − Eγ′
f
+ 2mc2) .

Inserting into p′2f the expression for the difference between the initial and final photon energies,

Eγ′i − Eγ′
f
= Eγ′i

2(Eγ′i /mc2) sin2(θ0/2)

1 + 2(Eγ′i /mc2) sin2(θ0/2)
,

yields the required relation between the magnitude of the electron’s final momentum and the photon’s
initial energy and final scattering angle.

Part 2

We call the frame in which the electron has initial momentum pi the lab frame. By assumption pi is
parallel to pγi . We will denote the momenta and energies of the electron and photons by unprimed
symbols, so pγi , Eγi and pγ

f
, Eγ

f
are the initial and final photon momenta and energies and pi, E f and

p f , E f are the initial and final electron momenta and energies, respectively. Energy and momentum
conservation in this frame read

pγi + pi = pγ
f
+ p f , Eγi + Ei = Eγ

f
+ E f .

These relations imply

Ei + Eγi − Eγ
f
= c

√
(pi + pγi − pγ

f
)2 + (mc)2 ,

and squaring both sides yields

Ei(E
γ
i − Eγ

f
) − Eγi Eγ

f
= cpiE

γ
i − cpiE

γ
f

cos θ − Eγi Eγ
f

cos θ ,

where we have used the fact that pi and pγi are parallel. Rearranging terms, we find

Eγi (Ei − cpi) = Eγ
f
(Ei + Eγi ) − Eγ

f
(Eγi + cpi) cos θ ,

https://doi.org/10.1017/9781009473637.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009473637.002


8 The Failure of Classical Physics

which can be further simplified by using the identity cos θ = 1 − 2 sin2(θ/2) to obtain

Eγi (Ei − cpi) = Eγ
f
(Ei + Eγi ) − Eγ

f
(Eγi + cpi)︸�������������������������������︷︷�������������������������������︸

Eγ
f

(Ei−cpi)

+ 2Eγ
f
(Eγi + cpi) sin2(θ/2) ,

or, after dividing both sides by Ei − c pi,

Eγi = Eγ
f
+ 2Eγ

f

Eγi + cpi

Ei − cpi
sin2(θ/2) .

In terms of photon wavelengths, the above expression is written as

hc
λγi
=

hc
λγ

f

+ 2
hc
λγ

f

pγi + pi

Ei/c − pi
sin2(θ/2) =⇒ λ

γ
f
= λ

γ
i + 2λγi

pγi + pi

Ei/c − pi
sin2(θ/2) ,

resulting in a wavelength shift given by

Δλ = 2λγi
pγi + pi

Ei/c − pi
sin2(θ/2) .

Part 3

Another (instructive) way to solve the problem in Part 2 is to work in the electron’s initial rest frame,
and then transform back to the lab frame, in which the electron has initial momentum pi (parallel to
the initial photon momentum pγi ) and energy Ei. The energy of the scattered photon in the laboratory
frame follows from the Lorentz transformation relation:

Eγ
f
= γ(Eγ ′

f
+ βcpγ ′

f ,x) = γEγ ′
f

(1 + β cos θ0),

where β x̂ with β = cpi/Ei is the velocity of the electron in the lab frame, and γ = 1/
√

1 − β2.
By substituting for Eγ′

f
the expression found in part 1, we obtain

Eγ
f
= γ

Eγ ′i (1 + β cos θ0)

1 + (Eγ ′i /mc2)(1 − cos θ0)
.

We need to express the photon energy Eγ′i and scattered photon angle θ0 in terms of the corresponding
lab frame quantities. The energy of the initial photon in the electron’s rest frame is related to its energy
in the lab frame by a Lorentz transformation:

Eγ ′i = γ(Eγi − βc pγi,x) = γEγi (1 − β),

where the momentum of the initial photon is along the x̂-direction, and hence pγi,x = pγi . The Lorentz
transformation also gives

pγ′
f ,x = γ(pγ

f ,x − βEγ
f

/c) , pγ′
f ,y = pγ

f ,y ,

which implies that

tan θ0 =
pγ ′
f ,y

pγ ′
f ,x
=

pγ
f ,y

γ(pγ
f ,x − βEγ

f
/c)
=

sin θ
γ(cos θ − β)

,
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where θ is the angle of the scattered photon in the lab frame. Making use of the identity cos θ0 =

1/
√

1 + tan2 θ0, we find

cos θ0 =
1√

1 + sin2 θ/[γ2(cos θ − β)2]
=

γ(cos θ − β)√
γ2(cos θ − β)2 + sin2 θ

=
cos θ − β√

cos2 θ + β2 − 2 β cos θ + (1 − β2) sin2 θ
=

cos θ − β
1 − β cos θ

,

from which we have the following relations:

1 − cos θ0 = (1 + β)
1 − cos θ

1 − β cos θ
, 1 + β cos θ0 =

1 − β2

1 − β cos θ
=

1/γ2

1 − β cos θ
.

We insert all these relations into the expression for Eγ
f

found above to obtain

Eγf =
γ2Eγi (1 − β)/[γ2(1 − β cos θ)]

1 + γ(Eγi /mc2) (1 − β)(1 + β)︸������������︷︷������������︸
1/γ2

(1 − cos θ)/(1 − β cos θ)
= Eγi

(1 − β)/(1 − β cos θ)

1 + (Eγi /γmc2)(1 − cos θ)/(1 − β cos θ)
.

Recalling that β = cpi/Ei and Ei = γmc2, we finally arrive at

Eγ
f
= Eγi

1 − β
1 − β cos θ + (Eγi /Ei)(1 − cos θ)

= Eγi
Ei − cpi

Ei − cpi cos θ + Eγi (1 − cos θ)
,

which can be simplified by expressing cos θ as 1 − 2 sin2(θ/2):

Eγ
f
= Eγi

Ei − cpi

Ei − cpi + 2 sin2(θ/2) (Eγi + cpi)
=

Eγi
1 + 2 sin2(θ/2) (Eγi + cpi)/(Ei − cpi)

.

In terms of wavelengths this gives

λγ
f
= λγi

⎡⎢⎢⎢⎢⎣1 + 2 sin2(θ/2)
pγi + pi

Ei/c − pi

⎤⎥⎥⎥⎥⎦ ,

and the wavelength shift is, of course, identical to that found in part 2 above.

Problem 3 The Thomson Model of the Atom and Rutherford’s Experiment

After the discovery of the electron by Thomson in 1897, it was believed that “atoms were like
puddings, with negatively charged electrons stuck in like raisins in a smooth background of positive
charge” (S. Weinberg). This picture was drastically changed by experiments performed by Rutherford
and collaborators, who scattered α particles (4He nuclei, which, as we now know, consist of two
protons and two neutrons bound together by the nuclear force, having electric charge 2e) off a thin
foil of gold. Rutherford and collaborators observed α particles scattered at large backward angles.
This was totally unexpected, since electrons are much lighter than α particles.

1. Consider a particle of mass M and velocity v hitting a particle of mass m at rest and continuing
along the same line with velocity v′. Show that, for a given v, energy and momentum conservation
lead to two possible solutions for v′. If a certain condition is satisfied, one of these solutions
corresponds to the case in which particle M inverts its direction of motion. What is this condition?
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2. Suppose the α particles (which were in fact emitted by a radium source in Rutherford’s
experiment) have velocity v ≈ 2.1 × 109 cm/sec, and that the target particles (much heavier
than the α particles) have each charge Ze. If the α particles and target particles interact via the
Coulomb repulsion, what is the distance of closest approach? Show that this distance is of the
order 3 Z × 10−14 cm, and therefore (even for Z ≈ 100) it is much smaller than atomic radii.

Solution

Part 1

Energy and momentum conservation require

Mv2

2
=

Mv′2

2
+

mu2

2
, Mv = Mv′ + mu ,

where, as assumed in the problem, the particle of mass M proceeds after the collision along the same
trajectory as it followed before the collision. Replacing u with M(v−v′)/m in the energy-conservation
relation leads to an equation for v′/v:(

1 +
M
m

) (
v′

v

)2

− 2
M
m

v′

v
− 1 +

M
m
= 0 ,

which has the solutions

v′ = v , v′ = −m −M
m +M

v .

The first solution (v′ = v) says that the particle continues along its trajectory undisturbed, which is
unphysical. However, the second solution says that if m > M the particle inverts its trajectory, since
in that case v′ < 0.

Part 2

At the distance of closest approach, the kinetic energy of the α particle must have been converted
into potential energy (we are neglecting here the recoil energy of the target particle, that is, we are
assuming m 
 M),

Mv2

2
=

(Ze)(2e)
r0

=⇒ r0 =
4Ze2

Mv2 .

We have

e2 ≈ 2.3 × 10−19 g cm3/sec2 , v ≈ 2.1 × 109 cm/sec , M ≈ 6.6 × 10−24 g ,

where we have expressed e2 as α�c and α is the (non-dimensional) fine-structure constant having
the approximate value ≈ 1/137 and have used � ≈ 1.05×10−27 g cm2/sec and c = 3.00×1010 cm/sec.
For the mass of the 4He nucleus we have used Mc2 = 2(mp + mn)c2 − 28.3 MeV ≈ 3727 MeV. Here
28.3 MeV is the nuclear binding energy of 4He, and MeV/c2 ≈ 1.78 × 10−27 g. We obtain

r0 ≈ 3Z × 10−14 cm ,

which is much smaller than the size of the atom, of the order of 10−8 cm.
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Problem 4 The Stability Problem for the Rutherford Model of the Atom

Consider the Rutherford model of the atom: an electron of electric charge −e orbiting a point-like
nucleus (much heavier, and hence effectively at rest) of electric charge Ze in a circular orbit of radius
R. Knowing that the electron radiates energy away at a rate dE(t)/dt, given by

dE(t)
dt
= −2

3
e2 |a(t) |2

c3 ,

where a(t) is the electron’s acceleration and c is the speed of light, show that it will take a time

τ =
m2c3

Ze4
R3

4
,

for the electron to spiral into the nucleus. Assume that τ is much larger than the revolution period.
By taking Z = 1 and R ≈ 10−8 cm, as is appropriate for the hydrogen atom, justify this assumption a
posteriori by comparing τ with the revolution period.

Solution

The electron energy is given by

E =
mv2

2
− Ze2

r
.

It is assumed that the electron is in a circular orbit and that the energy lost by emission of radiation per
revolution is tiny relative to E. The electron is subject to a centripetal acceleration whose magnitude
is given by a = v2/r, where r is the radius of the orbit, so that

ma =
Ze2

r2 =⇒ v2 =
Ze2

mr
,

and hence

E = −Ze2

2r
.

The radius does change with time, albeit very slowly, corresponding to the loss of energy:

dE
dt
=

d
dt

(
−Ze2

2r

)
=

Ze2

2r2
dr
dt
= −2

3
e2a2

c3 = −
2e2

3c3

(
Ze2

mr2

)2

,

which leads to
dr
dt
= −4

3
Ze4

m2c3r2 or dt = −3
4

m2c3

Ze4 r2 dr .

At time t = 0 the electron is in an orbit of radius r(0) = R, while at time τ the electron has “fallen into
the nucleus”, and so r(τ) = 0; therefore, we find by integrating above the differential equation,∫ τ

0
dt = −3

4
m2c3

Ze4

∫ 0

R
dr r2 =⇒ τ =

m2c3

Ze4
R3

4
.

We take

m ≈ 9.1 × 10−28 g , c = 3.0 × 1010 cm/sec , e2 ≈ 2.3 × 10−19 g cm3/sec2 ,
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12 The Failure of Classical Physics

and, for the hydrogen atom, Z = 1 and R ≈ 10−8 cm, and so we find τ ≈ 10−10 sec, while the revolution
period is

T = 2π
R
v
= 2πR

(
mR
Ze2

)1/2

≈ 4 × 10−16 sec ,

giving T � τ as assumed.

Problem 5 Bohr’s Calculation of the Energy Spectrum of the Hydrogen Atom

In order to solve the stability problem, Niels Bohr proposed in 1913 that the atom can exist only in
certain states having energies E1 < E2 < · · · , that is, atomic energies are quantized. To obtain these
energies, Bohr assumed that the angular momentum of an electron of mass m and electric charge −e
in a stable circular orbit of radius r around a nucleus of electric charge Ze is an integer multiple n of
the Planck constant �= h/(2π). Following Bohr, calculate the energies En.

Solution

The magnitude of the angular momentum of the electron in a circular orbit of radius r is given by
mvr, where v is the magnitude of the velocity, and according to Bohr’s hypothesis

mvr = n� .

The attractive Coulomb force acting on the electron is responsible for its centripetal acceleration,
which reads (in magnitude)

v2

r
=

Ze2

mr2 =⇒ r =
Ze2

mv2 .

When combined with the quantization condition, this leads to

v =
Ze2

n�
,

and hence to the energy levels, given by (after substituting for r and v the expressions above)

E =
mv2

2
− Ze2

r
= −mv2

2
=⇒ En = −

Z2e4m
2n2�2 = −

(Zα)2mc2

2n2 ,

which turns out to give the (correct!) result obtained in Schrödinger’s wave mechanics.

Problem 6 The Bohr–Sommerfeld Quantization Rule and the Harmonic
Oscillator Energy Spectrum

In the old quantum theory, one assumes that the particles follow the laws of classical mechanics but
one postulates further that, of all the possible solutions of the equations of motion, one must retain
only those which satisfy certain ad hoc quantization rules. One therefore selects a discontinuous
family of motions; these are, by hypothesis, the only motions which are realized in nature. The
discontinuous sequence of energy values thus obtained constitutes the spectrum of quantized energy
levels.
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13 1.1 Problems

For a one-dimensional periodic motion, the quantization rule, known as the Bohr–Sommerfeld
quantization rule, is ∮

E
dq p = nh n = 1, 2, . . . ,

where h is Planck’s constant – recall that �= h/(2π) – and the symbol
∮

E means that one must
integrate over a complete period of the motion corresponding to the energy E. Here q and p are the
position and momentum variables, respectively. The integral is known as the action integral. Apply
this rule to the case of the one-dimensional harmonic oscillator, for which

E =
p2

2m
+

mω2

2
q2 .

Calculate the energy, period, and amplitude of the quantized trajectories.

Solution

For a fixed energy E, the momentum p is given by

p =

√
2mE

(
1 − mω2

2E
q2

)
,

and it vanishes at the endpoints ± q0, where

q0 =

√
2E

mω2 .

The Bohr–Sommerfeld rule requires that

2
∫ q0

−q0

dq

√√
2mE ��1 − q2

q2
0

�	 = nh ,

where the factor 2 in front of the integral accounts for the fact that over a full period the particle goes
from −q0 to q0 and back to −q0. Substituting x = q/q0, the left-hand side can written as follows:

l.h.s. = 2
√

2mE q0

∫ 1

−1
dx
√

1 − x2︸������������︷︷������������︸
π/2

=⇒ l.h.s. = 2π
E
ω

,

after substituting for q0. The Bohr–Sommerfeld gives

2π
E
ω
= nh =⇒ En = n�ω with n = 1, 2, . . .

Note that the exact quantum result is En = (n + 1/2)�ω with n = 0, 1, 2, . . . The period of the
harmonic oscillator is 2π/ω, while its amplitude An is simply given by q0 and is therefore quantized,

An =

√
2�
mω
√

n .
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14 The Failure of Classical Physics

Problem 7 An Application of the Bohr–Sommerfeld Quantization Rule
to the Hydrogen Atom

Quantize the circular electronic orbits of the hydrogen atom by applying the Bohr–Sommerfeld rule
introduced in the previous problem. Determine the energy, period, and radius of the quantized orbits.
Calculate specifically the numerical values of the energy, period, and radius of the lowest orbit. Use
mc2 ≈ 0.51 × 106 eV and �c/e2 ≈ 137.

Solution

The energy of a hydrogen-like atom is given by

E =
p2

2m
− Ze2

r
,

where m and −e are the electron mass and charge; we assume that the nucleus of charge Ze is fixed at
the origin (we will neglect reduced-mass corrections). In a circular orbit the centripetal acceleration
of the electron is provided by the attractive Coulomb force, and hence

m
v2

r
=

Ze2

r2 =⇒ p2

m
=

Ze2

r
,

where r is the radius of the circular orbit; the magnitude p of the electron momentum is constant (but
not its direction, of course). The momentum corresponding to a given energy for such an orbit is then
given by

E =
p2

2m
− p2

m
= − p2

2m
=⇒ p =

√
2m|E| ,

and the action integral for such an orbit follows from∮
E

dq p =
∮

E
ds · p = p

∫ 2π

0
rdθ = 2πrp = 2πr

√
2m|E| .

For a given E, the radius of the circular orbit is given by

E =
p2

2m
− Ze2

r
=

Ze2

2r
− Ze2

r
= −Ze2

2r
=⇒ r =

Ze2

2|E| .

Inserting this expression into the action–integral result and imposing the Bohr–Sommerfeld rule
yields

2π
Ze2

2|E|
√

2m|E| = nh =⇒ En = −
m

2n2
Z2e4

�2 = −
(Zα)2

2n2 mc2 ,

where we have introduced the fine-structure constant α = e2/(�c) ≈ 1/137 and mc2 ≈ 0.51 MeV is
the electron rest mass. The result above for En turns out to agree with that obtained in Schrödinger’s
wave mechanics. The radii of these circular orbits are quantized,

rn =
Ze2

2|En |
=

e2

Zα2mc2 n2 =
1

Zα
�

mc
n2 =

a0

Z
n2 ,

where we have expressed e2 in terms of the fine-structure constant as α�c and have introduced the
Bohr radius a0:

a0 =
�

αmc
≈ 0.53 × 10−8 cm .
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The periods of the orbits also turn out to be quantized,

Tn = 2π
rn

pn/m
=⇒ Tn = 2π

n2 a0

Z

√
m

2|En |
= 2π

n3

Z2α

a0

c
.

For the hydrogen atom having Z = 1 and for the most bound orbit, corresponding to n = 1, we find

E1 = −13.6 eV , r1 = 0.53 × 10−8 cm , T1 = 1.5 × 10−16 sec .

Problem 8 Heat Capacity of Solids

In addition to the failures in explaining the black-body radiation spectrum, the photoelectric effect,
and the stability of atoms and spectral lines, classical physics could not explain the heat capacity of
a solid.

1. Assume that a solid of volume V with N atoms (or molecules) can be modeled as a set of 3N
independent one-dimensional harmonic oscillators of frequency ν0 (that is, all oscillators have the
same frequency ν0). Making use of the equipartition theorem, calculate the total average energy
E of the solid at temperature T and derive the Dulong–Petit law for the heat capacity (at constant
volume),

cV =

(
∂E
∂T

)
V
= 3N kB ,

where kB is Boltzmann’s constant.
2. The observed heat capacity of a solid is not in fact a constant independent of T but rather vanishes

as T 3 at low temperature and only approaches the classical prediction (the Dulong–Petit law)
at high temperatures. Einstein (1907) proposed that the energy of each harmonic oscillator is
quantized and that its average energy at temperature T is given as follows:

average energy =
hν0

ehν0/kBT − 1
.

Show that the heat capacity is now found to be

cV = 3NkB
x2

0 ex0

(ex0 − 1)2 , x0 =
hν0

kBT
.

Does cV vanish as T −→ 0 ? What happens at high temperature?
3. Einstein’s theory predicts that cV vanishes exponentially at low temperature, a result that is at

variance with experimental observations. A more realistic model of a solid is that it consists of 3N
independent harmonic oscillators (normal modes) with a distribution in frequency g(ν) given by

g(ν) = 4π
V
v3

S
ν2 ,

where vS is the sound velocity in the solid, such that

number of modes =
∫ νmax

0
dν g(ν) = 3N .

This condition fixes νmax as a function of the density N/V. Introduce the parameter TD (the Debye
temperature), defined as

TD =
hνmax

kB
,
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16 The Failure of Classical Physics

and show that the total average energy at temperature T is given by

E = 9Nhνmax

(
T

TD

)4 ∫ TD/T

0
dx

x3

ex − 1
,

and that the constant-volume heat capacity is proportional to T 3 for low T, in agreement with
experiment. Show that it also satisfies the Dulong–Petit law at high temperatures.

Solution

Part 1

Each oscillator contributes kBT to the total average energy E of the solid held at temperature T,
and, since there are 3N oscillators, this total energy is simply 3NkBT, which immediately yields the
Dulong–Petit law given in the text of the problem.

Part 2

Einstein’s theory gives for the total average energy

E = 3N
hν0

ehν0/kBT − 1
= 3NkBT

x0

ex0 − 1︸��︷︷��︸
f (x0)

,

and the heat capacity at constant volume is then as follows:

cV=

(
∂E
∂T

)
V
= 3NkB f (x0) + 3NkBT

∂ f (x0)
∂x0

∂x0

∂T

= 3NkB
x0

ex0 − 1
− 3NkBT

[
1

ex0 − 1
− x0 ex0

(ex0 − 1)2

]
x0

T
= 3NkB

x2
0 ex0

(ex0 − 1)2 .

In the limit of low T, x0 becomes large and cV ≈ 3NkBx2
0 e−x0 vanishes exponentially. In the high-T

limit, we have x0 −→ 0, and hence

cV = 3NkB
x2

0(1 + x0 + · · · )
(x0 + x2

0/2 + · · · )2
= 3NkB

1 + x0 + · · ·
(1 + x0/2 + · · · )2 ≈ 3NkB ,

and the Dulong–Petit law is reproduced in this limit up to corrections proportional to x2
0.

Part 3

We have ∫ νmax

0
dν g(ν) = 3N or

4π
3

V
v3

S
ν3

max = 3N =⇒ νmax = vS

(
9

4π
ρ

)1/3

.

The total average energy follows from

E =
∫ νmax

0
dν g(ν)

hν
ehν/kBT − 1

= 4πV
h
v3

S

∫ νmax

0
dν

ν3

ehν/kBT − 1
,
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which, after introducing the integration variable x = hν/(kBT), can also be expressed as

E = 4πV
h
v3

S

(
kBT
h

)4 ∫ TD/T

0
dx

x3

ex − 1
= 4πV

h
v3

S
ν4

max

(
T

TD

)4 ∫ TD/T

0
dx

x3

ex − 1

or, using the relation (νmax/vS)3 = (9/4π)ρ,

E = 9Nhνmax

(
T

TD

)4 ∫ TD/T

0
dx

x3

ex − 1
.

In the limit of low T, the ratio TD/T −→ ∞, and hence we have

E ≈ 9Nhνmax

(
T

TD

)4 ∫ ∞

0
dx

x3

ex − 1︸������������︷︷������������︸
T independent

=⇒ cV ∝ T 3 .

By contrast, at high T we have TD/T −→ 0, and the integral can be approximated as∫ TD/T

0
dx

x3

ex − 1
≈

∫ TD/T

0
dx x2 =

1
3

(
T

TD

)3

,

where we have expanded the integrand for small x, since x � 1 in the range 0 ≤ x ≤ TD/T. Thus, we
find for E,

E ≈ 3Nhνmax

(
T

TD

)4 (
TD

T

)3

= 3N
hνmax

TD
T = 3NkBT =⇒ cV = 3NkB ,

in agreement with the Dulong–Petit law.
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