
J. Functional Programming 3 (3): 251-281, July 1993 © 1993 Cambridge University Press 251

On the specialization of online program
specializers1

ERIK RUF
Stanford University

DANIEL WEISE
Microsoft Research Laboratory

Abstract

A common technique for improving the speed of program specialization is to specialize
the program speoializer itself on the program to be specialized, creating a custom program
generator. Much research has been devoted to the problem of generating efficient program
generators, which do not perform reductions at program generation time which could instead
have been perfoimed when the program generator was constructed. The conventional wisdom
holds that only program specializers using binding-time approximations can be specialized into
such efficient program generators. This paper argues that this is not the case, and demonstrates
that the specialization of a nontrivial online program specializer similar to the original 'naive
MIX' can indeed yield an efficient program generator. The key to our argument is that, while
the use of binding-time information at program generator generation time is necessary for the
construction of an efficient custom specializer, the use of explicit binding-time approximation
techniques is not. This allows us to distinguish the problem at hand (i.e. the use of binding-
time information during program generator generation) from particular solutions to that
problem (i.e. offline specialization). We show that, given a careful choice of specializer data
structures, and sufficiently powerful specialization techniques, binding-time information can
be inferred and utilized without explicit approximations. This allows the construction of
efficient, optimizing program generators from online program specializers.

Capsule review

The paper deals with the problem of generating an efficient program generator by specializing
a specializer with respect to a program. This is usually achieved by applying a specializer to
itself. The difficulty with this traditional approach is that a trivial specializer may be unable
to 'understand' itself because of its 'simple-mindedness', whereas a sophisticated one may be
too sophisticated to be understood by itself.

The main idea of the authors is that a 'simple-minded' specializer may be specialized by
a sophisticated one, to produce non-trivial (and efficient!) program generators. The paper
formulates some requirements that must be satisfied by the pairs of specializers meant for
producing residual program generators, and discusses the experimental results obtained. Of
particular interest are the techniques of encoding partial-evaluation values that enable the
binding-time information to be represented and preserved during partial evaluation.

1 This research was supported in part by NSF Contract No. MIP-8902764, and by Advanced
Research Projects Agency, Department of Defense, Contract No. NOO39-91-K-O138. Erik
Ruf was funded by an AT&T Bell Laboratories Ph.D. Scholarship.

11 FPR3

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

252 Erik Ruf and Daniel Weise

1 Introduction

A program specializer optimizes a program with respect to an abstract description
of its input, producing an optimized ('specialized') program whose applicability is re-
stricted to inputs denoted by the abstract description. As with any context-dependent
optimization, the time cost of specialization must be amortized across repeated ex-
ecutions of the specialized program. The number of executions necessary to repay
the cost of specialization depends both upon the degree to which specialization
improves the speed of the program, and upon the cost of running the specializer.

This tradeoff has motivated much of the recent research in program specialization.
Higher degrees of optimization have been achieved by a variety of means, including
binding-time analysis, binding-time improvement, and online analysis techniques.
Efficiency of the specialization process has also been addressed in several ways,
including performing more operations statically prior to specialization time (Consel
and Danvy, 1990), and handwriting a 'specializer generator' (Haraldsson, 1977; Hoist
and Launchbury, 1991).

However, the most popular means of gaining efficiency, independently discovered
by Futamura (1971), Ershov (1977) and Turchin, is based on the observation that
the program specializer is often called upon to specialize a single program (e.g. an
interpreter) on different constant input values (e.g. programs to be executed by the
interpreter). Thus, we can benefit by specializing the specializer with respect to the
program to be specialized, producing a custom specializer, or program generator, for
that particular program. We call the process of specializing the specializer program
generator generation, or, in cases case where the 'inner' and 'outer' specializers are
identical, self-application.

Much attention has been devoted to techniques for generating efficient program
generators; e.g. program generators that do not perform unnecessary operations that
could instead have been performed when the program generator was constructed.
The earliest program specializers (Beckman et al., 1976; Haraldsson, 1977; Kahn,
1982; Turchin, 1986) used online methods, and were not suitable for efficient program
generator generation, though handwritten program generator generators such as
REDCOMPILE (Haraldsson, 1977) were used. Offline specializers were invented
specifically to solve this problem; MIX (Jones et al, 1988) was the first efficiently
self-applicable specializer. More recent work has produced increasingly powerful
self-applicable offline specializers; for examples, see (Mogensen, 1989; Consel, 1989;
Bondorf, 1990; Gomard and Jones, 1991; Jones et al, 1993). Contemporary work
on online specialization (Schooler, 1984; Sahlin, 1991; Weise et al., 1991; Katz and
Weise, 1992; Ruf, 1993) has focused primarily on accuracy rather than on efficiency,
with the notable exception of Gluck's work (Gliick, 1991; Gliick and Turchin, 1989),
on the self-application of online specializers and supercompilers.

In all cases to date, the generation of efficient program generators has required the
use of explicit binding-time approximation techniques. Such methods simplify the task
of specializing the specializer, but at the cost of generating less efficient specialized
programs, since the approximation of binding times can cause optimizations to be
missed.

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

On the specialization of online program specializers 253

This paper addresses the goal of obtaining efficient program generators without
the use of binding-time approximation techniques. We will demonstrate that the
specialization of a nontrivial online program specializer without BTA techniques can
indeed yield an efficient, accurate program generator. Our solution will require not
only a careful choice of specializer data structures, but also a particularly powerful
specializer to ensure that the information in those data structures is not prematurely
lost (generalized) at program generator generation time. Because of the complexity
of such a specializer, we will not demonstrate full self-application; instead, we will
show that a nontrivial online program specializer with power similar to that of the
original online MIX (Jones et ah, 1985) can yield an efficient program generator
when specialized by FUSE (Weise et al., 1991). We will specialize our small online
specializer on several programs, and will evaluate the efficiency of the results.

The remainder of this paper consists of four sections. We begin with a description
of the small online specializer which we will specialize in later sections. Section 3
demonstrates the problem of excessive generality, prior solutions to the problem,
and our solution. Section 4 describes how more complex online mechanisms can be
specialized. We conclude with a discussion of future work.

2 A small online specializer

This section describes TINY, a small but nontrivial online program specializer for
a first-order functional subset of Scheme (Rees et al., 1991), which we will use to
demonstrate the construction of online program generators. Both scalars and pairs
are supported, but there are no vectors, and no support for partially static structures;
that is, any pair containing a dynamic is considered to be dynamic. TINY is similar
in complexity to the 'naive MIX' of (Bondorf et al, 1988) and the V-Mix system
of (Gliick, 1991).

For reasons of clarity, we will first describe a small fragment of TINY in a
denotational-semantics-like language, then informally describe the remainder of the
actual implementation. This will allow us to use the abbreviated description in many
of the examples in later sections, dropping down into the implementation only when
necessary.

2.1 Abstract description

Consider the fragment of TINY which partially evaluates a Scheme expression in
an environment mapping Scheme identifiers to specialization-time values, return-
ing a specialization-time value. We are primarily interested in how TINY makes
reduce/residualize decisions, so that we can examine whether these decisions can
be made at the time TINY is specialized. In a first-order language, the interesting
reduce/residualize decisions are at conditionals and primitive applications; we will
ignore (for now) how the specializer makes generalization decisions, and how it
creates, caches and re-uses specializations of user functions.

TINY approximates sets of runtime values with specialization-time approxima-
tions, which we will call pe-values, which are elements of the domain PEVal, as

11-2

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

254 Erik Ruf and Daniel Weise

Domains

e
X

V

p
env

e
€

e
e
e

Function Signatures

PE
lookui
resid
car
cons

Exp
Id
Val
PEVal
Env =

Exp -
Id^>

= Val
Var ->

-> Env
Env —

+ Exp
PEVal

-> PEVal
* PEVal

PEVal -> Exp
Val -
Val -

> Val
> Val --* Val

expressions (source and residual)
identifiers
scheme denotable values
specialization-time values
specialization-time environments

partially evaluate an expression
look up an identifier
coerce a value to an expression
primitive
primitive

Fig. 1. Domains and Function Signatures for TINY.

P£[[(quote v)^env
PE [x] env
P£[(i f ex e2 e3)]]en

P£[(car eO^env

P£[(cons e\ e2)J em

= V

= lookup [x] env
) = let p\ = P£|[ei] env in

p, e Val -»
(pi = true -> P£[e2]em), P£ [e 3] ew) ,
/et P2 = P£ [e2] env

p3 = P£ [e3]] enu
in [[(if pi (resid p2) (resid p3))J

= let pi = P£[ei]eny in
Pi G Ka/ -» (car pi), [[(car pi)J

= let pi = P£[ei]]eni;
p2 = P£ [e2]] eno

in (pi e KaO A (p2 e Fa/) -»•
(cons pi p2),
[(cons (resid p2) (resid p3))]

resid p — p € Val —* [(quote p)^, p

Fig. 2. Fragment of TINY.

shown in Figure 1. Static values (those known at specialization time) are repre-
sented as Scheme values, while dynamic values (those unknown at specialization
time) are represented as source language expressions. In the latter case, the expres-
sion will compute the runtime value(s) of the specialization-time value. We assume
the existence of helper functions for looking up identifiers in an environment and
for coercing values to constant expressions. The fragment of TINY shown in Fig-
ure 2 specializes expressions. The function PE takes a Scheme expression and an
environment mapping each Scheme identifier to a pe-value, and returns a pe-value.

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

On the specialization of online program specializers 255

TINY's online nature can easily be seen in the code for processing if expressions.
After partially evaluating the test expression, e\, the specializer tests the resultant
pe-value, p\, to see if it is a value (i.e. static). If the value is static, it is used to
specialize one of the two arms; otherwise, both arms are specialized and a residual
if expression is returned. Similarly, the code for processing car and cdr expressions
tests the pe-values obtained by partially evaluating the argument expressions. If we
construct a program generator by specializing TINY, we would like to eliminate not
only the syntactic dispatch on the first argument of PE, but also as many of these
(p s Vat) tests as possible.

2.2 Implementation description

The abstract description given above treats only a small fragment of TINY, and omits
details relating to concrete data representations, function application, construction
and caching of function specializations, and termination. Because these details affect
program generator generation, we address them briefly here.

2.2.1 Data representations

TINY represents source and residual expressions as abstract syntax trees, which
are uninteresting relative to our discussion. However, the choice of a representation
for specialization-time values is important. The type PEVal is a disjoint union of
Scheme values and expressions, and is implemented as a tagged record, namely
either (s t a t i c <value>) or (dynamic <expression>).

2.2.2 Function application

The treatment of user functions is straightforward, and was omitted in Figure 2
merely to avoid cluttering the description. If we treat the program as a global,
then the semantic function implementing function application will look up the
function name in the program, add appropriate formal/actual bindings are added
to the environment, and construct the the unfolded/specialized body via a recursive
invocation of the specializer (e.g. a call to PE.)

2.2.3 Specializations

TINY constructs and caches specializations in a depth-first manner by adding a
single-threaded cache parameter to the semantics, and posting 'pending' and 'com-
pleted' entries to the cache for each specialization before and after it is completed,
respectively (for a more formal description of a single-threaded cache, see the Ap-
pendix of (Ruf, 1993)). When the specialization process is complete, the cache will
contain definitions for the specialization of the goal function, and any specialization
it may (transitively) invoke. The code generator uses these definitions to construct
the residual program. Because caching involves no reduce/residualize decisions, we
need not concern ourselves with it directly.

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

256 Erik Ruf and Daniel Weise

(define (fragment-program names values)
(cons (car names) (car values)))

Fig. 3. A fragment of a hypothetical interpreter.

2.2.4 Termination

Reduce/residualize decisions do enter the picture when we consider termination.
To terminate, TINY needs to build a finite number of specializations, each of
finite size. The latter can be achieved by limiting the amount of unfolding per-
formed, while the former requires that specializations be constructed only on a finite
number of different argument vectors. TINY's termination mechanisms requires no
reduce/residualize decisions at specialization time. Each user function is tagged with
a flag specifying whether it is to be unfolded or specialized, while each formal pa-
rameter is tagged with a flag specifying whether it should be abstracted to 'dynamic'
before specialization is performed.

Most online specializers use some amount of dynamic reasoning (call stacks,
induction detection, argument generalization, and explicit filters) to achieve termi-
nation. Since much of the power of online specialization derives from its use of
online generalization rather than static argument abstraction, TINY's reliance on
static annotations makes TINY appear overly simplistic. This is not the case, as
adding online termination mechanisms (at least simple ones) does not appreciably
increase the difficulty in obtaining an efficient program generator. In Section 4.1, we
will show that is the case.

2.3 Example

In this section, we show the specialization of a very small fragment of a hypothetical
interpreter, which is rather small and unrealistic, but will be useful later as an
example for program generator generation.

Consider an interpreter for a small imperative language which maintains a store
represented as two parallel lists: names, which holds a list of the identifiers in the
program being interpreted, and values, which holds a list of the values bound to
those identifiers. Assume that the interpreter contains an expression of the form
(cons (car names) (car values)); this might be part of a routine to construct
an association list representation of the store to be used as the final output of
the interpreter. (The real purpose of such an expression is irrelevant; all that is
important is that the binding times of names and values differ at the time the
interpreter is specialized.)

When the interpreter is specialized on a known program but unknown arguments,
the list names, which is derived from the program, will be static, but the list values,
which is derived from the arguments, will be dynamic. Thus, the specializer will
generate a residual constant expression for (car names), and residual primitive
operations for (car values) and (cons (car names) (car values)).

Rather than examining the entire interpreter, we will abstract this small fragment

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

On the specialization of online program specializers 257

into a separate program (Figure 3). We can use TINY to specialize this program on
names=(a b c) and values unknown by executing the form

(tiny fragment-program (list (make-static-peval '(a b c))

(make-dynamic-peval)))

TINY returns a residual program expressed as a cache; after simple postprocessing
(not including dead parameter removal or arity raising), we obtain

(define (spec-fragment-program names values)

(cons 'a (car values)))

which is what we expected. We will return to this example in Section 3, where we
will generate a program generator for this fragment by specializing TINY on the
fragment and unknown inputs.

In this paper, we are not particularly concerned with the efficiency of the spe-
cializations constructed by TINY, but rather with the efficiency of specializations
of TINY. However, we would like to briefly note that TINY is indeed a realistic
program specializer. For example, using TINY to specialize an interpreter for the
'canonical' MP imperative language on MP programs yields specialized interpreters
comparable to those produced by other specializers, and speedups of 6-20 under
interpreted MIT Scheme.

3 Program generator generation

In this section, we examine the problems inherent in specializing an online specializer
like TINY, the solutions developed to date, and our solution. We begin by demon-
strating the specialization of TINY on a known program and a completely unknown
input specification. Because this approach fails to specify the binding times of the
elements of the input specification, it generates an overly general program generator.
This problem is well-known; we examine the solutions described in (Bondorf et al.,
1988; Gliick, 1991), both of which are based on modifying the specializer being
specialized (in this case TINY) in ways that compromise its accuracy. We then
describe our solution, and show its performance on several examples.

As we shall soon see, TINY is insufficiently powerful to produce an efficient
program generator when self-applied; constructing an efficient program generator
from TINY will require the use of a more powerful specializer. By the end of this
paper, we will know how powerful that specializer must be; for now, we assume
the existence of a procedure specialize, which takes as arguments the Scheme
program to be specialized, and the argument values on which it is to be specialized.
To avoid concerning ourselves with this (hypothetical) specializer's representations,
we will assume that, for input purposes, it uses ordinary Scheme values for static
values, and the special symbol <dynamic> for dynamic values.

3.1 The problem of excessive generality

Consider constructing a program generator for the the interpreter fragment from
Section 2.3. We can accomplish this by specializing TINY on the interpreter fragment

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

258 Erik Ruf and Daniel Weise

°^(cons (car names) (car values)) env ~~ ' e i Pi =

P2-

in (p'i

= let pi = lookupua
Pi e Val -* (car

mes cnu in
pi), [(car p ,) I

= let p2 = lookupv^lues env ' "
p2 G Val —• (car

e Val) A (p2 e KaO
(cons p\ p2),
/et p'i = pi G Val ->

p'2 = p2 G Fa/ ->
in [(cons p\ p2)J

p2), [(car p2)J
—>

[(quote p',)],
[(quote p'2)J,

Pi
P'2

Fig. 4. Fragment of overly general program generator constructed from TINY.

and a dynamic (where 'dynamic' means unknown at program generator generation
time, not at program generation time) argument list, as in

(specialize tiny-program fragment-program <dynamic>).

When TINY is specialized, specialize can execute all of those operations in
TINY's implementation which depend solely on its program input, and on constants
in TINY itself. Referring to the description of Figure 2, we can see that the syntax
dispatch (all matching of arguments in 0 brackets) can be eliminated. Also, if
specialize implements partially static structures (or if TINY's implementation
maintains the specialization-time environment as two lists, one for the names and
one for the values) environment accesses can be reduced to fixed chains of tuple
accesses (allowing for other optimizations such as arity raising). However, none of
the static/dynamic tests (i.e. those of the form p\ e Val) or any of the primitive
operations (i.e. {p\ = true), (car p{), or (cdr pi)) can be reduced. Of the semantic
parameters omitted in Figure 2, the complete program is available, and thus user
function lookups can be reduced, but the specialization cache is dynamic, and thus
all cache lookups remain residual. An abstract fragment of the resultant program
generator is shown in Figure 4. To indicate calls to a specialized version of a
semantic function, we subscript the function name with the argument on which it
was specialized.

If we assume that our program fragment is embedded in an interpreter, which will
always be specialized on a known program (i.e. static names), and an unknown input
value (i.e. dynamic values), then the program generator we obtained by specializing
TINY is overly general, since it tests names and values to see if they are static or
dynamic (the tests pi e Val and p2 € Val in Figure 4).

Increasing the power of specialize does not help; the information necessary
to reduce the static/dynamic tests is simply not available. As was noted by Bon-
dorf (1988) and Gliick (1991), the problem lies in the fact that we specialized TINY
on a particular program (the interpreter fragment), but not on any particular argu-
ment vector for that program. Thus, the program generator must, by definition, be
prepared to accept any argument vector, be its elements static or dynamic.

In other words, we got what we asked for; we just asked for the wrong thing. How
can we remedy this situation? The answer is that if we want the program generator
to have, 'built-in,' certain assumptions about the binding times of the arguments to

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

On the specialization of online program specializers 259

the interpreter, we must provide that binding-time information to TINY at the time
the program generator is constructed.

3.2 Existing methods

Existing systems use one of two methods for providing binding-time information at
specialization time. The information is provided either:

1. as binding-time annotations on the program, or
2. as part of the arguments on which TINY specializes the program:

We will treat each of these in turn:

3.2.1 Binding-time information via annotations

This is the approach taken by offline specializers (Jones et al, 1988, 1993), which
precompute approximations to the binding times of all expressions in the program,
then annotate the program text with these approximations. The specializer (in this
case, TINY) uses these annotations, rather than any property of specialization-time
values, to make reduce/residualize decisions. Since the program source (and thus
its binding-time annotations) is available when the specializer is specialized, all
computations depending solely on the binding-time annotations are reduced, and
the resultant program generator contains no binding-time computations whatsoever.
Some systems, such as that of (Consel and Danvy, 1990), go one step further, using
the annotations to precompute custom reduction or residualization directives, but
the essence of the method is the same.

Thus, offline specialization solves the generality problem with relatively little
added mechanism in the specializer. Indeed, offline specializers are usually smaller
than their online counterparts, since specialization-time values no longer need be
tagged. Unfortunately, the need to compute the binding-time annotations prior to
specialization time, given only binding-time abstractions of the specialization-time
inputs, can cause expressions potentially returning static values to be annotated
as dynamic, resulting in missed reductions. Certain optimizations are made more
difficult, if not impossible (Ruf and Weise, 1992a). In any case, we cannot use this
approach to generate efficient program specializers from an online specializer such
as TINY, since it requires that we recode TINY into an offline form.

3.2.2 Providing binding-time information via argument coding

This approach was first published by Gluck (1991), using the 'metasystem transition'
formalism of Turchin (1986). It uses specialized ability to represent partially
known values to specify the binding-time portion (but not the value/expression
portion) of the argument inputs to TINY. That is, instead of executing

(specialize tiny-program fragment-program <dynamic>).

to construct the program generator, instead use

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

260 Erik Ruf and Daniel Weise

(define names (make-static-peval <dynamic>))
(define values (make-dynamic-peval))
(specialize tiny-program fragment-program (list names values))

where make-static-peval and make-dynamic-peval are abstractions specific to
TINY, not to specialize. In effect, the values on which TINY is symbolically
executed by specialize mirror those on which TINY was executed in the invocation
of TINY on fragment-program earlier, except that the value attribute of the pe-
value representing the static first argument (i.e. ' (a b c)) has been replaced by an
attribute which is dynamic at program generator generation time, but which will be
known when the specialized version of TINY runs.

Providing binding-time information in this way does not guarantee that the
resultant program generator will be efficient; that depends on specialized ability
to optimize away binding-time operations in TINY given the partially specified
input pe-values. We will describe how this is accomplished in Gliick's V-Mix system,
and why that solution is insufficient for our purposes.

V-Mix achieves efficiency by ensuring that all binding-time operations can be
performed statically when V-Mix is specialized. It explicitly approximates binding
times using a configuration analysis (described as a 'BTA at specialization time'),
computing approximate binding times for function results given only the binding
times of the arguments, not their values (a similar approach is outlined on p. 34 of
Bondorf (1990). Thus, given input pe-values encoding known binding times, V-Mix
is efficiently self-applicable, since, just as in the offline case, all reduce/residualize
decisions are made by a process that refers only to the program text and statically
available information (the binding times of the inputs). There is no danger of losing
this information at program generator generation time.

However, the statically computed binding times are only approximate. For ex-
ample, binding-time values for function results computed using only binding-time
values of parameters can be overly general—many functions in a program will be
given a dynamic return approximation when they might actually return a static value
when unfolded at program generation time. Indeed, V-Mix's inability to compute an
'unknown' binding-time approximation means the generated program generator will
have no online binding-time operations even when such operations are necessary to
achieve an accurate result.

Indeed, it would appear that the results of configuration analysis could be du-
plicated by a sufficiently accurate polyvariant binding-time analysis. The primary
benefit of online specialization in V-Mix appears to be the simplicity with which
it achieves polyvariance with respect to binding times, not the accuracy of the
(essentially offline) program generators it produces.

Our goal in this work is to retain the benefits of online binding-time computations
in the program generator. That is, we do not require that all binding-time operations
in TINY be reducible when TINY is specialized. Of course, those binding-time
operations that can be performed at program generator generation time without
introducing approximations should be performed then, but those requiring actual
static values should be delayed until the program generator is executed.

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

On the specialization of online program specializers 261

3.3 Our solution

Our work builds on Gliick's insight that binding-time information can be provided
by argument coding, but also addresses the problem of preserving binding-time
information without explicit approximation techniques. In this section, we describe
the constraints on TINY's encodings and specialized behavior which make this
possible, and give examples of specializing TINY under FUSE. There are two issues
which must be addressed:

1. Representing the binding-time information, and
2. Preserving the binding-time information

We will deal with each of these issues in turn.

3.3.1 Representing binding-time information

The essence of our method is that TINY's pe-value objects represent both a bind-
ing time and a value or residual code expression. By embedding a (specializer
specialization time) dynamic value inside a (specialization time) pe-value, we can
communicate the binding-time information attribute of the pe-value without being
forced to specify the value/expression attribute.

One consequence of this encoding scheme is that the specializer (specialize)
used to construct the program generator must be able to represent partially static
values. That is, it must be able to represent a TINY pe-value of the form (s ta t ic
<dynamic>) (i.e. a list whose first element is the symbol s ta t ic and whose second el-
ement is unknown). Without partially static structures, specialize would represent
such a pe-value as <dynamic>, at which point the binding-time information would
be lost, and we would once again obtain an overly general program generator. It
might at first appear that we could use a binding-time separation technique, similar
to the parallel name/value lists used to represent stores in interpreters. That is, we
could separate the tag and value/expression fields of a pe-value into two separate
values, so that the dynamic nature of the values at program generator generation
time won't pollute the static tags. This is, in effect, what is performed by offline
partial evaluation strategies, which separate binding-time tags from the input values,
attaching them to the program instead.

The problem with such a 'separation' approach is that it only works if all
of the binding-time tags are themselves static at program generator generation
time. Under a non-partially-static specializer, as soon as a single binding-time tag
becomes <dynamic> at program generator generation time, the entire binding-time
environment will be seen as dynamic, and all binding-time-related reductions will
be delayed until program generation time. Since some binding times cannot be
fully determined until the specialized TINY runs (e.g. values returned out of static
conditionals with one dynamic arm, values produced by online generalization, values
returned from primitives which perform algebraic optimizations, etc.), some of the
program generator generation-time representations of pe-values will indeed have
dynamic binding-time tags. Thus, we see that, to build efficient program generators

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

262 Erik Rufand Daniel Weise

from true online specializers like TINY, the 'outer' specializer specialize must
handle partially static structures.

Another representation problem has to do with TINY's choice of a specialization-
time representation for runtime values, pe-values. At program generator generation
time, we distinguish four different categories of pe-values:

1. Known binding time, known value/expression,
2. Known binding time, unknown value/expression,
3. Unknown binding time, known value/expression, and
4. Unknown binding time, unknown value/expression

Choices (1) and (4) are both easy to implement, since in (1), the pe-value is completely
static, and can be easily represented, while in (4), the pe-value can be represented
by <dynamic>. Choice (3) is unrealistic, since (at least in the non-partially-static
version of TINY) the value/expression is sufficient to allow the binding time to be
deduced. The problem, then, is how to represent pe-values with known binding times
but unknown value/expression fields.

Recall that, in Section 2.2.1, we noted that a pe-value is a disjoint union of
a value and expression, which has several possible representations. TINY uses
a representation which separates the union tag from the value /expression field;
this allows us to provide a static tag and a dynamic value/expression. An alternate
representation used in some specializers, such as those of (Bondorf et al., 1988; Gliick,
1991), uses constant expressions of the form (quote <value>) to denote static
values. Thus, a static pe-value is denoted by a quote expression, while a dynamic
pe-value is denoted by a variable, if, let, or cal l expression. Unfortunately, this
allows us to denote, at program generator generation time, a static pe-value with a
dynamic value (i.e. (quote <dynamic>) but does not allow us to denote a dynamic
pe-value with an unknown residual code expression, because the dynamic binding
time cannot be distinguished from the expression. To handle this encoding, the outer
specializer specialize would have to be able to denote either negations (i.e. not
(quote <value>)) or disjoint unions (i.e. <dynamic-symbol> or (if . <dynamic>)
or (le t . <dynamic>) or (cal l . <dynamic>)); such technology is not presently
available. Thus, we use the (<tag> <value/expression>) encoding of TINY, which
requires only that specialize handle partially static structures.

3.3.2 Preserving binding-time information

The representational details described in the previous subsection are sufficient to
generate efficient program generators for many programs, including the interpreter
fragment of Figure 3. However, without additional mechanisms in specialize, some
programs will still lead to inefficient program generators. The problem arises when
specialize builds a residual loop; if the usual strategy of returning <dynamic> out
of all calls to residual procedures is used, binding-time information will be lost at
that point. Consider the append program:

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

On the specialization of online program specializers 263

P £(append a b) env = let p = lookupa env in
(null? p) -> (1 2),

let env' = updates, env (cdr p) in
let p' = P£(a ppend a b) env') in

(p 'e Vat) —> (cons (car p) p') ,
[[(cons (car p) p ')]

Program generator fragment obtained without return value reasoning

P £(append a b) em = let p - lookup^ env in
(null? p) -> (1 2),

let env' = update^ env (cdr p) in
(cons (car p) (iJ£(append a b) env'))

Program generator fragment obtained with return value reasoning

Fig. 5. Results of specializing TINY on the append program with and without return value
reasoning in specialize. At program generator generation time, append's first argument is
known to be static, but with a dynamic value; its second argument is known to be the static
list ' (1 2).

(define (append a b)
(if (null? a)

b
(cons (car a) (append (cdr a) b))))

Suppose that we specialize TINY on this program, with a known to be static (but
with unknown value) and b known to be a particular static value. During program
generator generation, TINY will attempt to unfold the append procedure repeatedly
on its static first argument. Since the value of that argument is unknown, special ize
will build a specialized version of TINY's unfolding procedure, specialized on the
append procedure and an environment where a and b are bound to values with static
binding times. This specialized unfolder will contain a recursive call to itself; which,
for the program generator to be efficient, must be shown to return a static value.
Otherwise, the program generator will contain code for the case where the return
value is dynamic, even though it will always be static. Figure 5 shows examples of
program generators for append obtained with and without return value reasoning
in specialize. Note that this is not a problem for offline specializers because (an
approximation to) the binding time of append's return value is computed prior to
specialization; the reduce/residualize decision for cons is made by consulting this
binding-time annotation rather than the return value of the specialized unfolder.

Of course, it is unlikely that anyone would choose to build a program generator
for append. However, similar recursive procedures appear frequently in realistic pro-
grams like interpreters. For example, the store-building procedure in the 'standard'
MP interpreter constructs the list of identifiers in the store by recursively traversing
a portion of the source program which is static, but with an unknown value, at
program generator generation time. This reduces to the same problem as the append
example above.

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

264 Erik Ruf and Daniel Weise

(car names) (car values)) env = 'e£ Pi = lookupaames env in
p2 = lookupvalxies env in

in [(cons (quote (car pi)) (car P2))]]

Fig. 6. Fragment of an efficient program generator constructed from TINY.

;;; executes in an environ, where T14 is bound
;;; (cadr T14) returns the value slot of this ;
;;; thus (caadr T14) returns the car of "names
;;; note that no binding-time tags are examinee
(list
'(dynamic ())
(list 'code-prim-call

'(code-identifier cons)
(cons

(list 'code-constant (caadr T14))
'((code-prim-call

(code-identifier car)
((code-identifier values)))))))

to the pe-value for "names"
3e-value

1

build a dynamic pe-value
which is a call
to the primop cons
on
a constant (car names)
and a call
to car
on identifier values

Fig. 7. The fragment of Figure 6, expressed as a Scheme program.

Thus, our hypothetical specializer special ize must be able to infer information
about static portions of values returned by calls to specialized procedures.2 When we
consider more powerful versions of TINY (c.f. Section 4), we will need corresponding
improvements in the information preservation mechanisms of specialize.

3.4 Examples

In this section, we give several examples of program generators constructed by
specializing TINY on inputs with known binding times. We begin with the interpreter
fragment example of Section 2.3, and demonstrate the specialization of TINY on
the program of Figure 3, using FUSE. Executing the forms

(define names (make-static-peval <dynamic>)
(define values (make-dynamic-peval))
(specialize tiny-program fragment-program (list names values))

returns an efficient program generator which has, 'built-in,' not only the syntactic
dispatch and static environment lookup, but also the binding times of names and
values. An abstract version of a fragment of this program generator is shown in
Figure 6; the corresponding Scheme code from the actual program generator is
shown in Figure 7. The efficiency of this program generator is comparable to that of
one produced by specializing an offline specializer on the same fragment (Bondorf
et al., 1988; Bondorf, 199Q), with the exception of an additional tagging operation
to inject the returned residual code fragment into a dynamic pe-value.

2 If TINY were written in a truly tail-recursive style, such as continuation-passing style,
specialize would not have to reason about return values, but would instead have to
reason about static subparts of arguments to continuations with multiple call sites, which
is a problem of similar difficulty. See Ruf (1992b; 1993) for examples.

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

On the specialization of online program specializers 265

In the remainder of this section, we consider several more realistic programs
and their associated program generators, and analyze their performance relative to
'naive' program generators constructed on inputs with unknown binding times. The
text of these program generators is large and fairly uninteresting, so we will instead
describe the program generators in terms of their sizes, speeds, and the number of
binding-time comparisons they perform.

3.4.1 The tests

We tested our program generator generation method on three programs: the append
program, a regular expression matcher, and the MP interpreter. We constructed a
program generator for each of these programs by using FUSE to specialize TINY
on that program, and on the binding-time values of its inputs. We ran the resultant
program generators on one or more actual inputs, and compared the runtime with
that of running TINY on the programs and their inputs directly. The example suites
were:

• append: The program generator was constructed by specializing TINY on the
append program, a first input known to be static, but with unknown value, and
a second input known to be dynamic. The program generator was executed
on two inputs:

— append(l): first argument = ' ()
— append(2): first argument = ' (1 2 3 4 5 6)

• matcher: The program generator was constructed by specializing TINY on
the regular expression matcher program, a static pattern, and a dynamic input
stream. The program generator was executed on one input:

— matcher: pattern = a(b + c)'d

• interpreter: The program generator was constructed by specializing TINY
on the MP interpreter, a static program and a dynamic input. The program
generator was executed on two inputs:

— interpreter(l): program = comparison program
(c.f. p 223 of (Ruf, 1993))

— interpreter(2): program = exponentiation program
(c.f. (Bondorf, 1990))

3.4.2 Results

Before we continue, we should note that the specialized programs obtained by direct
specialization, execution of an efficient program generator, and execution of a naive
program generator were identical, modulo renaming of identifiers. This renaming
arises because TINY uses a side-effecting operation, gensym, to create identifiers,
and FUSE does not guarantee that the effect of such operations will be identical in
the source program (TINY) and the residual program (the program generators). If
TINY were purely functional, the specialized programs obtained by all three means
would be, by definition, identical.

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

append(l)
append(2)
matcher
interpreter(l)
interpreter(2)

14
143
401

2449
4346

266 Erik Ruf and Daniel Weise

Table 1. Speedups due to program generator generation, for various examples

test case time to specialize" time to specialize speedup
using TINY using program generator

4.0 3.5
7.3 19.6

71.0 5.6
119.0 20.6
208.0 20.9

1 All times are given in msec, and were obtained under interpreted MIT Scheme 7.2 on a
NeXT workstation. The times given are the average over 10 runs, and are elapsed times
(no garbage collection took place). The corresponding times for compiled MIT Scheme are
5-35 times faster, with somewhat lower (approx. 30% lower) speedup figures, presumably
due to constant folding, inlining, and other partial evaluation optimizations present in the
compiler. Timings include only specialization, not pre- or postprocessing.

The program generators produced for the append and matcher examples contained
no residual binding-time tests outside of the cache lookup routine, which must
compare binding-time tags because it is comparing tagged values.3 The program
generator produced for the MP interpreter does contain binding-time checks for
operations depending on values in the store because it cannot be shown at program
generation time that this value is dynamic. If the MP program being interpreted
doesn't declare any input variables (i.e. it computes a constant value), then its store
will be static even if its input is dynamic. Thus, the generated program generator is
willing to make reductions based on known values in the store even though the entire
store might not be static. (This makes a lot more sense if the specializer handles
partially static structures; TINY will only be able to perform such 'optimization'
reductions when the entire store is static). These tests can be eliminated by manually
inserting generalization operations, but their elimination does not significantly alter
the performance of the program generator).

A comparison of the speed of the specializer and our program generators is
shown in Figure 1. The speedup ratios, ranging from 3.5 to 20.9, are competitive
with those reported by other work on program generator generation (Jones et al,
1985; Mogensen, 1989; Bondorf, 1990). We were unable to construct a naive program
generator for the MP interpreter within a 32MB heap; thus, no data are provided
for that case. The wide variance of the speedups can be accounted for by noting that
only some portion of the program generator's runtime depends on its inputs; for

3 In a polyvariant online specializer, the cache entries for different specializations of the
same procedure may have different binding-time signatures; thus, the cache lookup code
must compare those signatures, which are not available until program generation time
(since the cache contents are dynamic at program generator generation time). This tagging
problem does not occur in offline specializes, even those with polyvariant BTA, because
all polyvariance with respect to binding-time signatures has been expressed via duplication
at BTA time. When specializing any particular call site, the specializer (program generator)
need only consult a cache, all of whose keys have binding-time signatures known to be
equivalent to the signature of the arguments at the call site. Thus, no tag checks are
required.

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

On the specialization of online program specializers 267

Table 2. Execution times (in msec) of naive and efficient program generators

test case

append(l)
append(2)
matcher

Table 3. Sizes (in

program

append
matcher

time (naive) time

4.1
13.3
98.3

conses) of naive and

(efficient)

4.0
7.3

70.8

efficient

size (naive) size (efficient)

1071
32983

428
874

speedup

1.0
1.8
1.4

program generators

size ratio

2.5
37.7

small inputs, the overhead of cache manipulations, etc., which cannot be optimized
to the same degree as syntactic dispatch, will dominate. For example, as the static
input to the program generator for append increases in length, the amount of time
spent in the (highly optimized) unfolding procedure increases.

These figures describe benefits due to the use of a program generator, but do
not indicate how much of this benefit is due to the use of an efficient program
generator. To determine this, we constructed naive program generators from TINY
by specializing it on completely (program generator generation time) dynamic argu-
ments, and compared the performance and size of the resultant program generators
with the efficient program generators constructed above. The results in Table 2 show
that the naive program generators are slower than their efficient counterparts, but
are still significantly faster than direct specialization. The size ratios (Table 3) are
more striking: the naive program generators are 2-37 times larger than the efficient
program generators. These numbers are larger than those reported in (Bondorf,
1990), presumably because Similix factors out primitives into abstract data types
(which results in operations like peval-car or car in the program generator), while
FUSE beta-substitutes the entire bodies of TINY's primitives. The naive program
generators also took correspondingly longer to generate: specialization of TINY
with FUSE took 1.2-5.9 times longer, and code generation up to 81 times longer
(due to inefficiencies in the current implementation of the FUSE code generator).
Large program generators can cause other problems with the underlying virtual
machine; e.g. we were unable to compile the naive program generator for the
matcher, which contained a 7000-line procedure, in a 32 MB heap.

Thus, we see the benefits of restricting the generality of program generators by
providing binding-time information at program generator generation time.

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

268 Erik Ruf and Daniel Weise

4 Extensions

The program specializer TINY used in the experiments of Section 3.4 is very simple.
In this section, we describe several classes of extensions to TINY, and how they affect
the difficulty of producing efficient program generators by specializing TINY. We
begin (Section 4.1) by adding online generalization, then partially static structures
(Section 4.2). Section 4.3 treats two other mechanisms, induction detection and
iterative type analysis, used in online specializers, while Section 4.4 summarizes the
difficulties in specializing online specializers, and what is needed to solve them.

4.1 Online generalization

As described in Section 2, TINY uses an offline strategy for limiting unfolding
and for limiting the number of specializations constructed: procedures are explicitly
annotated as unfoldable or specializable, and parameters are explicitly annotated as
whether they should be abstracted to 'dynamic' before specialization is performed.

Many online specializers use a different strategy, in which arguments are dy-
namically abstracted only when necessary to achieve termination, retaining those
static values which are common to the initial and recursive entries to a loop. The
specializer does this by dynamically detecting recursive procedure invocations which
might potentially lead to infinite unfolding, then specializing the procedure on the
least upper bound of the argument vectors of the initial and recursive call sites.
Such schemes have been called 'generalization' (Weise et al., 1991; Turchin, 1988),
'generalized restart' (Sahlin, 1991), and 'respecialization' (Gliick, 1991) in the litera-
ture. In previous work (Ruf and Weise, 1992a), we have argued that generalization
is one of the main strengths of online techniques; thus, it would be desirable if such
mechanisms did not have adverse effects on the generation of program generators.

We extended TINY to perform online generalization as follows. Each formal
parameter of each user function definition is annotated according to whether it is
guaranteed to assume only a finite number of values at specialization time (such
annotations can be computed offline, as in Hoist (1991). The specializer maintains
a stack of active procedure invocations; if it detects a recursive call with identical
finite arguments, it builds a specialization on the generalization of the argument
vectors of the initial and recursive calls; otherwise, it unfolds the call. For efficiency's
sake (i.e. to reduce the size of the stack, and the cost of traversing it at specialization
time) we also add an annotation to calls which will always be unfoldable (this can
also be computed statically, without any loss of generality). Because TINY doesn't
implement partially static structures, the output of generalization is almost always
'dynamic',' rather than some partially known value, so there is less to be gained by
online generalization than in partially static/higher-order specializers like FUSE;
the point here was to determine if this stack mechanism adversely affected the
specialization of TINY.

When we specialized the enhanced TINY on the MP interpreter, we still obtained
an efficient program generator. Unlike the program generators constructed from the
original TINY, this program generator contains specialized unfolding and special-

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

On the specialization of online program specializers 269

ized specialization procedures for some of the procedures in the MP interpreter,
namely those not annotated as unfoldable. The specialized specialization proce-
dures incorporate all binding-time operations on parameters marked as finite but
do contain residual binding-time tests for parameters computed via generalization.
This is exactly what we want: statically determinable (i.e. determinable at program
generator generation time) operations have been incorporated into the program
generator, while operations which cannot be (accurately) performed until program
generation time (such as generalization, and operations depending on the outputs
of generalization) are performed by the program generator.

The version of TINY with online generalization is slower than the version of
TINY with static abstraction annotations: in the case of the MP interpreter, special-
ization took 1.9-2.2 times longer, depending on the program being specialized. This
ratio carried over into the program generators; the program generator with online
generalization was 1.8-2.1 times slower. The speedup due to the use of a program
generator instead of direct specialization remained almost unchanged when online
generalization was introduced.

Thus, we do not believe that online generalization is an obstacle to the generation
of efficient program generators, with some caveats. The outputs of the general-
ization routine are, naturally, unknown at program generator generation time, so
both the generalizer and operations depending on the output of the generalizer are
left residual in the program generator. The key to constructing an efficient pro-
gram specializer with online generalization lies in identifying, at program generator
generation time, those arguments which cannot possibly be raised to dynamic via
generalization, such as those marked with 'finite' annotations in TINY. Without
the static finiteness annotations, the outer specializer specialize would have to
maintain equality constraints to determine the binding time of any parameter value
(since the binding time of the result of a generalization depends on the equality,
rather than just the binding times, of its inputs). Thus, we see that offline methods
can be useful even in the case of online specialization, particularly with respect to
termination.

4.2 Partially static structures

TINY does not implement partially static structures; that is, a pair containing
one static value and one dynamic value at specialization time is treated as a
completely dynamic value. As we shall see, adding partially static structures to
TINY while retaining the ability to produce efficient program generators strains the
limits of current specialization technology. We will describe two possible encodings
of partially static structures in TINY, and how they affect the specialization of
TINY.

4.2.1 Two-tag encoding

Our first encoding scheme retains the structure of the existing TINY encoding, but
changes its interpretation. Pe-values are still represented as tagged values with the

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

270 Erik Ruf and Daniel Weise

(define (init-store names values)

(if (null?

'0
(cons

names)

(cons (cax

(init-store

names)

(cdr

(car

names)

values))

(cdr values)))))

Fig. 8. Code to initialize a store represented as an association list.

tags s t a t i c and dynamic, but the value slot of a static pe-value must either be an
atomic Scheme value or a Scheme pair containing two pe-values (instead of two
Scheme values, as before). The encoding of dynamic values is unchanged. Thus,
a partially static value is simply a static pair containing a dynamic element. No
special information is maintained for completely static values, as it is not useful
in performing reductions.4 The primitive application, cache lookup, and finiteness
annotation mechanisms are changed to accommodate this new representation, but,
overall, TINY isn't changed much.

This small change to TINY makes the generation of efficient program generators
tremendously difficult; to maintain binding-time information encoded in this form,
the outer specializer, specialize, must be able to infer and maintain information
about disjoint unions and recursive data types. Consider the function in i t -s tore
(Figure 8), which takes a list of names and a list of values and constructs an
association list mapping each name to the corresponding values. Assume that we
wish to construct a program generator for an interpreter containing this function,
where names will be static and values will be dynamic at program generation time.
We would expect the program generator to contain a residual loop to construct the
store initialization code, and we would expect that the residual loop would be known
to return a list of unknown length, but where each element was known to be a pair
whose car is static, and whose cdr is dynamic. This would allow later operations
involving the names in the store to be reduced (i.e. the program generator will
contain specialized code to perform these reductions), while operations involving
the values would be residualized (without a prior examination of their binding
times).

Thus, at program generator generation time, specialize must be able to represent
the following types:5

• A completely static pe-value; that is, the tag is s ta t ic and if the value is a
pair, both the car and cdr are also completely static pe-values.

<tl> ::= (s ta t i c [() I (<tl> . <tl>)])

4 Such information is useful at code generation time, e.g. for substituting list constants for
completely static trees of cons primitives, but this can be recovered from the pe-values.

5 We will use identifiers, parentheses, and periods to denote specialize's representations
of Scheme objects, while angle brackets and alternate constructions of the form [<a> I
] will denote meta-objects of specialize. Thus, <t> ::= [() I ((1 . 2) . <t>)]
denotes a list of unknown length consisting of pairs whose car is 1 and whose cdr is
2. The special meta-objects <dynamic> and <atom> denote values not known at the time
specialize runs; in addition, <atom> is constrained to denote only atomic Scheme values.

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

On the specialization of online program specializers 271

A pe-value with tag s ta t ic and whose value is either the empty list or a pair.
If the value is a pair, its car is a pe-value with tag s ta t ic and a value which
is a pair of a static pe-value with unknown atomic (non-pair) value, and a
dynamic pe-value, and the recursive type.

<t2> ::= (s tat ic [() I ((s ta t i c ((s ta t ic <atom>)
. (dynamic <dynamic>)))

• A pe-value with tag dynamic.

<t3> ::= (dynamic <dynamic>)

The third type is simple, but the first two are rather complex. Indeed, we know
of no program specializer capable of inferring (or even representing) such types.
FUSE only maintains information about structured types whose size is known at
specialization time, reverting to the type <dynamic> for any specialization-time value
which might denote arbitrarily large values at runtime.

Computing recursive types is a difficult problem, because of the need to collapse a
chain of disjoint unions into a recursive type. Existing approaches to this problem in
the pointer analysis community have used either fc-bounded approximations, which
limit the size of nonrecursive type descriptors, or methods based on limiting each
program expression to returning a single type descriptor.

This latter approach works well for analyzing a complete program, because the
identity of the expressions in the program can be used as 'anchor points' to perform
least upper bounding and build recursions. Examples include the partially static
binding-time analyses of Mogensen (1989) (one binding-time grammar production
per program point) and Consel (1989) (one type descriptor per cons point), and the
monovariant type evaluator of Young and O'Keefe (1988). In the case of an online
specializer, which must infer the type of residual code as it is being constructed,
we lose this ability to use the identity of code expressions; during the iterative
type analysis process, several residual code expressions may correspond to a single
program point in the source program. To achieve termination (i.e. to avoid infinite
disjoint unions) some of these code expressions (and their types) must be collapsed
together, but we can't just collapse together all instances of a source program point
as this would yield a purely monovariant specialization. The problem, then, lies in
deciding when and how to collapse, or generalize.

Polyvariant static analyses do not appear to be useful here either. Consel's poly-
variant partially static BTA (Consel, 1989) operates by keeping all nonrecursive
invocations of a procedure distinct, and collapsing recursive call sites together with
initial call sites; this works fine for BTA, but will not work for online specializa-
tion, as it precludes unfolding of recursive procedures. Aiken and Murphy's type
analyzer (Aiken and Murphy, 1991) appears to use a similar method. Mogensen's
higher-order partially static polyvariant binding-time analysis (Mogensen, 1989) is
for a typed language, and uses (user- or inferencer-provided) declarations when
deciding what recursive types to construct. The online polyvariant analysis phase
proposed by Katz (1992), has promise, but has not yet been implemented.

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

272 Erik Ruf and Daniel Weise

Thus, given the current state of the art, we are unable to construct the first
two types listed above at program generator generation time. The consequences
of this are disastrous, as we are able to accurately represent only dynamic pe-
values, and static pe-values of known size. All static or partially static pe-values of
unknown (at program generator generation time) size end up being represented as
<dynamic>, which contains no binding-time information whatsoever. In the case
of the interpreter fragment of Figure 8, all binding-time information about the
parameter names and about the value returned by in i t -s tore is lost. Thus, the
resultant program generator will not know that the list of names is static, or
that store lookup can be performed statically—indeed, even syntactic dispatch will
perform needless binding-time comparisons. The program generator will be almost
as slow (and large) as a naively generated program generator.

This bodes ill for the self-application of specializers like FUSE, which uses a
symbolic value encoding similar to the two-tag encoding described in this section.
Successful specialization of such specializers appears to require either a change of
encoding, or new and more powerful specialization techniques.

4.2.2 Three-tag encoding

In this section, we consider a different encoding of partially static structures, this
time using three tag values. The tags s ta t ic and dynamic are interpreted as
before: s t a t i c denotes a completely static value, and is followed by a Scheme
value, while dynamic denotes a completely dynamic value, and is followed by a
residual code expression. We add a new tag, s tat ic-pair , which is followed by a
pair of pe-values, rather than Scheme values, denoting a pair whose subcomponents
are denoted by the corresponding pe-values.6 Thus, (s ta t ic-pair ((s ta t i c 1) .
(dynamic (f oo x)))) denotes a pair whose car is 1 and whose cdr is unknown,
but can be constructed by the code (foo x).

Compared with the two-tag encoding of Section 4.2.1, this encoding requires
slightly more mechanism in the program specializer (TINY) because the cons
primitive must consult the binding times of its inputs to decide how to tag its
output (instead of just always tagging it static). Similarly, the code for comparing
argument vectors in the cache (and, in the case of online generalization, the stack)
must be able to traverse static and partially static pair structures in parallel. However,
we will see that this added cost allows more efficient program generators to be
generated using existing technology.

Consider the in i t - s to re code of Figure 8. At program generator generation
time, specialize must be able to represent the following types:

. completely static pe-value; that is, the tag is s ta t ic .• A

<tl> ::= (s ta t ic <dynamic>)

6 Of course, a partially static value must also contain the appropriate residual code fragment
for constructing the value at runtime. Since this attribute is immaterial to our discussion,
we will ignore it.

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

On the specialization of online program specializers 273

• A pe-value which is either the empty list or a partially static pair whose car is
a partially static pair with static car and dynamic cdr, and whose cdr is the
recursive type.

<t2> ::= [(s ta t ic ()) I
(s ta t ic-pair ((s ta t i c <dynamic>) . (dynamic <dynamic>))

• A completely dynamic pe-value; that is, the tag is dynamic.

<t3> ::= (dynamic <dynamic>)

Both the first and third types are easy for specialize to represent, as it knows
the size of all static parts (i.e. both are tuples of length 2). The second type still
requires recursive type inference, which is beyond the current state of the art.

Thus, when TINY is specialized on an interpreter containing a call to init-store,
the resultant program generator will not contain any binding-time comparisons for
names or values (or for any syntactic dispatch operations) but will contain needless
binding-time comparisons in the store lookup routine, because specialize lost the
information about the structure of the store (i.e. an association list with static cars).
All binding-time operations for completely static or completely dynamic operations
are reduced at program generator generation time, but such operations on partially
static structures (or their components) are performed online in the program genera-
tor. This is significantly better than the results obtained with the two-tag encoding,
which couldn't even optimize out operations on completely static structures, but not
as good as could be obtained with a more powerful version of specialize. Specializ-
ing this version of TINY on the MP interpreter using FUSE yielded speedup figures
of 11.4-12.0, depending on the MP program being specialized. Because binding-time
operations on partially static structures are not performed at program generator
generation time, this program generator still performs unnecessary binding-time
manipulations on the store; removing these manipulations would achieve better
speedups.

This is an instance of a common phenomenon in partial evaluation, namely the
extreme sensitivity of the specializer to changes in the representations used by the
problem being specialized. Indeed, the use of a less efficient representation (such as
the three-tag encoding here) can often lead to more efficient specializations if the
extra work (in this case, having TINY's cons primitive consult the binding-time tags
of its arguments to determine the tag for its result) is performable at specialization
time.

4.3 Other online mechanisms

In addition to binding-time tests in primitives, and generalization, some specializers
perform other operations online, such as induction detection (Weise et al., 1991) and
iterative type analyses (Ruf and Weise, 1992b; Ruf, 1993). These operations, not
present in TINY but present in some versions of FUSE, significantly complicate the
task of producing efficient program generators. In this section, we will briefly describe

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

274 Erik Ruf and Daniel Weise

these mechanisms, and explain why present specialization technology cannot handle
them.

4.3.1 Induction detection

Some online specializers such as FUSE and Mixtus (Sahlin, 1991) make unfold vs.
specialize decisions automatically during specialization. One common mechanism
for this purpose relies on detecting inductions, and works as follows. The specializer
assigns a well-founded partial ordering to all pe-values, and unfolds a recursive call
only when the recursive call's argument vector is strictly smaller (in the partial
ordering) than the prior call's argument vector. This detects and unfolds static
induction, such as cdr-ing down a list of known length, or counting down from
some number to zero (this only works if a 'natural number' type is provided;
otherwise, we wouldn't know that the induction is finite at specialization time). This
is conservative, as it fails to unfold cases where the iteration space, though bounded,
doesn't map monotonically to the partial ordering (consider a list-valued argument
which shrinks by two pairs, grows by one, shrinks by two, etc). However, it has
proven useful in practice.

For example, the expression argument of an interpreter typically shrinks on each
recursive call to the evaluation procedure. TINY can test this easily by merely
comparing the sizes of the expression arguments on successive invocations of the
evaluator. At program generator generation time, however, only the binding time (in
this case, static) of the argument pe-values is known, but not the values (which are
dynamic at program generator generation time), meaning that, without additional
analysis on the part of specialize, TINY's length comparison will not be decidable
when TINY is specialized. This is unfortunate, as the inductive traversal property
is true for all possible expressions, and thus should be determinable at program
generator generation time.

Making this determination requires that specialize reason about the sizes of
dynamic values; e.g. proving that the dynamic value in the recursive pe-value is
derived from the dynamic value in the initial pe-value via a series of car and cdr
operations. Using this information to evaluate TINY's decision procedure requires
even more reasoning: if TINY's decision procedure compares the length of lists by
traversing them in parallel, specialize must make an inductive argument to prove
that, no matter how many iterations TINY's comparison loop performs its result
will always be true. This can be done by propagating information from the tests of
dynamic conditionals (null? tests) into the arms, which is not performed by most
existing specializers (the supercompiler (Turchin, 1986) can do this in some cases). It
is likely that future specializers will have such mechanisms, as they are useful, if not
essential, in handling aliasing. A simpler solution relies on explicit reflection in the
form of an upcall, where TINY's implementation of the 'shorter' predicate on lists is
replaced by a primitive known to specialize, which simply checks to see if one of
the lists is derived from the other). However, this would be a less versatile technique;
we believe that the results of any reasoning in a specializer such as specialize

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

On the specialization of online program specializers 275

should be usable for improving any program, not just special programs containing
upcalls of this form.

4.3.2 Iterative type analyses

Another mechanism by which online specializers gain accuracy advantages over their
offline counterparts is via iterative type analyses, such as those described in (Ruf
and Weise, 1992b; Ruf, 1993). For example, FUSE can determine that any number
of functional updates to a store represented as an association list will preserve the
'shape' of the store—that is, the cars will remain unchanged. This is important
because it avoids unnecessary searching in programs constructed by specializing
interpreters.

Unfortunately, such analyses encounter problems similar to those faced by spe-
cializers with induction detection and online generalization. The problem is that the
type analyses test the equality of two static specialization-time values (for example,
the values of parallel keys in two different association lists) by executing the Scheme
procedure equal?, which cannot be evaluated at program generator generation time,
as only the binding times (and not the values) are available. For some interpreters
(such as MP), the equality of the keys is a property of the interpreter, independent
of the program on which it is specialized, so we ought to be able to decide this at
program generator generation time. Doing so would require that specialize keep
track of equality relations between dynamic values, so that the equality tests used
by the type analysis can be decided when the program generator is constructed.

This might well be a fruitful area for future research even in the domain of offline
specializers, because the static reasoning needed to prove that the shape of a store
doesn't change, given only the source text of the interpreter (but not of the program
being interpreted) could just as easily be performed at BTA time as at program
generator generation time. If such an analysis could be provided, then the fixpoint
iterations themselves might become unnecessary—the analysis could prove that the
names in the store would remain unchanged across iterations instead of having to
rediscover this fact for each different set of names. Of course, if we wish to preserve
as much information as possible about the values in the store, online generalization
is still necessary, because the behavior of the values is determined by the program
text, not just the interpreter text. Similarly, an interpreter for a language like BASIC,
where the store can potentially grow during a loop due to automatic initialization of
undeclared identifiers, requires online methods because the equality of store shapes
on recursive calls is not provable given the interpreter text alone.

4.4 Summary

Figure 9 summarizes our discussion of the features of online specializers and the
mechanisms needed to produce efficient program generators from specializers with
such features. Each feature is listed, along with the necessary mechanisms. Together,
FUSE and TINY meet these constraints for the first two features, online special-
ization and online generalization. By choosing appropriate of representations, we

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

276 Erik Ruf and Daniel Weise

• Basic online PE
— partially static structures in specialize
— return value computations in specialize
— explicit tag values in TINY or disjoint union types in specialize

• Online Generalization

— static indication of 'ungeneralizable' values in TINY (i.e. finiteness analysis) or
equality reasoning in specialize

• Partially Static Structures
— recursive types in specialize

• Induction Detection
— size reasoning in specialize
— propagation of information from tests of dynamic conditionals into arms in

specialize or primitives for size predicates used in TINY.
• Fixpoint Iteration

— equality reasoning in specialize

Fig. 9. Online features and mechanisms for specializing them.

achieved some success for partially static structures. Full efficiency with partially
static structures, induction detection, or fixpoint iteration will require new special-
ization technology.

We should also note that Figure 9 should probably include a line for side effects.
Many online mechanisms can be implemented far more efficiently using side effects
(FUSE makes heavy use of side effects, to data structures as well as to variables),
but if side effects are used, then specialize must be prepared to reason about
them. Existing techniques, which basically residualize all side-effecting or side-effect-
detecting computations, will not be sufficient if binding times are represented using
side-effectable data structures (contrast this with the offline case, where binding-time
information is retained no matter how the specializer handles side effects).

5 Future work

In this section, we briefly describe several frontiers for future work in the generation
of program generators from online specializers.

5.1 Self application

Although we have demonstrated the specialization of a nontrivial specializer into
an efficient program generator, we have not demonstrated self-application. Self-
application is important if we wish to speed up the process of program generator
generation via by constructing a 'compiler compiler' (Ershov, 1978), or if we wish to
perform multiple self-application (Gluck, 1991) to achieve several levels of currying.
It appears as though self-application is achievable only with specializers having
particular levels of complexity, where the specializer is simultaneously sufficiently
powerful to specialize itself, while being sufficiently simple to be specialized by itself.

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

On the specialization of online program specializers 277

In the offline paradigm, where the specializer itself performs fairly simple compu-
tations directed by static annotations, self-application can be achieved at a relatively
low level of complexity. Unfortunately, this does not appear to be the case for
online specializers; to date, each mechanism in TINY has required yet more com-
plexity in specialize. More research is required to locate the level of functionality
at which closure is achieved, and to determine how to implement such function-
ality efficiently. Doing so may or may not be worthwhile, depending on whether
the additional analyses are also useful for specializing programs other than the
specializer.

5.2 Encoding issues

Unlike offline specializers for untyped languages, which need not encode values,
online specializers necessarily incur an overhead due to the need to represent both
static values (all Scheme datatypes) as well as dynamic values using a single universal
datatype. This reduces the speed of the program generator, and of the program
generator generation process; for example, specializing TINY on the MP interpreter
with FUSE required 7 minutes and a 32 megabyte heap.

There are several ways in which we might reduce this overhead. The generated
program generator often encodes values unnecessarily, encoding values whose bind-
ing times are never examined. Current arity raising (Romanenko, 1990) techniques
are insufficiently powerful to remove all 'dead' tags. In particular, current arity
raisers eliminate only static portions of parameter values, without removing static
portions of returned values. CPS-converting (Steele Jr., 1978) programs will take care
of the problem of returned values, but may require a fairly sophisticated dead-code
analysis in addition to any complexities added by the higher-order nature of CPS
code. Worse yet, if the specializer is written to return tagged values at top level (i.e.
FUSE returns a residual program containing, among other things, encoded values),
then the program generator must do the same, reducing the number of 'dead' tags.
It is likely that tag optimization techniques for dynamically typed languages (Hen-
glein, 1992; Peterson, 1989) could provide significant improvements here, not only
for the specialization of specializers, but the specialization of interpreters for dy-
namically typed languages as well. Launchbury's lazy encoding technique for typed
languages (Launchbury, 1991) reduces encoding overhead for completely static val-
ues, but appears to be of less use for partially static values, because, under online
methods, the entire spine from the root of a partially static structure to each of its
dynamic leaves must be fully encoded at the time the structure is created.

5.3 Accurate BTA

Another potential research direction involves the use of binding-time analysis tech-
niques which do not force the specializer into overly general behavior. That is, the
result of an operation could be static or dynamic, the result should be annotated as
'unknown binding time' rather than 'dynamic' Only decisions involving expressions
with 'static' and 'dynamic' binding-time annotations would be performed at BTA

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

278 Erik Ruf and Daniel Weise

time; decisions involving expressions annotated as 'unknown binding time' would
be delayed until specialization time, yielding an an (optimized) online specializer.
Consel describes such a binding-time lattice in (Consel, 1989) but expresses concerns
over the pollution of entire expressions due to a single subexpression having an
unknown binding time. BondorFs Treemix (Bondorf, 1990) uses such an analysis,
but its effectiveness is not described.

Such mechanisms may well be useful in eliminating some encoding overhead, and
in preserving binding times without the more complex mechanisms of Sections 3.3
and 4. Things are complicated, however, by the need to approximate the specializer's
termination mechanism at BTA time; without means to handle the problems of
Section 4.3, almost all values will be annotated with unknown binding times. Also,
since online specializers spend a higher proportion of their effort on operations which
cannot be optimized given knowledge of binding times, there is some question as to
the benefits to be gained.

5.4 Inefficient program generators

The motivation for the use of binding-time information at program generator
generation time is to increase the efficiency of the resultant program generator by
avoiding unnecessary reductions at program generation time. Inefficient program
generators, which take advantage of the static values available at program generator
generation time (e.g. perform syntactic dispatch and environment lookup) but do
not make use of binding-time information, are both larger and slower than their
efficient counterparts. However, preliminary experiments conducted by the first
author suggest that the loss in speed may not be particularly large; even inefficient
program generators are significantly faster than general specializers when it comes
to program generation. This suggests that if we could control the size of inefficient
program generators, we could construct acceptably efficient program generators
without the difficulties inherent in making use of binding-time information.

6 Summary

We have shown that, given a careful encoding of specialization-time values and a suf-
ficiently powerful specializer, we can construct an efficient program generator from a
simple yet nontrivial online program specializer. We believe this to be the first pub-
lished instance of efficient program generation from an online program specializer
without the use of binding-time approximation techniques. This result is significant
because it allows for the automatic construction of program generators which make
online reduce/residualize decisions, enabling, for example, optimizing 'compilers.'
It is also a demonstration of the power of online specialization techniques, since
the information preservation mechanisms used to achieve efficient program gen-
eration, are, at present, implemented only in an online specializer, FUSE. Unlike
binding-time approximations, which address only the specialization of specializers,
the information preservation techniques used here can improve the specialization
of many programs, not just the specializer TINY. Finally, our result may be of

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

On the specialization of online program specializers 279

interest to the logic programming community, where, in contrast to the functional

programming community, most program specializers use online methods (Ershov

et al., 1988; Sahlin, 1991; Lakhotia and Sterling, 1991).

Nonetheless, this result is unlikely to lead to the widespread proliferation of online-

specializer-based program generators. The most obvious reason is that, although we

can successfully specialize small specializers such as TINY, we have not developed

methods sufficiently powerful to specialize state-of-the-art specializers such as FUSE

(c.f. Section 4). This forces the user into a choice between efficiency and accuracy

of specialization; given that the primary motivation for using online techniques is

accuracy, we expect that most users would prefer the slower, more powerful, and

as-yet-unspecializable systems. We believe that the future of program specialization

lies in a mixture of online and offline approaches, in which the additional costs of

online specialization are paid only when necessary. We leave this to future research.

References

Aiken, A., & Murphy, B. R. (1991) Static Type Inference in a Dynamically Typed Language.
Pages 279-290 of: Eighteenth Annual ACM Symposium on Principles of Programming Lan-
guages.

Beckman, L., et al.. (1976) A partial evaluator and its use as a programming tool. Artificial
Intelligence, 7(4), 291-357.

Bondorf, A. (1990) Self-Applicable Partial Evaluation. Ph.D. thesis, DIKU, University of
Copenhagen, Denmark. Revised version: DIKU Report 90/17.

Bondorf, A., Jones, N., Mogensen, T, & Sestoft, P. (1988) Binding Time Analysis and the
Taming of Self-Application. Draft, 18 pages. DIKU, University of Copenhagen, Denmark.

Consel, C. (1989) Analyse de programmes, Evaluation partielle et Generation de compilateurs.
Ph.D. thesis, Universite de Paris 6, Paris, France. 109 pages. (In French).

Consel, G, & Danvy, O. (1990) From Interpreting to Compiling Binding Times. Pages
88-105 of: Jones, N. (ed), Proceedings of the 3rd European Symposium on Programming.
Springer-Verlag, LNCS 432.

Ershov, A. P. (1977) On the Partial Computation Principle. Information Processing Letters,
6(2), 3 8 ^ 1 .

Ershov, A. (1978) On the Essence of Compilation. Pages 391-420 of: Neuhold, E. (ed),
Formal Description of Programming Concepts. North-Holland.

Ershov, A., BJ0rner, D., Futamura, Y., Furukawa, K., Haraldson, A., & Scherlis, W. (eds).
(1988) Special Issue: Selected Papers from the Workshop on Partial Evaluation and Mixed
Computation, 1987 (New Generation Computing, vol. 6, nos. 2,3). OHMSHA Ltd. and
Springer-Verlag.

Futamura, Y. (1971) Partial evaluation of computation process—an approach to a compiler-
compiler. Systems, Computers, Controls, 2(5), 45-50.

Gliick, R. (1991) Towards Multiple Self-Application. Pages 309-320 of: Partial Evaluation
and Semantics-Based Program Manipulation, New Haven, Connecticut. (SIGPLAN Notices,
vol. 26, no. 9, September 1991). ACM.

Gliick, R., & Turchin, V. F. (1989) Experiments with a self-applicable supercompiler. Tech.
rept. City University of New York.

Gomard, C , & Jones, N. (1991) A Partial Evaluator for the Untyped Lambda-Calculus.
Journal of Functional Programming, 1(1), 21-69.

Haraldsson, A. (1977) A Program Manipulation System Based on Partial Evaluation. Ph.D.
thesis, Linkoping University. Published as Linkoping Studies in Science and Technology
Dissertation No. 14.

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

280 Erik Rufand Daniel Weise

Henglein, F. (1992) Global Tagging Optimization by Type Inference. Pages 205-215 of:
Proceedings of the 1992 ACM Conference on Lisp and Functional Programming (LISP
Pointers vol. 5, no. 1, January-March 1992).

Hoist, C. K. (1991) Finiteness Analysis. Pages 473-495 of: Functional Programming Languages
and Computer Architecture, Cambridge, Massachusetts, August 1991 (LNCS 523 jSpringer-
Verlag, for ACM.

Hoist, C. K., & Launchbury, J. (1991) Handwriting Cogen to Avoid Problems with Static Typ-
ing. Pages 210-218 of: Draft Proceedings, Fourth Annual Glasgow Workshop on Functional
Programming, Skye, Scotland. Glasgow University.

Jones, N. D., Sestoft, P., & Sondergaard, H. (1985) An experiment in partial evaluation:
The generation of a compiler generator. Pages 124-140 of: Rewriting Techniques and
Applications. Springer-Verlag, LNCS 202.

Jones, N. D., Sestoft, P., & Sondergaard, H. (1988) Mix: A self-applicable partial evaluator
for experiments in compiler generation. Lisp and Symbolic Computation, 1(3/4), 9-50.

Jones, N. D., Gomard, C , & Sestoft, P. (1993) Partial Evaluation and Automatic Program
Generation, (in progress).

Kahn, K. M. (1982) A partial evaluator of Lisp programs written in Prolog. Pages 19-25 of:
Caneghem, M. V. (ed), First International Logic Programming Conference.

Katz, M., & Weise, D. (1992) Towards a New Perspective on Partial Evaluation. Pages 29-
37 of: ACM SIGPLAN iVorkshop on Partial Evaluation and Semantics-Directed Program
Manipulation. Proceedings available as YALEU/DCS/RR-909.

Lakhotia, A., & Sterling, L. (1991) ProMiX: A Prolog Partial Evaluation System. Chap. 5,
pages 137-179 of: Sterling, L. (ed), The Practice of Prolog. MIT Press.

Launchbury, J. (1991) Self-Applicable Partial Evaluation without S-Expressions. Pages
145-164 of: Functional Programming Languages and Computer Architecture, Cambridge,
Massachusetts, August 1991 (LNCS 523jSpringer-Verlag, for ACM.

Mogensen, T. (1989) Binding Time Aspects of Partial Evaluation. Ph.D. thesis, DIKU, Uni-
versity of Copenhangen, Copenhagen, Denmark.

Peterson, J. (1989) Untagged data in tagged languages: choosing optimal representations
at compile time. Pages 89-99 of: Proceedings of the 4th ACM Conference on Functional
Programming Languages and Computer Architecture.

Rees, J., Clinger, W., et al.. (1991) Revised4 Report on the Algorithmic Language Scheme.
LISP Pointers, 4(3), 1-55.

Romanenko, S. (1990) Arity Raiser and Its Use in Program Specialization. Pages 341-360 of:
Jones, N. (ed), ESOP '90. 3rd European Symposium on Programming, Copenhagen, Denmark,
May 1990. (Lecture Notes in Computer Science, vol. 432). Springer-Verlag.

Ruf, E. (1993) Topics in Online Partial Evaluation. Ph.D. thesis, Stanford University, Stanford,
CA. Published as Stanford Technical Report CSL-TR-93-563, March 1993.

Ruf, E., & Weise, D. (1992a) Opportunities for Online Partial Evaluation. Tech. rept. CSL-
TR-92-516. Computer Systems Laboratory, Stanford University, Stanford, CA.

Ruf, E., & Weise, D. (1992b) Preserving Information during Online Partial Evaluation. Tech.
rept. CSL-TR-92-517. Computer Systems Laboratory, Stanford University, Stanford, CA.

Sahlin, D. (1991) An Automatic Partial Evaluator for Full Prolog. Ph.D. thesis, Kungliga
Tekniska Hogskolan, Stockholm, Sweden. Report TRITA-TCS-9101, 170 pages.

Schooler, R. (1984) Partial Evaluation as a means of Language Extensibility. M.S. thesis, MIT,
Cambridge, MA. Published as MIT/LCS/TR-324.

Steele Jr., G. L. (1978) Rabbit: A Compiler for Scheme. Tech. rept. AI-TR-474. MIT Artificial
Intelligence Laboratory, Cambridge, MA.

Turchin, V. F. (1986) The Concept of a Supercompiler. ACM Transactions on Programming
Languages and Systems, 8(3), 292-325.

Turchin, V. F. (1988) The Algorithm of Generalization in the Supercompiler. Pages 531-
549 of: BJ0rner, D., Ershov, A. P., & Jones, N. D. (eds), Partial Evaluation and Mixed
Computation. North-Holland.

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

On the specialization of online program specializers 281

Weise, D., Conybeare, R., Ruf, E., & Seligman, S. (1991) Automatic Online Partial Evalua-
tion. Pages 165-191 of: Hughes, J. (ed), Functional Programming Languages and Computer
Architecture (LNCS 523). Cambridge, MA: Springer-Verlag, for ACM.

Young, J., & O'Keefe, P. (1988) Experience with a type evaluator. Pages 573-581 of:
BJ0rner, D., Ershov, A. P., & Jones, N. D. (eds), Partial Evaluation and Mixed Computation.
North-Holland.

https://doi.org/10.1017/S0956796800000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000745

