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Abstract 

In this paper we prove a generalization of the well known theorem of Krasnoselskii on the superposition 
operator in which the domain of Nemytskii's operator is a product space. We also give an application of 
this result. 
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1. Introduction 

Let / : fi x R1 -> r , fi C I 1 be a Caratheodory function (that is, measurable 
with respect to the first variable and continuous with respect to the group of others). 
In nonlinear analysis, the operator of superposition (often referred to as Nemytskii's 
operator) of the form F : LP(J2;IR') 3 *(•) M- /(•,*(•)) e ^ ( n j R " ) , p > 1 (see 
[5,6,7,8]), plays an essential role. The well-known theorem of Krasnoselskii says that 
an operator F is continuous if it is bounded, that is, \f (t, x)\ < a\x\p + b(t) for some 
a > 0 and b e L\Q). For nonlinear operators, this is quite remarkable. The original 
proof of this theorem and its known modifications are long and not elementary (see for 
example [5, 6,9]). A very simple and short proof of the theorem of Krasnoselskii can 
be found in [10]. In this paper we prove a generalization of Krasnoselskii's theorem 
in which the domain of Nemytskii's operator is a product space. There exists an 
extensive list of different kinds of generalizations of the theorem of Krasnoselskii (see 
[2, 1] and the references therein) but the authors have not found the results proved in 
this paper anywhere. The result we obtained is used to prove some differentiability 
properties of integral functionals. 

© 2002 Australian Mathematical Society 1446-7887/2000 $A2.00 + 0.00 

389 

https://doi.org/10.1017/S1446788700150001 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700150001


390 Dariusz Idczak and Andrzej Rogowski [2] 

2. Some generalization of the Krasnoselskii theorem 

Recall the classical theorem of Krasnoselskii [5]. 
Let £2 c W be a (Lebesgue) measurable set and le t / : f i x l ' - > Rm, s,l,m e N, 

be a Caratheodory function. It is well known that for any measurable function 
x : £2 -»• R', the function £2 9 n-» / (/, *(0) 6 Km is measurable. 

THEOREM 1 (Krasnoselskii). Let Pi,p2 e [1, +00). If there exist a constant a > 0 
anda function b e LP2(Q), such that \f(t, x)\ < a\x\Pilp*+b(,t)fort e S2a.e.,x e K', 
tfien the Nemytskii operator F : Z/'(£2;R') B JC(-) i-> /(-,*(•)) 6 Z/2(£2;Rm) fc 
C0Mft>JK0H.y. 

Let Sit i = 1 , . . . . k, be given sets of measurable functions on £2 with values 
in K''. Assume L,r c Sit i = 1, ...,k, are topological Hausdorff spaces such that 
any convergent sequence in L, contains a subsequence convergent (to the same limit) 
pointwise a.e. in £2. Put L C L \ x • • • x Lk with the topology induced from L1 x • • • x L*. 
Assume that/ : £2 x R'1 x • • • x Rlt -» Km is a Caratheodory function. 

THEOREM 2. # /or any convergent sequence (xj,,..., xk)neN in L there exist a 
subsequence (x^,..., x^)ieN and a function h 6 Z/(£2; Kg), 1 < p < oo, JHC/I f/iaf 

(2.1) ! / ( / , < ( / ) **(f))| < h(t) forall ieH and teQ cue., 

then the Nemytskii operator 

F:L3(xl xk)h+f (-,*'(•) **(•)) € L"(£2; R") 

« we// defined and sequentially continuous in L, that is, if{xx
n,..., xk) • ( x , } , . . . , 

JC0*) in L, then F(xl
n xk

n) -— F(x* xk) in U(£2; 01"). 

PROOF. The assumption of the theorem, applied to a constant sequence, implies 
that F is well defined. Suppose now that {x\,..., xk) ^ • (*<},..., x^) in L and 
there exist a number e > 0 and a subsequence still denoted by (x\,..., x*)nEN, such 
that 

(2.2) f \f(t,xl
n(t),...,x

k(t))-f(t,x^t),...,xk(t))\p dt>e f o r n e N . 
Jn 

On the other hand, we can choose a subsequence (x^,..., xk.) of (xj,,..., xk) satis­
fying (2.1). We calculate 

1/(*.<(*) xk
i(t))-f(t,x

1
0(t),...,x

k(t))\'' 

< 2"(\f(t,xl
nt(t) xkJt))\» + |/(/f J C » 4(0)1") 

<2pah(t)y + \f(t,xUt),...,xk(t))n 
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for all i 6 N and t e Q a.e. Since the topologies in LJt j = l,...,k, imply 
a pointwise convergence a.e. of a subsequence, the CarathSodory condition on / 
implies that, up to a subsequence, / (t, xj,t (t) xk

nt (r)) is pointwise convergent a.e. 
in Q to / ( t , Jc,5(f),..., JCQ(O)- Using the Lebesgue dominated convergence theorem, 
we get lim^oo fa \f (t,xl

Kl(t) **(*)) - / ( ' . * » *o('))l" dt = 0, which 
contradicts (2.2) and the proof is completed. • 

REMARK. In the above theorem any subsets of Lp'(Si; R'') or C(Q, R'O with Q 
compact can be considered as topological spaces L, (with the induced topologies). 

3. Application 

Let us consider a second order system 

(3.1) 

f -^-(«i(0 + «i(0) = -aui(t) + Pi(t) + A(t)u2(t), dt 

3-(|«2(0|2"2(0 + «2(0) = ~b\u2(t)\
2u20) + fii(t) + AT(t)Ul(t) v at 

for t € / = [0,7r] a.e., with Dirichlet boundary conditions «(0) = u(n) = 0. 
It is easy to notice that the functional of action for system (3.1) (which becomes 

the Euler-Lagrange equation for this functional) is of the form 

(3.2) 0(«If «2) = I (-\ui«)\2 + ^\ui(t)\* + {«,(/), u,(0) 

+ <a2(0. «a(0) - £|«i(0|2 - 7l«2(0l4 + (0.C), ".(0) 
2 4 

+ (&('), «2(0) + {ui(t),Mt)u2(t))\dt, 

where a, b e R, a, e L2(/,R'') \ L4(/,R''), a2 € L4/3(/, R'2), A € / , ' ( / ; R'1). 
p2 € L'(/;R'2), A e Z,'(/;R'""2). /|,fe e N. (Recall that w£p(I,R'), where 
p e [1, oo[, / e N is the standard Sobolev space, that is, the space of all absolutely 
continuous functions u : / H> R' such that w 6 Z/(/ , R') and w(0) = M(7T) = 0, 
equipped with the norm ||M|| = ( / , \u(t)\p dt + f, \ii(t)\p dt)Up). At the first glance it 
seems that the space W0

I-4(/, R'1 x R'2) is a natural space for investigating system (3.1) 
as well as functional (3.2). However, from the fact that a{ e L2(/, R'1) \ L4(/, R'1) 
it follows that there is no solution of system (3.1) in W0

1,4(/, R'1 x R'2). On the other 
hand, we easily check that <j> is a Gateaux-differentiable, weakly lower semicontinuous 
and coercive functional on W0

1,2(/, R'1) x W0
1,4(/, R'2). By applying a direct method 

of the calculus of variations it is easy to prove the existence of a solution of (3.1) 

https://doi.org/10.1017/S1446788700150001 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700150001


392 Dariusz Idczak and Andrzej Rogowski [4] 

in WQ2(I, R1') x WQA(I, R'1). In many variational and optimal control problems, an 
essential role is played by the theorem on the existence and continuity of the Fr6chet 
derivative of integral functional (see for example [7, 4]). Using Theorem 2, we can 
prove 

THEOREM 3. Let I be a finite interval in R, and let g : / x K ' ' x R'2 x R1' x R'2 -* R 
be a Caratheodory function continuously differentiable with respect to the last four 
variables for t 6 / a.e. If there exist functions a\,a2 e C(I, RQ), b e Lx(l, R^)< 
c € L«'(/, R%), d e L«(/, Rj), where p\x + ?,"' = 1, p2

l + q2
x = 1, such that 

\g(t, «,, u2, «,, u2)\ < (a,(|M,|) + a2(\u2\))(b(t) + |M,r + I M J D , 

|V„l5(f, «,, W2, «,, «2)| < (fl,(|«,|) + fl2(|«2l))(*(0 + l « i r + l "2D. 

\Vui8it, ui, ii2. «i. "2)1 < (ai(l«il) + a2Qu2\))(b(t) + | « , | " + |«2|«), 

|V4,j(/, «,, u2, «,, «2)| < (fl,(|ii,|) + a2(|H2|))(c(0 + IM.I"'-1 + |« 2 r / 9 ' ) , 

\Vilg(t, M„ «2, «,, H2)| < (fl,(|ll,|) + a2(\u2\))(d(t) + W ' + |M,|"'*), 

then the functional (/>: Wo*'(I, R'1) x W0
I,P2(/, R'2) - • R defined by the formula 

<t>(uu u2) = J g(t, M l(0, K 2 ( 0 , «i(0. «2(0)rf» 

is continuously Frechet-differentiable in W0
l'p'U. I*'1) x Wo'"^, R'2), one? 

</>'(«!, «2)(/ii, h2) = / (VH1^(/, M,(0, u2(t), «,(0, u2(t))hi(t) 

+ VU2g(t, M,(0, "2(0, «l(0. U2(t))h2(t) 

+ Vi.sa,«,(/), M2(O, «,(/>, «2(0)Ai(o 
+ V ^ f , «i(/), «2(r). " i(0, u2(t))h2(t))dt 

for(huh2) e Wr
0
l,"(7, R'') x W0

lP2(I, K'J)-

REMARK. This theorem is a generalization of [7, Theorem 1.4] in the case of 
product of spaces W0

Up' (I, R'1) x WQP2(I, R'2). In a natural way it may be extended 
to the case of product of any finite number of spaces W0

lp'(/, R1'). 

In the proof of Theorem 3 we shall use this very interesting lemma of Brezis ([3, 
Theorem IV.9]). 

LEMMA 1 (Br6zis). From any sequence (jc„)„eN of elements of Lp(£2;Rl), p e 
[I, +oo), converging in Lp(£l; R') to some XQ e Z/(£2; R'), one can choose a subse­
quence (jfn,)ieN converging to XQ a.e. in Q, such that \x„t (t) \ < g(t)for t e £2 a.e. and 
k eM with some function g e Z/(f2; R'). 
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PROOF OF THEOREM 3. It suffices to prove that there exist partial Gateaux deriva­
tives 4>'Ui(«], M2), </>'„2(wi, "2) of the functional <j>, continuous in WQ'P'(I, R'1) X 

WQP2(I, R'2). It is easy to show (see for example [7, proof of Theorem 1.4]) that 
these derivatives exist and are given by the formulae 

< ( " ) , "2X/11) = / (?„«(*, «,(*), "2(0, « i (0 . u2{t))hi(t) 

+ Vi,gO, udt), u2(t), M,(0, u2(t))hx{t))dt 

for A, € W0
l,Pl(7, R'Oand 

< ( « . , u2)(h2) = J{VU2g(t, udO, u2(t), H,(0, it2(t))h2(t) 

+ Vu2g(t, «i(0. "2W, «i(0. u2(t))h2(t))dt 

for /j2 e Vy0
1,/'2(/, R'2). To end the proof, we must show that the operators 

< " ' ( / , R' ' )x W^P2(I,Rh) 

B («1. «2) •"* V„^(-, ll,(.), H2(0. «l(0. «2(0) € L'(/, R'') 

and 

< " ' ( / , R' ' )x < " ( / , K'2) 

3 («., "2) >-• Vi((?(-,«,(.), u2(-), «.(•), «2(-)) e £ ' ( / . K'O 

for J = 1,2 are continuous. Since W0
1,"(7, R'1), W0

1,w(/, R'2) are metric spaces, 
it is enough to show that the above operators are sequentially continuous. Since the 
convergence of a sequence of functions in WQP'(I, R'') implies the convergence of this 
sequence in C(7, R'O together with the convergence of the sequence of derivatives 
in / / ' ( / , R'O, therefore, by Theorem 2, putting L, = C(7, R'1), U = C(7, R'2), 
L3 = / / ' (I, R'1), U = LPl(I, R'2) and L = LixL2xL3x L4, we get the assertion. 

Indeed, let (z", z2, Z3. Z4) n_00- (z?, z". z°. zj) in L. Applying Lemma 1, one can 
choose subsequences (z]')ie.s and (z"')iiN such that |(z"'(/))| < g3(f) and Kz '̂CO)! < 
£4(0 ( ( € / a.e., 1 e N) for some functions g3 e / / ' ( / , Rj) and #4 e Z/2(7, Rj). 
Moreover, since T-i = C(7, R'1), 7-2 = C(7, R'2), there exists M > 0 such that 

| (z" '(0)l<M and |(z2
n'(0)|<M, * e / , i s N . 

Hence the assumptions of the theorem yield, for; = 1 , 2 , the estimates 

\V*jg(t, z?, zn
2', z3

n\ z1')\ < hj(0, t e 7 a.e., / e N, 

with Ay (0 = (a,(M) + a2(M))(b(t) + \giO)\"> + \g<(t)\P2) belonging to L,(7, R+). 
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In the same way, fory = 1 , 2 , one can check that 

|V4j*(f, zT, z2"\ z,"', z4
n')| < hj(t), t e / a.e., i e N, 

with A, e L«'(/, KJ), fc2 e L*(/, RJ). 
Consequently, each of the functions V„;g, V^g.y = 1 , 2 , satisfies the assumptions 

of Theorem 2. Therefore we conclude that if (u?, un
2) - ^ - (M°, W )̂ in Wo'"' (/, R'1) * 

Wo,P2(I, R'2),then 

vB^(-, <(•), «;(•). *,(•). a ;o) ^ r v«y*(-. «?(•). «2o. «?(•)."°(-)) 
inLl( / , R'J)for; = 1 , 2 , and 

V4^(., «?(•), «;(•), «,(•). "2(0) — • Viyg(., «?(•), «#•), "?(•), «°(-)) 

in L* (/, R'>) for; = 1, 2. This ends the proof. • 
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