
THE LATTICE OF INVERSE SUBSEMIGROUPS OF A
REDUCED INVERSE SEMIGROUPf

by P. R. JONES

(Received 20 May, 1975)

An inverse semigroup R is said to be reduced (or proper) if 0tr\a = i (where a is the
minimum group congruence on R). McAlister has shown ([3], [4]) that every reduced inverse
semigroup is isomorphic with a " P-semigroup " P(G, 9£, W), for some semilattice I*/, poset 3C
containing <& as an ideal, and group G acting on SC by order-automorphisms; (and, conversely,
every P-semigroup is reduced). In [4], he also found the morphisms between P-semigroups, in
terms of morphisms between the respective groups, and between the respective posets.

In this paper, we begin by finding which inverse semigroups can be isomorphic with an
inverse subsemigroup of a P-semigroup. (Any such semigroup must be reduced, and hence
isomorphic with another P-semigroup. The problem is therefore reduced to finding injective
morphisms between P-semigroups.) We then show that any inverse subsemigroup of
P(G, $£, <&) is determined by a subgroup of G, a subsemilattice of <&, and a pair (#"', 0) consisting
of a poset SE' and a mapping 9 of 3C' into 3C satisfying certain simple conditions. The obvious
question to ask is then: for which inverse subsemigroups can SC' be chosen as a subposet of 3C ?
In Section 2 we answer this, and some related questions, and investigate a special case which
leads to a construction for the congruences on P(G, SC, ft/) in terms of subgroups of G and
subsemilattices of <& (that is, independently of 3C).

Finally, we show that the set of all inverse subsemigroups of P(G, 9C, <&) with given semi-
lattice of idempotents and maximal group homomorphic image is a sublattice of the lattice of
inverse subsemigroups.

1. Inverse subsemigroups of P-semigroups. Let <& be a semilattice, % a poset containing <&
as an ideal and G a group acting on % (on the left) by order-automorphisms. The P-semigroup
P(G,ar,<&) is defined as P(G,S:,<&) = {(A,g)e<& x G\g-1Ae<3/}, with product (A,g)(B,fi) =
(AAgB,gh).

These semigroups were introduced by McAlister and McFadden [5], who showed that
each P-semigroup R is a reduced inverse semigroup, that is 3$r\o{R) = t, where a{R) —
{{x,y)eR | ex = ey for some e = e1 eR}, the minimum group congruence on R (Munn [6]). In
a recent paper, McAlister proved that every reduced inverse semigroup is isomorphic with a
P-semigroup P{G,3C,<¥), for some G, % and <& as above ([4; Theorem 2.6]), and further,
G, 3C and <& can be chosen so that:

(PI) G<& = 3C\
and (P2) for all g e G, g<&rs<& = 0 .

For the remainder of the paper, when we write P(G,^,^/) we will assume G, 9C and <W
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satisfy (PI) and (P2). (Note from (P2) that for every g in G, (A, g)eP(G, 3C, <&) for some A e<3/.)
If R = P(G, %,<¥), define a\R) (or just CT") by (/f^KCR) = g, for all ( / i . ^e /? . Then

a{R) = ff^ff*)"1, and /to* = G = Rla(R). (For all relevant properties of P-semigroups, the
reader is referred to [3], and for semigroups in general to [1].)

At this point some notation is needed. Let The an inverse semigroup. We will denote by
E(T), or just E, its semilattice of idempotents. If S is an inverse subsemigroup of T, we will
write S :g T. (If S and T are groups [semilattices], S ^ T will mean 5 is a subgroup [sub-
semilattice] of T.) A useful result in this context is the following, due to O'Carroll.

LEMMA 1.1 ([7, Proposition 1.1]). If R is a reduced inverse semigroup and U ^ R, let o(R)
and <J(U) be their respective minimum group congruences. Then o(U) = a(R)n(U x U).

Hence if U£R = P(G, 36, <¥), Ua\R) s U/a(U), and Ua\R) g Ra\R) = G. Define
<&(U)= {Ae<8f\(A,l)eU}. Then <&(U) £ E(U) and <Sf(U) £ <S/(R) = <&.

A mapping 0 of a poset SC' into another poset 2£ will be called monotone if X g Y implies
X9 ^ YO, and an order-isomorphism ofT into SC if 3C ^ <& ifFZ0 ^ F0 (in which case 0 must be
injective).

Our first theorem is just a statement of McAlister's construction of the morphisms between
/'-semigroups. Its, proof may be found in Theorems 1.3, 6.1 of [4].

THEOREM 1.2. Let R' = P(G', T, <&'), R = P(G, 3£, <&). Suppose there exist

(i) a monotone map Q\9£' ^>!% whose restriction to <&' is a (semilattice) morphism into <%/,
(ii) a (group) morphism $ : G' -* G, such that ifgeG' and XeT, (gX)9 = (g<j))(X0).

Define (A, g)\j/ = (A6, g<j>), for all (A, g) e R'. Then ip is a morphism of R' into R.
Conversely, suppose \ji: R' - »R is a morphism. For each g e G', put g(j> = (A, g )\\ia\R)

(where, by (P2) for R', there exists Ae<&' such that (A,g)eR'). For each A <=<&', put A6 = A,
where (A, 1) = (A, l)ij/, and for each XeT,put XO = (g<p)(Ad) (where, by (PI) for R', X=gA

for some g<=G',Ae<W').
Then (j), 6 satisfy (i) and (ii) above, and if(A,g)eR', then (A,g)\j/ = (A0,g<j)).
Suppose now R is reduced, and R' is an inverse semigroup which is isomorphic with an

inverse subsemigroup of R (under \]/ : R' -> R, say). Then R' must be reduced, and is thus
isomorphic to a P-semigroup. This motivates the next theorem.

THEOREM 1.3. Let R = P(G,3C,ty). Suppose R! = P(G', T, <&') is such that there exist
9, (j> satisfying:

(i) 9 is a monotone map of 9C' into 9£, whose restriction to W is a monomorphism into <&;
(ii) (j> is a monomorphism of G' into G;

(iii) ifgeG', XeT, (gX)9 = (g(f>)(X9).

Then R' is isomorphic with an inverse subsemigroup ofR, under the monomorphism \p, defined
by (A, g)$ = (A9, g$), for all (A,g)eR'.

Conversely, if R' is isomorphic with an inverse subsemigroup of R, there exist G', SC'', <&',
9 and (f> as above, such that R' s P(G', T, <&').

Proof. The direct half is clear from the previous theorem, since if 91 <Sf' and (j> are injective,
so is \j/.
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Conversely, if a :R' -* R is a monomorphism, R' is reduced, so there is an isomorphism /?,
say, of P' = P(G',SC',<&') onto R', for some G', SC', <&'. Then ij/= p<x:P(G',SC',<2/')^
P(G,SC,<3J) is an (injective) morphism, so the previous theorem can be applied, yielding
0 : SC' -* SC and $ : G' -> G. It remains to show that 9 \ <&' and 0 are injective.

If A, Be<&', then (A9, 1) = {A, l)\p and (B9, 1) = (5, l)ip, so ,40 = 50 implies A = 5 ,
since ^ is injective. Now let r,seP' and suppose r\j/a\R) = s^a\R). If we can show that
ro\P') — sa\P') then injectiveness of </> will follow (from its definition). Now (nj/, S\/J) e
o(R)n(P'il/ x P'\j/) = a(P'i//), using Lemma 1.1. Therefore f(njj) =f(sij/) for some idempotent
fofP'tj/. But from a result of Preston [8] , /= e\p for some idempotent e ofP', so (er)\ji = (CJ)I/' ;
thus since \J/ is injective, r<7*(.P') = sa\P'). Hence <f> is injective.

COROLLARY 1.4 ([4, Theorem 1.3]). Let R' = P(G', T, <&') and R = P(G, SC, <&). Suppose
there exist

(i) an order isomorphism 9 of9C' onto 3C such that WQ = <&,
(ii) an isomorphism 4> of G' onto G, such that ifgeG' and XeT, then (gX)9 = (g(j))(X0).

Then \ji :R'-+R, defined by (A,g)ij/ = (A9,g<f>), is an isomorphism of R' onto R, and con-
versely, any isomorphism of R' onto R is found in this way.

Using Theorem 1.3, we can actually find the inverse subsemigroups of a P-semigroup
directly (rather than up to isomorphism), for if 5 is a subset of R = P(G, SC, <&), then S ^ R iff
the injection S-* R is a monomorphism.

THEOREM 1.5. Let R = P(G, 3C, <&). Suppose G' is a subgroup of G and <&' is a subsemi-
lattice of&. If there exists a poset 9C' {containing <&' as an ideal), a group action * ofG' on ?£'
(such that (PI), (P2) are satisfied) and a monotone map 0:T -+2C such that

(i) 91 <&' is the identity,
and (ii) ifgeG' and As<&', (g*A)9 = gA,

then R' = P(G', 9C', 'S/') is an inverse subsemigroup of R.

Conversely, any inverse subsemigroup R' of R can be found in this way (with G' = R'G*(R),

Proof. Given G', SC', <&', * and 9 as above, we see that if geG' and XeT, then since
X = h * A for some heG', AeW, (g* X)6 = ((gh) * A)9 = (gh)A = g(h * A)0 = g(X0). Thus,
using Theorem 1.3, the injection (A, g)-+(A, g) of R' into R is a monomorphism.

Conversely, if R' ^ R, there is an isomorphism j8 of P(G", SC", <Sf") onto R', for some G",
SC", <&". By Theorem 1.3, there exists 9:SC" -+SC, monotone, whose restriction to W is a
monomorphism, and ^ : C " - » G , a monomorphism, such that (gX)0 = (g(j>)(X6) for all g eG",
XeSC" and such that (A,g)p = (A9,g<}>) for all (A,g)eP(G",SC",<&").

Put G' = G"(j> ^ G, and <&' = ®J"9 ^ <&. From the definition of (j> and 9 in Theorem 1.2,
we see that R'a\R) = G"</> = G', and <W(R') = <&'. Put SC' = <&'v(SC"\<&") and define
0 :£•"-*#•'by

JX9 if
\x if
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Since 9 \ <&" is injective, 8 is a bijection of X" upon X'. Now B induces a natural partial
order on X' from X" : if X, YeX', define X^YiSXB'1^ YB'1 (in X"); and 0 induces a
natural action * of G' on # ' : if heC, YeX', define A* Y= ((AtfT1)^"1)^- Then 9 is an
order-isomorphism of X" into X' such that <8f"B = &', and for all greG", JTea"', ( ^ 0 =
(g<t>)*(XB).

It is easily checked that P(G', X',W) is well-defined. Hence from Corollary 1.4, the
mapping f :P(G",X", <&")-+ P(G',X',<8r) defined by (A,g)$ = (AB,g<(>) is an isomorphism.
Therefore the map </r xj8 : P(<7, #", <T) -»/?' is an isomorphism. But if (B, h) e P(C, # ' , <&'),
(B,h)tl,-1p = (BB-1,h(l)-1)P = (BQ-1,h(l>-1)P = (B,h), so ^ " ^ is the identity. Hence
R' = P(G', X', <&'). The map " 9 " of the statement of the theorem is then B~X9 :X'-*X,
whence B~*9 \ <&' is the identity. IfAeG', 5 e ^ ' , a n d g = h<j>-l,A = -B0~1then(/i*.B)(0~10) =

= (g<f>)(A9) = />£. Thus (i) and (ii) are satisfied.

2. Unitary-like conditions. The question asked in the introduction can now be more
formally posed: if R' ^ R = P(G, X, &), when can we assume X' of Theorem 1.5 to be a subposet
of ^ ? Equivalently, by Corollary 1.4, when is Q : X' -* 3? an order-isomorphism of %' into #"?

In this section we answer this and some related questions. Firstly, however, we will discuss
unitariness and similar properties of inverse semigroups.

DEFINITION ([1, Vol. 2, p. 55]). Let T be any semigroup, and A a subset of T. A is left
[right] unitary (in r ) if seA, steA [tseA] imply teA. A'xs unitary (in T) if it is both left and
right unitary.

LEMMA 2.1. If S is an inverse subsemigroup of an inverse semigroup T, the following are
equivalent {and hence equivalent to unitariness of S):

(i) S is left unitary;
(ii) S is right unitary;

(iii) eteS,for some eeE(T), implies teS.

Proof. Suppose eteS, for some eeE(T). Then (et)(et)~1t = eteS, and (et)(et)~leS.
Similarly, t(et)~\ei) = eteS, and (et)~1(ei)eS. Thus if 5 is either left or right unitary, teS,
that is (iii) is satisfied.

Conversely, suppose s, steS. Then (s~1s)t=s~i(st)eS, and s~1seE(T), so (iii) implies
teS. Hence (iii) implies (i); similarly (iii) implies (ii).

Keeping (iii) of this lemma in mind, we define some weaker " unitary-like " conditions in
inverse semigroups.

DEFINITION. Let T be an inverse semigroup and S^T. We say S is partially unitary if
tt'1 eS, eteS for some eeE(T) imply teS. We say S is weakly unitary if tt~l eS, eteS,
t'h ^f for some eeE(T),feE(S) together imply teS.

Clearly unitary implies partially unitary, which in turn implies weakly unitary. These
definitions are easily shown to be equivalent to their obvious duals. In reduced inverse semi-
groups, we can obtain more readily usable conditions (equivalent to those just defined), by
means of the next lemma.
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LEMMA 2.2. Let R be a reduced inverse semigroup and S ^ R. Ifpp~ieS
then epeSfor some eeE(R).

Proof. Since po^eSo*, pas for some seS. Therefore (ss'^poipp'^s; also (ss~l)p0t
{pp-1)s. But R is reduced, so (%r\o = i. Thus (ss~l)p = {pp~l)seS.

COROLLARY 2.3. Let R be reduced and S ^ R. S is partially unitary iffpp ~ieS,po*e So*
imply peS; S is weakly unitary iff the conditions

pp~leS, po*eScr\ p~lpSf for some feE(S)

together imply peS.

Proof. If S is partially unitary, the condition is satisfied, by the previous lemma. Con-
versely, if pp~ieS and epeS, for some eeE(R), then/we/), so pa"eSo", and from the con-
dition, we infer that peS. Thus S is partially unitary. The weakly unitary case is similar.

Throughout this section, we will see that the results are simpler to state in the case of/«//
inverse subsemigroups (those inverse subsemigroups containing all the idempotents of the
larger semigroup). Note firstly that unitariness, partial unitariness and weak unitariness are
equivalent for full inverse subsemigroups. The previous corollary is then simplified consider-
ably.

COROLLARY 2.4. IfR is reduced and S is a full inverse subsemigroup ofR, then S is unitary
iff pa* 6 So* implies peS, that is, iff S is a union ofo-classes of R.

With these definitions we now turn our attention to the question posed earlier.

THEOREM 2.5. In the notation of Theorem 1.5, suppose 9 is a mapping satisfying the con-
ditions of that theorem. Then 9 is an order-isomorphism ofW into SC iffR'i = P(G', SC', <&')) is
weakly unitary in R.

Proof. Given G', SC', <&', * and 0 as in Theorem 1.5, with 6 an order-isomorphism, we
have R' = P(G',S£',<&')< R = P{G,X,<St). Suppose p = (V,v)eR and pp~leR', po*eR'o*
and p~lp^f, for somefeE(R'). Then (V,l) =pp-1eE(R'), so Ve<S/(R') = <&'\ also v =
po"eR'o" = G'. L e t / = (A, l)for someAeW. Then (v~lV, 1) =p~lp g (A, 1), so v'^V^A
(in X). From (ii) of Theorem 1.5, (iT1 • V)Q = v~lV£ A = AO, and since 9 is an order-
isomorphism, v~1*V^A (in T). Further, <3T is an ideal of T = G'*<3f'. Hence
v-v*Ve<&'. lhusp = (V,v)eP(G',r,<&') = R'. So R' is weakly unitary.

Conversely, suppose R' is weakly unitary. We know R' = P{G',%',<&') for some G',
SC', <&', * and 9 as in Theorem 1.5. Let X, Ye SC' and suppose X9 ^ Y9 (in SC). We must show
X<, Y. Since W = G'*9', there exist g,hsG', A,Be<W' such that X = g*A, Y=h*B.
Using (ii) of Theorem 1.5, gA = (g * A)0 ^(h* B)9 = hB. Thus {h~lg)A £ B (in SC). Since <&
is an ideal of SC, {h~ig)Ae<&. Therefore p = (A,g-1h)eP(G,X,<&). Further pp'1 =
(A, l)ei? ' , po» = g~lheG' = R'o\ and p~lp = ((h~1g)A, 1) ^ (B, l)eE(R'). Hence peR',
and so (h~ig)*Ae<3/'. But 6\<&' is the identity, so h~lg*A = (h~1g*A)9 = (h~lg)A^B
(in <&', and therefore in SC'). Hence g*A^h*B, that is X^ Y.

COROLLARY 2.6 (to the proof). In the notation of Theorem 1.5, suppose 9 is a mapping
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satisfying the conditions of that theorem. Then 6 is injective iff R' satisfies:

pp~\ p~lpeR',

Proof. By replacing inequalities by equalities in the relevant places of the proof of the
theorem, this follows immediately.

If we restrict ourselves to full inverse subsemigroups of P{G,9C, W), the situation is again
simplified (by using Corollary 2.4).

COROLLARY 2.7. In the notation of Theorem 1.5, suppose 9 is a mapping satisfying the
conditions of that theorem, and further, that W = <&. Then 0 is an order-isomorphism iff R' is
unitary.

Using Corollary 1.4, we can now give some alternative interpretations of Theorem 2.5.
If 0 of that theorem is an order-isomorphism of SC' onto SC'Q £ SC, it is easily checked
that SC'Q = G'W (in SC), and that P(G', G'W, W) is well-defined. Then by Corollary 1.4,
P{G',T,W) = P(G',G'W,W) (not, of course, as triples but as inverse semigroups). Con-
versely, if R' = P(G', G'W, W), the injection G'W -* SC is an order-isomorphism satisfying the
properties of Theorem 1.5; hence R! ^ R.

Therefore the inverse subsemigroups P(G', SC', W) for which SC' can be taken as a subposet
of SC (and thus as G'W) are just the weakly unitary ones. These results are summarized in the
next theorem, which from another viewpoint therefore can also be considered as a structure
theorem for the weakly unitary inverse subsemigroups (in terms of subgroups of G and sub-
semilattices of W). A definition is required first.

DEFINITION. Let R = P{G, SC, W). ifG'^G and W £ <&, the pair (C , W) is said to be
compatible (in R) if

(i) g<&'n<&' # 0 for each g in G',
(ii) <&' is an ideal of G'W (in SC).

Thus given G' ^G and W ^ <&, P(G', G'W, W) is well-defined (and hence a (weakly
unitary) inverse subsemigroup of R) iff (G\ W) is a compatible pair in R. Note also that if
(A,g)eR, then {A,g)eP(G',G'W,W) \KA,g-lAeW and geG'. Hence

P(G',G'W,W = {(A,g)eW xG'\g~lAeW}.

THEOREM 2.8. Let R = P(G, %,<&), and S ^R. Put G' = So* and W = <W(S). Then S is
weakly unitary iff S = P(G', G'W, W). Thus there is a one-to-one correspondence ((?', W) -»
P{G', G'W, W) between the compatible pairs and the weakly unitary inverse subsemigroups ofR.

Proof. This follows from the comments above.
We now specialize to partially unitary inverse subsemigroups of R = P(G,SC,W) and show

(in Theorem 2.9) that these are just the " naturally-occurring" inverse subsemigroups
Rr\(W x G'), for certain compatible pairs (G', W) in R. These inverse subsemigroups will be
used in the next section.

DEFINITION. Let R = P(G, SC, W). If G' g G and W ^ <&, the pair (C , W) is said to be
fully compatible (in R) if
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(i) g<&'r\<&' * 0, for each g in G',
(ii) GWn& = <&'.

If (C , <&') is fully compatible, it is also compatible, for <&' is an ideal of G'W. If g e G',
' and 0/4 ^ .S for some 5 e ^ ' , then since <%'<=,<%, an ideal of SC, gAeG'<&'n,<& = ^ ' .

Hence P(G',GW,W) is well-defined. In fact x'igeG' andAe<3/' then g
(since C ^ ' n ^ = # ' ) ; thus P(G', G'9',91) = /?n(<T x G').

THEOREM 2.9. £e* R = P(G, 3C, <&). If S is a partially unitary inverse subsemigroup of R,
then (G1, <&') = (So*, <&(S)) is fully compatible and S = Rn(<3T x G'). Conversely, if(G', W) is a
fully compatible pair in R, then S = Rn(<&' x G')isa partially unitary inverse subsemigroup ofR,
and (G',<&') = (So\<&(S)).

Proof. If S is partially unitary, then it is weakly unitary. By the previous theorem, there-
fore, (G',<&') is compatible and S = P(G', &<&',<&'). Suppose geG', AeW and gAe<&.
Then p = (A,g~i)eR, pp'1 =(A,l)eS and po* = g~1eSo\ so peS (using Corollary 2.3),
that is gr/1 e'S''. Therefore G'<&'n<& = <&' ( s i n c e r e G'<&'n<y); so (G', <&') is fully compatible,
and S = Rn(<&' x G').

Conversely, if (G' ,^ ' ) is fully compatible, then, as we have seen, S = Rn(<&' x G') =
P(G',&<%',<&') ^ R (from the previous theorem), and So* = G',<&(S) = <&'. To show S is
partially unitary, tetpeR, wi thpp - 1 eS and po"eSo\ Ifp = (A,g), then Ae<2/(S) = <&' and
geSo* = G'. Thus /? = (/4,3) e i ?n (^ ' x G') = S.

Finally, we again consider the case of full inverse subsemigroups. Let R = P(G, 3C, W)
and G' ^ G. Then g®/n<& ± 0 for every g in G', and G'^nfW = ^ trivially. Thus we have the
following lemma.

LEMMA 2.10. Let R = P(G, SC, <&). The pair (G\ <&) is fully compatible for every subgroup
G' ofG.

As a corollary to Theorem 2.9, we then have the following result.

COROLLARY 2.11. LetR = P(G, %, <&) and let S be a full inverse subsemigroup ofR. Then
S is unitary iff S = Rr\(& x G')for some subgroup G' of G.

Thus there is a one-to-one correspondence G' -> Rn(<2/ x G') between the subgroups of G
and the full unitary inverse subsemigroups of R.

3. Congruences on P-semigroups. In this section we use the methods of §2 to give a way of
constructing the congruences on a P-semigroup P(G, 9C, <&) in terms of subsemilattices of <&
and subgroups of G. Preston [8] has shown that in any inverse semigroup T, the congruences
are in one-to-one correspondence with the kernel normal systems of T. We will use this
approach to find congruences on a P-semigroup.

DEFINITION Let T be an inverse semigroup. A kernel normal system in T is a set si =
{Aj | iel} of disjoint inverse subsemigroups of T, whose union contains E(T), and such that:

(Kl) for each teTand iel, t~lAtt^: A} for someje / ;
(K2) if s, st, tt~leAi, then teA{.
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PROPOSITION 3.1 [1, Theorem 7.48]. If si = {^4,-|ie/} is a kernel normal system in an
inverse semigroup T, define

p(si)= {(a,b)eTx T\aa~l,bb~\ab~l eAJor some iel}.

Then p(s#) is a congruence on T. Conversely, if p is a congruence on T, then s4 = {ep | e eE(T)}
is a kernel normal system in T and p(sf) = p.

LEMMA 3.2. Let S, T be inverse semigroups, S^T. S is partially unitary iffs, st,tt~ieS
imply teS.

Proof. This is similar to Lemma 2.1.
Thus {At | iel} is a kernel normal system in T iff the At's are disjoint partially unitary

inverse subsemigroups of T, such that £ ( T ) E u { ^ f | iel}, and satisfying Kl . When T is a
P-semigroup, Theorem 2.9 can therefore be applied.

First we consider normal partitions of the idempotents of T: a partition £ = {Et | iel} of
E(T) is normal if each Et is a subsemilattice and for each teT, iel, there exists jel such that

PROPOSITION 3.3 (Reilly and Scheiblich [9]). Let The an inverse semigroup, E = E(T). IfS
is a normal partition ofE, there exist largest and smallest congruences on T whose restrictions to
E x E induce the partition S. Conversely, the partition of E induced by the restriction of any
congruence on T to E x E is normal.

From now on, we restrict ourselves to P-semigroups. If R = P(G, 9£, <&), the isomorphism
{A, 1) -+ A of E(R) onto <& induces a one-to-one correspondence between the partitions of
E(R) and those of <&. Consequently, we will define a normal partition ofty to be a collection
{<&,\iel} of subsemilattices of <Sf such that {<&i x { l } | / e / } is a normal partition of E(R).

Tn [4, Proposition 6.4] McAlister characterized normal congruences on E(R) (that is,
those congruences on E(R) which induce normal partitions of E(R)) for P-semigroups R =
P(G, SC, <&). His characterization was in terms of partitions of ST; however, as our main
preliminary result shows, we need in fact only consider partitions of <&.

PROPOSITION 3.4. Let R = P(G, 3C, <&). Let S = {^ | iel} be a partition of<& (into sub-
semilattices) such that

(i) ifg e G and iel, there exists jel (call it gi) such that gl&in<S/^ <&gi,
(ii) ifCe®l and iel, there exists kel(call it iC) such that C A ^ , C <3fiC.

Then $ is a normal partition of<3/, and conversely, every normal partition ofSf has this form.

Proof We show that if § satisfies (i) and (ii), it is a normal partition of <%f, by showing
that {Et| iel} is a normal partition of E(R), where Et = {(A, 1)\Ae<&t} for each iel.

Let (V,v)eR, and iel. We must show that for some jel, (V,v)~1Ei(V,v)^Ej. Let
(A,l)eEi. Then

= (V~\VAA),\).

https://doi.org/10.1017/S0017089500002925 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002925


LATTICES OF INVERSE SUBSEMIGROUPS 169

Now VA A e V A <&i £ <&iV, and so

Thus since v~l(iV) is independent of .4,

Conversely, let 8 = { f̂ | iel} be a normal partition of <& (and {£f | iel} the corresponding
normal partition of E(R)). Let geG,ieIand suppose ,4e<&f, with gAe'W. Then (^, #"*)eR,
so 0 4 , g " 1 ) " 1 ^ , ' ? " 1 ) S £} for some jel. Therefore ( ^ , 1) = (A.g-1)-1^, 1)04, s " 1 ) ^ - ,
that is gAe'&j. If .5 is any other element of < ,̂ such that g B e<&, then(5, #" l)~lE^B, g~l) £ Ek

for some kel, and gBe<&k similarly. But (g(AAB),\) = (A,g~1)~l(B,\){A,g~i)-
(B,g~1y1(A,l)(B,g-1)eEJnEk. Hence j = k and gBeWj. Therefore g<3f,n<& £ <&s. If
Ce<^ and iel, then (C, 1)"X£^C, 1) £ £ t for some kel, that is C A ^ £ <&k.

Thus (i) and (ii) are satisfied.

THEOREM 3.5. Let R = P(G, 9E, <&). Let 8 = { ^ | iel} be a normal partition of<W (as in
Proposition 3.4). For each iel, let Nt be a subgroup of G such that

(i) 5^,-n^i # 0, for all g e Nh

(ii) i T 1 ^ <= Nv.HiV)for all (V,v)eR.

Let At = Rr>(<&j x Nt), iel. Then si = {A{ \ iel} is a kernel normal system in R, and the
relation p(st) defined by ((A, g), (B, h)) e p(si) iff for some iel, gh~l e N, and A,B,AA (gh~ x)fie
W'i, is a congruence on R.

Conversely if p is a congruence on R, let si = {ep | eeE(R)} = {At

kernel normal system in R, obtained in the above way from {{A
iel}. Then si is a
iel}.

Proof. Suppose 8 = { f̂ | iel} and {Nt | iel} satisfy the above conditions. Note firstly
from (i) that for all g eNh

 <&gin'Wi ^ 0 , so gi = i. Thus Ni'&in'Sf £ <&{. Hence (Nh <&^ is
fully compatible for each iel, and so each At = J?n(< ĵ x Nt) is a partially unitary inverse sub-
semigroup of R, by Theorem 2.9. Further, the At's are disjoint, and E(T) £ u{/4,|/e/}.
Thus, to show si = {At | iel} is a kernel normal system in R it remains only to show that if
aeR and iel, a~1Aia £ Ai for some jel.

Let a = (F,t;)el?, and suppose x = (A,g)eAi (so that g " 1 ^ ^ ) . Then a~1xa =
(v~\VAAAgV),v~1gv). Firstly, v~1gvev~lNlv^Ne.i(iV) (using (ii)). Note now that
NiZN,y for all Ke<^ (putting v=l, in (ii)). Thus geNiV, and so gf(/F) = /K. Since
g-1AAVe<3/iy,AAgV=g(g-iAAV)egWtvn<2/Q<2/!Kiy) = <2/iy. Thereforev~\VAAAgV)
= v~1((VAA)A(AAgV))^v~i<&iv£:<3/v-HiV). By definition, then, a~lxaeAv-HIV), and
since v~*{iV) is independent of x, a~1Aia £ /4u.i(ir).

Hence si is a kernel normal system in R, and by Proposition 3.1, p(si) is a congruence.
Conversely, if p is a congruence on i?, let si = {ep | eeE(R)} = {/4f | /e/} (for some set /) .

By Proposition 3.1, si is a kernel normal system in R. Each Ax is therefore a partially unitary
inverse subsemigroup of R, and, using Theorem 2.9, At = Rn{^{ x Nt), where the pair
(Nh^j) = (y4,(T(,̂ (y4i)) is fully compatible, for all iel. Thus (i) is satisfied immediately.

Let Et = E(Aj) = Wt x {1}, iel. Then {£,|ie/} is a normal partition of E = E(R),
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since it is the partition induced by p | £ x £. Hence $ = {&t | «e/} is a normal partition of <%/.
To show (ii) is satisfied, let / e / and (V, v)eR. Since si is a kernel normal system, there exists j
such that (V, v)~lA{(V, v) £ Aj. Thus « " ' O V ) " £ AJ<J\ that is iT 'A^u £ AT,; and (F, o)" lEt

(V,v) ££,-. But from the proof of Proposition 3.4, (V,v)~1E,(V,v) s £ 0 . i ( l T ) ; soy = u"1(/F),
and v~iNiv £ A^.i(lT), as required.

For idempotent-separating congruences, this reduces to McAlister's characterization, in
Proposition 3.2 of [4] (although, as we shall see, his condition (2) is redundant). Recall that if
S is an inverse semigroup, with £(S) = E, a congruence p is idempotent-separating if
p\Ex E=I.

Let R = P(G,3C,<W) and suppose, then, that S of Theorem 3.5 is just {{A}\As<&}.
Index S by ^ (that is, put ^ = {,4}, A sty). Let A^ be a subgroup of G, for each A e<&. Then
(i) just says gA = A for all geNA; (ii) says iT'A^u S Ar

0-i(KAX) for all (V,v)eR, or equi-
valently, v~ lNAv £ # „ - ! „ for all (D, v)eR such that D ^ ^ . Note that this implies NA £ ND for
all D <; /I. Hence A^ is a subgroup of Cx = {g eG | g£> = D for all £> ^ X}.

Theorem 3.5 thus specializes to the following.

COROLLARY 3.6. Let R = P(G,3C,<W). For each Ae<&, let NA be a subgroup of CA such
that if(D, v)eRandD ^ A, v~ lNAv £ A^-,D. Then Jf = {{A} x NA | A e<2/} is a group kernel
normal system in R (that is, each element of JV is a group) and pC/F), defined by ((A, g), {B, h)) e
pC/f) iff A = B and gh~lsNA, is an idempotent-separating congruence on R.

Conversely, if p is an idempotent-separating congruence on R, then p has this form (with
NA = {gsG\(A,g)p(A,\)}, Ae<&).

(As we commented earlier, McAlister includes a second condition: (2) NANB 5 NA/^B.
This, however, is a consequence of the fact, noted above, that D ^ A implies NA £ ND.)

4. The lattice of inverse subsemigroups. If T is an inverse semigroup, denote by
(or just S£) its lattice of inverse subsemigroups. Let R = P(G, 3C, W); suppose H is a subgroup
of G and 2£ is a subsemilattice of <&. Define &(HS)(R) (or just J?(H,z)) by &(H,S) =
{Se JSf | Sff* = H,<W(S) = 2T}.

Now S£(H,s) may be empty. For example, suppose (A, 1) is an idempotent with trivial
^f-class in some P(G,SC,(&), where G is non-trivial. Put 2£ = {A}. The only inverse sub-
semigroup S of P(G,3C,®I) with <&(S) = % is {(.4,1)}; but {(/<f,l)K = I 1 } . s o

 ^IG.X)
 i s

empty.

THEOREM 4.1. Le/ R = P(G, %,<&), and H-£G,% fL<y. Then SCiH>Z) is a join-
complete sublattice of S£. Thus if S£(H S) is non-empty, it has a maximum element l(ff Z) =

Proof. If &(HtZ) is empty, the result is trivially true. So assume ^(HtZ) is non-empty,
and suppose S^SC^y3), iel, where St ^ Sj for i / /. We show firstly that 5=V{5, | ie /}e
Se(Ht»,, that is, Sff" = / / and <W(S) = 2.

Clearly ^(S) = % iff £(5) = £ ' = J x { l } . But £ ' = £(S,), ie/ , so £ ' £ £(5). Now
every element of S can be written in the form ux ... un for some Uj e S;j, ij el, I ^j^n. Thus if
ee£(S) , e = ut ... unu~x ...u^1 (since e = ee~l). For each j(1 ^ j'$, n), put ey = Uj ...
uju~l ...uj1. Thenen = unu~1eE(S,J = E'. Assume that ek+1eE'(l ^ A: g n - 1 ) . Now
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ek = ukek+iukl> s o ekeE(Sik)>
 s ' n c e ek+ie^(^ik)- Therefore, by induction, e = eleE'.

Hence E(S) = £ ' , that is <&(S) = 3£.
Also H £ So*, since H = S'.-er", iel. Conversely, if we5, then M = wx . . . un as above, so

MCT" = uyo*... uno"eH, since each UjO^eH. Hence 5 = V ^ , | je/}ejSf(Hj£r).
Suppose now that S^, S2e&(HiS). Clearly E(StnS2) s £ ' £ £(S 1 n5 2 ) , so <S/(Slr\S2) =

3T. Also ( S ^ n S ^ a ' s # . Suppose heH = Sxo
k = S2o\ so that JCT" = to* = A, for some

5eS 1 ; / e S 2 . Then ( i , ( )ea( i?)n((5,v52) x (5 t v52)) = o ^ vS2), by Lemma 1.1. Hence
es = e/, for some eeE(Sl v S2) = E' = £ ( 5 i n 5 2 ) (using the first half of this proof). But
es = eteSinS2, and (ey>T* = so* = A. Hence H^(Sir\S2)<r\ so in fact / / = (5jnS2)<7*.
Thus 5, nS2 e i f {HtZ).

Therefore SCiHS) is a sublattice of S£, join-complete by the first half of the proof.
In general i? ( H S) is not complete, as is seen from the following example. Let /j be the

free inverse semigroup on one generator. McAlister and McFadden have shown ([5]) that
every free inverse semigroup is reduced; thus / t can be represented as P(G, 9C, <&), for some
G, X and <3J. (The form of SC and <& is irrelevant to us here.) We prefer however to use
Gluskin's description [2]: IL = {(p,q,r)eZ3\p,p+q,r,q + r^.0,p+q + r ^ 1} with product
(P>(l>r)(p'>cl'>r') = (max(p,/>'-<7),<7+g',max(r',r-g')). It is then easily checked that)(p>l>) ( ( p , / 7 ) , 7 + g ,

(i) I Jo = (Z, +) , induced by the map

*()

Consider the sublattice S£L of i?(/,) consisting of all large inverse subsemigroups of Ilt

that is ([3]), all those inverse subsemigroups 5 of / t with Sa* = Z and E(S) = E. (Thus when
7, is represented as P(G, 2£, <&), (with G = Z), £PL = Se(G^y) We show OJS?L = E$S£L.

Assume otherwise; that is, assume there exists x = {p,q,r)enSCL with q^O. Put
n =p+q + r, y = (n, 1,0)6/,, and S= [E<j{y}]e£PL. Then x e S , so x can be written as a
product involving j> (or >>"'), since x is non-idempotent. Thus Jx ^ /,,, that is, p + q + r =
« ^ « + 1 , a contradiction.

Hence nJS?L£jSfL, and J5ft is not a complete sublattice.
The results of Section 2 have interesting applications in the context of this section. For

when the pair {H,2£) is compatible, &(H,S) contains a unique weakly unitary element
P(H,H2£,2£\ by Theorem 2.8. In fact from the next lemma (which could also have been
deduced from an analysis of the proof of Theorem 2.8), P(H, HS£,2£) is the maximum element
°f ^{H, sty

LEMMA 4.2. Let R be reduced and SUS2^ R. Suppose £ ( 5 ^ = £(52) and S^ = S2a\
If S2 is weakly unitary, then Sx ^ S2.

Proof. Let psSv Then pp~\ />~1/>e£(51) = £(52) , and pa^eS^ = S2a\ By
Corollary 2.3, peS2.

We summarize these results in the following.
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COROLLARY 4.3. Let R = P(G, %,<%). Let H^G and &^<8/, and suppose (H,2£) is
compatible. Then i^n.s) = P{H,HZ,Z), the unique weakly unitary element of 2?(H3).

Similarly, if (H,2£) is fully compatible in R, \(H3) is the partially unitary inverse sub-
semigroup Rc\{2£ x H).

Finally, we can again say considerably more for full inverse subsemigroups of R =
P(G,$C,<8t), by using the last two results of Section 2. By Lemma 2.10, every pair (H,<&) is
(fully) compatible, and hence jSf(H 9) is non-empty, for every H f^G. Using Lemma 4.2 and
Corollary 2.11, each full inverse subsemigroup 5 of R is thus a large inverse subsemigroup of a
(full) unitary inverse subsemigroup of JR. In fact, from Corollary 4.3, S ^ Rr>(<3/ x H), the
unitary maximum element of JSf (H 9), where H = Sa*.
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