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Abstract Mukai’s program in [16] seeks to recover a K3 surface X from any curve C on it by exhibiting
it as a Fourier—-Mukai partner to a Brill-Noether locus of vector bundles on the curve. In the case X
has Picard number one and the curve C' € |H| is primitive, this was confirmed by Feyzbakhsh in [11,
13] for g > 11 and g # 12. More recently, Feyzbakhsh has shown in [12] that certain moduli spaces of
stable bundles on X are isomorphic to the Brill-Noether locus of curves in |H| if g is sufficiently large.
In this paper, we work with irreducible curves in a nonprimitive ample linear system |mH| and prove
that Mukai’s program is valid for any irreducible curve when g # 2, mg > 11 and mg # 12. Furthermore,
we introduce the destabilising regions to improve Feyzbakhsh’s analysis in [12]. We show that there are
hyper-Kéhler varieties as Brill-Noether loci of curves in every dimension.

1. Introduction

Let F, be the moduli stack of primitively polarised K3 surface (X,H) with H? = 2g—2,
and let Py, be the moduli stack of triples (X,H,C') such that (X,H) € F, and C € |mH|
a smooth curve of genus g,, = m?(g— 1)+ 1. There are natural forgetful maps
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where the fibre of &, over (X,H) € F, is an open subset of the linear system |mH]|. In
recent years, there is a series of works studying the rational map V¥, and its rational
section. For instance, Mukai has proved in [16] that the rational map ¥, := ¥, _ is
dominant if g <11 and g # 10, while Ciliberto-Lopez-Miranda [8] showed that ¥, is
generically injective if g > 11 and g # 12. More generally, due to the results of [9] and the
recent work in Ciliberto-Dedieu-Sernesi [6, 5], the map ¥, is generically finite when
mg > 11 and mg # 12. There are other approaches for the case m>2,g>8orm >5,9="7
(cf. [7, 14]).

On the other hand, Mukai has proposed a program in [18] to find the rational section
of W, by relating the K3 surface with the Brill-Noether locus of vector bundles on
curves. This has been confirmed by Mukai in [17] when g = 11 and later on Arbarello—
Bruno-Sernesi [1] generalised his result to the case g = 4k + 3 for some k. In recent
years, Feyzbakhsh has verified this program in [11, 13] for all g > 11 and g # 12 by
using the Bridgeland stability conditions. In this paper, we would like to investigate the
rational section of the map W, = for arbitrary m € Z~o via Mukai’s program for curves in
nonprimitive classes.

Main results

Let (X,H) be a primitively polarised K3 surface of genus g with Picard number one.
Let Hj,(X) = 7%3 be the algebraic Mukai lattice, and let M(v) be the moduli space of
H-Gieseker semistable coherent sheaves on X with Mukai vector v = (r,cH,s) € H),(X).
For C € |mH]| an irreducible curve, let BN¢(v) be the Brill-Noether locus of slope semi-
stable vector bundles on C' with rank r, degree 2mc(g—1) and h° > r+s. The first main

result of this paper is:

Theorem 1.1. Assume g > 2. Let C' € |/mH]| be an irreducible curve. Then if mg > 11
and mg # 12, there exists a primitive Mukai vector v = (r,cH,s) with v? =0 such that the

restriction map
¥: M(v) = BN¢(v) (1)
E~ E|c '

s an isomorphism.

As in [11], one can then reconstruct X as the moduli space of twisted sheaves on
BN¢ (v). Clearly, such reconstruction is unique for K3 surfaces in F, of Picard number
one. Due to the results of [10], when m > 1, generic curves in |[mH| have maximal variation,
that is, the rational map

‘11‘7171
|mH| -2 Mgmu (12)
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is generically finite. One can also deduce the generic quasi-finiteness of ¥, from
Theorem 1.1 when m > 1,g > 3, mg > 11 and mg # 12. When g,, < 11, the map V¥,
is not generically quasi-finite and Mukai’s program will fail. We expect that Theorem 1.1
holds whenever g,, > 11. So far, the missing values of (g,m) are

(2m) withm >4, (3,3), (34), (42), (43), (52), (6,2).

A mysterious case is when g = 2, where our method fails for any m.

More generally, one may consider the restriction map (1.1) for v? = 2n > 0. Most
recently, Feyzbakhsh [12] has generalised her construction in [11, 13] and showed that
for each Mukai vector v = (r,cH,s) satisfying

c<r, ged(re)=ged(e,s)=1 and —2<0v?< -2+, (1.3)

the restriction gives an isomorphism M(v) = BN¢(v) when g is sufficiently large and
the class of C' is primitive. As mentioned in [12], the analysis in [12] also works for the
nonprimitive case and one can actually show that Feyzbakhsh’s construction still gives
an isomorphism for C' € |mH| if g is sufficiently large (depending on r and m). This gives
many examples of Brill-Noether loci on curves as hyper-Kéhler varieties of dimension
29 —2r[Z]. In this paper, we also improve her result (see Theorem 7.1) and obtain an
explicit condition of v for ¢ being an isomorphism (see Theorem 7.3). As an application,
we show that one can construct hyper-Kéhler varieties as the Brill-Noether loci of curves
in every dimension.

Theorem 1.2. For any n >0 € Z, there exists an integer N = N(n) satisfying that if
g> N, there is a primitive Mukai vector v € Hy,; (X)) with v?%=2n such that the restriction
map 1 : M(v) = BN¢g(v) is an isomorphism for all irreducible curves C on X.

In other words, the bound N does not depend on the class of C. This makes use of
the boundedness result of prime character nonresidues (See Lemma 8.2). The strategy
of our proof is similar to [11, 13, 12]. Roughly speaking, we prove that ¢ will be a
well-defined and injective morphism if the Gieseker chambers for objects with Mukai
vector v and v(—m) := e~y are large enough, and 1) is bijective if further the Harder—
Narasimhan polygon of i, F' for F € BN (v) achieves its maximum. The main ingredient is
the use of a wall-crossing argument to analyse the existence of walls. There are two crucial
improvement in our approach. One is that we find the strongest criterion (Proposition 3.4)
to characterise the stability conditions which are not lying on the wall of objects with a
given Mukai vector. This leads to a more explicit condition for 1) being an isomorphism.
The other one is that we develop a method in analysing the relative position of HN
polygons towards the surjectivity of 1. This allows us to get a sharper bound of (g,m)
without using the computer program.

Organization of this paper

In Section 2, we review the basic knowledge of the Bridgeland stability condition on
K3 surfaces and the wall-chamber structure on a section. In Section 3, we introduce the
(strictly) destabilising regions ol (—) of a Mukai vector v. They characterise the stability
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conditions which are not lying on the wall of objects in D?(X) with Mukai vector v. This
will play a key role in the proof of our main theorems.

In Section 4, we show that the map ¢ : M(v) — BN¢(v) is a well-defined morphism
and h°(X,E) =r+s for any E € M(v) if the positive integers r,c and s satisfy

2
2
ged(r,e) =1, > v

(1.4)

T, if v2 =0;
and g—12> 2 e o
max{ >r,m} if v > 0.

The first two assumptions provide that any stable sheaf in M(v) is locally free while
the third assumption essentially ensures that there is no wall between the large volume
limit and the Brill-Noether wall. As a by-product, we obtain a numerical criterion for
the injectivity of .

Section 5 and Section 6 are devoted to studying the surjectivity of the restriction map
1. They contain the most technical part of this paper. In Section 5, we show that v is
surjective if the Harder—Narasimhan polygon of i, F' for arbitrary F' € BN (v) is maximal
when g is relatively large. It involves a dedicated analysis of the slope of destabilising
factors of i, F' via a geometric vision of the destabilising region. In Section 6, we analyse
the sharpness of HN-polygons for special Mukai vectors with zero square. The concept of
sharpness is used to detect how far the HN-polygon stays away from the convex polygon
given by the critical position of the first wall. This makes the construction valid for small
genera.

In Section 7, we analyse the surjectivity of the tangent map diy of ¢ and show that it
is always surjective if g —1 > 4r2. In Section 8, we prove Theorem 1.1 and Theorem 1.2
by showing the existence of Mukai vectors satisfying all conditions. Here, we make use of
the bound of prime character nonresidues.

Notation and conventions

Throughout this paper, we always assume (X, H) is a primitively polarised K3 surface of
genus g of Picard number one.

For any two points p,q € R™, let L, 4 be the line passing through them and let L+ be
the ray starting from p. We use Ly, 1, L(p,q)» L(p,q and Ly, 4y to denote the closed, open
and half open line segment, respectively. For any line segment I, we set

I =|JLg.g
qel

to be a (half open) triangular region. We denote by P,,,. ,. the polygon with vertices
P1,---3Pn-

2. Stability condition on K3 surfaces

Let D”(X) be the bounded derived category of coherent sheaves on X. We let Kpyum(X)
be the Grothendieck group of X modulo numerical equivalence. There is an onto map to
the (algebraic) Mukai lattice HY, (X) := H°(X,Z) @ NS(X) ® H*(X,Z) by sending

v(E) = ch(B)/td(X) € HE, (X).

alg
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As X has Picard number one, we may identify H;lg(X) as Z®3. So in the sequel of
this paper, we shall abuse the notation and simply write v(E) = (r,¢,s) with r = 1k(E),
c1(E) =cH and s = x(E)—r. Here, x(E) = x(Ox,FE) is the Euler characteristic. The
Mukai pairing (,) on Hy),(X) defined by (v(E),0(F)) = —x(E,F) can be viewed as an
integral quadratic form on Z®3 given by

<(I,y,2’), (I/7ylvzl)> = 2yy/(g — 1) — le — Z$/.

We may write v2 = (v,v) for v € H.

pr:HL (X) @R\ {s =0} — R?

alg

(X). Consider the projection map

sending a vector v = (r,¢,5) to (£,%). We write m, = pr(v) and 7g = pr(v(E)) for
E € DY(X) for simplicity. We let O = (0,0,0) be the origin of H} ), (X)®R and denote
by o= (0,0) the origin of R2.
A numerical (Bridgeland) stability condition on X is a pair 0 = (A,,Z5)
consisting a heart A, C D?(X) of a bounded t-structure and an R-linear map
Zy: Kpum (X)) @R - C
satisfying the conditions
(i) Forany 0 £ E € A,
Zs(E) € Roexp(imdq(E)) with 0 < ¢, (E) <1,
where ¢, (E) is the phase of Z,(FE) in the complex plane.
(i) The Harder—Narasimhan (HN) property, cf. [3, Definition 2.3].
The o-slope is defined by
ReZ(E)
E)y=-——2)
and we set the o-phase to be
1 _
90 (E) = ~fr—cot™ (1o(E))] € (0.1].

An object E € A is called o-(semi)stable if y,(F) < (<) ue(E) or equivalently ¢, (F) <
(<) o (E) whenever F C E is a subobject of E in A. We say an object E € D(X) is
o-(semi)stable if E[k] € A for some k, and E[k] is o-(semi)stable.

If £ is a sheaf with v(E) = (r,¢,s), we write puy(FE) = ¢ for the H-slope of £ and
1 (E) for the H-slope of the first/last HN factor of E. In [4], Bridgeland has constructed
a continuous family of stability conditions on X as follows: For o, € R with o > 0, for

any 8 € R, the S-tilt of Coh(X) is defined by
Coh’(X) == {E € D°(X) ]uE(H*(E» < B, (HY(E)) > B, H(E) =0 for i #0, — 1}
which is the heart of a t-structure on D”(X) with

ZoaB) = (18,57~ 02).0(B) )+ V=T{ 0. 7.8)0(8) )
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Figure 1. Visualization of V(X).

here, H*(E) is the i-th cohomology of E with respect to the standard heart Coh(X) of
DP(X). Let R(X) be the collection of roots in H;, (X), that is,

R(X) = {v e Hj,(X) |(v,v) = —2}.

Theorem 2.1 [4]. The pair o4, 5 = (Coh®(X),Z,. ) is a Bridgeland stability condition
on D*(X) if Re Za, 5(6) > 0 for all roots 6 € R(X) with k() >0 and Im Z, 5(5) = 0.

The stability condition o, g is uniquely characterised by its kernel

2

According to [11, Lemma 2.4], if we set k(a,3) = pr(ker Z, ) € R?, then k(a,3) are
parameterised by the space

* rH? 2 2
kerZ, 5 = § (r,¢,5) € Hy 1o (X) [c=18,5 = ——(a”+57) ¢

H2y2
$>2}\ U L(ﬂ'f;,ﬂ',s]a (2.1)

V(X) = {(m,y) e R?
SER(X)

2

Figure 1 for a picture of V(X). Therefore, we may view the stability condition o, 5 as
the point k(a,B) in V(X).

The following are some simple observations that will be frequently used in this paper:

(A) If 0 € V(X), then the line segment L, ,] is contained in V(X).

(B) If ged(r,c) = 1 and r > 0, the line ry = cx contains a (unique) projection of root if
and only if r | ¢*(g—1) +1 (cf. [20]). In particular, the unique projection of root on
the z-axis is (1,0), which we denote by o'

where 7} is the intersection point of the parabola {x = H2y2} and the line L, ;. See

A simple observation is, for elements in the same heart, we can read their phases from
the plane.
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r=r/s )
x=Ly?
y=c/s

Figure 2. An example of 65 (F).

Proposition 2.2 (Phase reading, see Figure 2). Fiz 0,5 € V(X). For E € Coh®(X),
let 0 < 6, <7 be the directed angle from omg to o6 modulo . Then, ¢, is a strictly
increasing function of 0.

Proof. Note that ¢, (E1) = ¢ (Es) if and only if
v(E1) 4+ Av(E2) € ker Zy 5

for some A € R*, which is equivalent to o,m,(g,),y(E,) being colinear, as o € V(X) is
precisely the projection of the kernel of Z,,. This already proves ¢, is a strictly monotonic
function of 6, due to continuity. It is increasing since ¢, (0+) < ¢, (7). The interchange
phase ¢, =1 corresponds to the line L, .. O

Wall and chamber structure

For any object E € DP(X), there is a wall and chamber structure of V(X) described as
follows.

Proposition 2.3 (cf. [11, Proposition 2.6]). Given an object E € D°(X), there exists a
locally finite set of walls (line segments) in V(X)) with the following properties:

(a) The o4, p-(semi)stability of E is independent of the choice of the stability condition
Oq,3 in any chamber.

(b) If 0.8, @5 on a wall Wg, that is, the point k(c,B0) € Wg, E is strictly ou,, g,-
semistable.

(c) If E is semistable in one of the adjacent chambers to a wall, then it is unstable in
other adjacent chambers.

(d) Any wall Wg is a connected component of LNV (X), where L is a line passing
through the point mg if x(E) #rk(E) or with slope 1k(E)/cy(E) if x(E) =rk(E).
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T
A 2
v =Ty’
U]_o
. TE
02

Y

o

Figure 3. An example of triangle rule: if any point in the colored region is a stability condition, then
there is no wall between o1 and o2.

By definition, if E € Coh®(X) is 0, g-semistable, then 7g # 04 5 since Zo s(E) # 0
(recall that in Section 2 we identify a stability o4, s with the projection of kernel k(o 5) :=
pr(ker Z, g) by abuse of notation). Combined with Proposition 2.3, one can see that for
any line segment Ly, ,,) € V(X ) containing o, g with 01,02, and 7g colinear, we have

TR ¢L[01,a2]7 (22)
that is, v(F) cannot lie in the kernel of any stability condition in V(X). (In the case
where E is stable, this follows directly from the v(E)? > —2 and hence 7 ¢ V(X).) This
will be used in later sections.

3. The destabilising regions

In this section, we characterize the stability conditions which are not lying on the walls of
an object E € D’(X). As a warm-up, we first assume 7 € OV (X) and hence v(E)? =0
or —2. Then we have

Proposition 3.1 (Triangle rule, see Figure 3). Let E € D*(X), and let I CV(X) be a
line segment. Assume

A, (1) CV(X). (3.1)

Then any point in I is not on a wall. In particular, if I =L, o,), then E is o1-stable if
and only if it is oy-stable.

Proof. Assume on the contrary, that is, there is a wall Wg C LNV (X) where L passes
through ng and intersects with I. Let 09 = INWg. By our assumption, one has

L(ﬂ'E,UO] CWg C V(X)
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By Proposition 2.3 (b), E is strictly o-semistable for any o € L(z,, +,]- Up to a shift, one
may assume that E € Coh” ("0)(X ). Since g is on a wall, there exists some semistable
factor F C E in Coh?®)(X) such that ¢o,(F) = ¢o,(E) and ¢o(F) > ¢, (E) for o in
an adjacent chamber. In particular, 7 # mg. Applying Proposition 2.3(b) to E, F, and
cok(F — E), respectively, we know that they remain in the heart for any o € Lz, -
Hence, F' C FE is a proper subobject in the corresponding Coh” (X). As a consequence,
we get

0<|Zo(F)| <1Z5(E)|.

Now, if we tend o to 7w, then |Z,(E)| — 0 while |Z,(F')| — ¢ > 0 since 7 # mg. This is
a contradiction. O

Destabilising regions

The proposition above only works for 7p € 9V (X) due to Equation (2.2). For the case
v(E)? > 0, we need to make use of the three-dimensional region defined as below: For
any o € V(X) and v € H}) (X)), let L/ o) € Ly 7, N V(X)) be the connected component
containing 0. Let [0] C R? be the preimage of ¢ via the projection pr: R? --» R2. Consider
the plane II spanned by [o] and v(E). Then [oo] CII for any og € Ly, 5. We define the
destabilising region of v with respect to o as

Qy(o)=(P \{0,v})ﬂ{ueR3 | u? > —2,(u—wv)? > -2},

4o
Ovyvvg

where v} = [¢']N([¢"] +v) and v, = [0”]N([¢'] +v). Note that for any o € V(X), we
have ©-z > 0 for any (x,y,z) € [0]. Consider the (open) shadow area in Figure 4 which is
bounded by the two lines and consists of nonzero (z,y,z) € [o] for some o. Since v? > 0,
7g ¢ V(X) and hence v is not in this shadow area. Therefore, the z-coordinates of v}
and v, have opposite sign. We may simply put

vie{(z,y,2)| ©>0,2>0} and v, € {(z,y,2)] *<0,2 <0}

up to switching ¢’ and o”.
There is a natural decomposition
Q’U (U) = Q’L—j— (U) U L(O,'u) U Q; (U)z
where QF (o) =Q,(0) NPo, \L(0,v). We call (o) the strictly destabilising region

of v with respect to 0. A key result is:

Lemma 3.2. For E € D*(X) with v(E)? >0 and 0 € V(X), if o is lying on a wall of E,
then there exists an integer point in Qj(E)(U).

Proof. Set v = v(E) for temporary notation. Firstly, for any G C F C E in Coh?®) (X)
satisfying that E,F,G have the same o-phase, we always have that v(F/G) is lying in the
parallelogram P, ., . This is because there are inclusions

o

Lo, z,(r/ay) € Ljo,z, (7)) € Lo, 2, ()
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Figure 4. The (open) shawdow area is covered by kernel of stability conditions.

for any 7 € L,/ 5y, which yields that

v(F/G) € ﬂ Zﬁl(L[ozT(v)]) =Poytous-

TEL(U/,U”)

In particular, if 0 = Eo C - C Ek = F is a o-Jordan—Holder filtration of E with
E;, =E;/FE;_; its JH-factors, then any v(E;) and also v —v(E;) is lying P

If necessary, reordering these factors E; such that the angles between Lav (E) and Lg’v +

increase with respect to i. And we get a polygon with vertexes ZL{U(EO (0<j<k).

Ovtovs *

j
Since v(E;) and v —v(E}y) lie in P ' one sees that > v(E;) is an integer point in

Ovtv’ =
k—1

Py, +, \ Lo, for any j. We claim that either v(£;) or ) v(E;) is lying in Q,(c). This
7 i=1

can be proved by using purely Euclidean geometry. Suppose this fails, then we have

v(F)?> -2 and (v(E)—v)? < -2

k—1 k—1 (32)
(> w(E)—v)?>-2 and (> v(E))?*< -2
i=1 i=1

as E; is stable. If we restrict the quadratic equation u? = —2 to the plane of POW;r7 we

can obtain a hyperbola whose center is O. The edge L[o vf] can meet the connected
component of this hyperbola at most one point. Similarly, L[v vf) can intersect with the

connected component of the hyperbola defined by (u—wv)? = —2 at most one point. Note
that the edge Lo, is lying outside the area

{u2 <—2and (u—v)?< 72}. (3.3)

See the shadow part in Figure 5. By Equation (3.2), v} has to lie in the region (3.3).

Moreover, as one can see from the picture, there is a point w € ng+v lying on the
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+
UO’

P1
0

Figure 5. If this plane corresponds to a wall, there must be some integer point inside this triangle and
below these two hyperbolas.

intersection of two hyperboloids
{ueR3| u2:—2}ﬂ{u€R3| (u—v)2:—2}, (3.4)

and the line Loy ot will intersect the edge Ljp ,) at a point, denoted by ¢. Thus, we get
that the point v(Fj) is contained in the triangle P_ 1, while the point Zf:_llv(Ei) is

quVs

contained in the triangle P, qut If we define L, to be the line passing through u € R?
and parallel to the line L vt the discussion above exactly means

L[O,In] C L[Q q) - L[O,p2]7 (3.5)

where p; = szz—llv(Ei) NLjo, v and pa = Lyg,) N Lo, +]; see Figure 5.

Next, one can regard L, + as a stability condition in a natural way. Consider the line ¢
passing through the origin7 O on the plane II, which is parallel to the line passing through
w and v} . By construction, the line £ lies between [0'] and [0”]. Thus, there is a stability
condition 7 € (¢’,0") such that [7] corresponds to the line ¢. Since Z,(¢) =0, we obtain
Z:(E1) = Z:(p2), and the same holds for p;.

Using the inclusions (3.5), we obtain the inequality

|Z-((BD))]  _ |Ze2)] _ ILio,plll
12, (S o(E)| [ Z(0)]

> 1. (3.6)
Lo, pa |

However, this contradicts to the relation Zf;ll |Z-(v(Ey))| = | 2- (Zi:llv(EZD | which
finishes the proof. O
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Remark 3.3. If v(E;) already lies in Py, \L(0,v) for all 4, then our argument actually
implies that we can always take a destabilising sequence

F—SFE—Q

such that v(F) € Qj(E)(a) and v(Q) € Q;(E)(a). This will happen, for instance, if E =4,G
for some slope stable vector bundle G on C. Indeed, as any subobject A of the sheaf F
(in the heart Coh”®(?) (X)) is also a sheaf (cf., for example, [2, Proposition 2.4]), we have
v(A) €Ppy,+, \L(0,v) (since r(4) >0 and the case 7(A) =0 cannot happen as it is on a

wall). In particular, this holds for v(E;).
Then we can obtain a generalisation of Proposition 3.1.
Proposition 3.4. Given v?> >0 and a region T C V(X), we define
0(T) = | J (o) and QF(2) =] 2 (o).
o€T o€T

Then any o € T is not lying on a wall of any E with v(E) =v if and only if
QHT)NHE(X) =0. (3.7)

alg

Similarly, any E with v(E) =v cannot be strictly o-semistable for any o € T if and only if

Q, (Z) N H,(X) = 0. (3.8)
Proof. The ‘if’ part follows directly from Lemma 3.2. For the ‘only if’ part, suppose
there exists some stability condition o and an integer point w € Q,(¢). Then, we can find
o-stable objects Fy and Fy such that v(F;) = w and v(Fy) = v —w, and o will be lying
on a wall of F := F; @ F5 from the construction. For the strictly semistable case, one just
notes that the Mukai vectors of all the factors are lying on Lo, ). O

According to Proposition 3.4, we will say a Mukai vector v € Hzlg(X ) admits no wall
in 7 if Equation (3.7) holds and admits no strictly semistable condition if Equation
(3.8) holds.

Note that from the definition, one automatically has €,(c) = Q,(L(/,,)). This
motivates us to find a subregion of V(X) with regular boundary. A candidate is

F:{(y,x)ERQ‘x>gy2,x<theny:()} CV(X) (3.9)

which is used in [12]. As a consequence, if v admits no wall in I C L(o,07y, then it admits
no wall in A (I)NT" as well.

Remark 3.5. Comparing Proposition 3.1 with Proposition 3.4, one can conclude that
for v? = 0 and Z being a line segment, the condition (3.1) implies Equation (3.7). Actually,
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if Q. (o) contains any integer point 4, then s is a root lying in L(z,,01- This suggests
that the condition (3.1) can be replaced by A (I) € V'(X), where

x>} U {ms

VI(X) = {<m y) € R
SER(X)

4. The restriction map to Brill-Noether locus

Given a positive primitive vector v = (r,c,s) € Hy),(X), let M(v) be the moduli space of
H-Gieseker semistable sheaves on the surface X with Mukai vector . In this section, we
always assume r,c,s > 0 and

2
ged(r,c) =1 and r > % +1

Then M(v) is a smooth variety consisting of i g-stable locally free sheaves (cf. [21, Remark
3.2]). The main result is:

Theorem 4.1. For any irreducible curve C € |[mH]|, the restriction map is an injective
morphism

¥ :M(v) = BN¢g(v),
E— E|C

with stable image (i.e., E|c is stable) if the following conditions hold

(i) (mr—c)s >re;

(ii) v admits no wall in L, 4,1, where o, = (ﬁ,O);

(iii) v(—=m) = (r,c—mr,s+ (g—1)m(mr —2c)) admits no wall in A Lo NT
where T is defined in Equation (3.9).

Proof. It suffices to prove that for any E € M(v), the restriction E|¢ is slope stable with
h°(C,E|c) > 7+ s and E|c uniquely determines E.

Firstly, we show that E|c is slope semistable. Note that condition (i) ensures that o,
lies in L, o). By [11, Lemma 2.13 (b)], it suffices to show that i,(E|c) is o,-semistable.
Consider the exact sequence

0= E(-C)— E—i.(F|c) =0, (4.1)

we have 7 (g|o) = (mﬁ) is lying on Ly r, o, Since E is slope stable,
according to [11, Lemma 2.15], E is o-stable for any o € L, )N V(X). Choose

01 € Lo, x,) sufficiently close to 0. We have
Poo,or \{o} CT CV(X)

as in Figure 6. Note that for any line L passing through g, the intersection P,y o, \ {0} N
L is connected. By our assumption 4.1, v admits no wall in L, ;. This implies it also
admits no wall in P,,, ., \ {0}. Hence, E is o,-stable as F is o1-stable. Similarly, we have
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X

o3 .

Ty(—m) \

Tiv(Elc) 0

Figure 6. Any point in the colored region is a stability condition.

E(—C) is also o,-stable by using the assumption (iii). As in the proof of Proposition 2.2,
E and E(—C) are of the same o,-phase since o, € L,rEJE(_C). Hence, the restriction
ix«(E|c) is op-semistable with E and E(—C)[1] as its JH-factors.

Secondly, we show that F|c is slope stable. By using [11, Lemma 2.13 (b)], we are
reduced to prove i.(E|c) is o-stable for some o € L, 4,). Moreover, due to [11, Lemma
2.13 (a)], i«(E|c) is semistable for any stability condition lying in a line segment Ly, ,) C
L(o,0,)- Suppose that i.(E|c) is strictly semistable for all stability conditions in Lo, q).
Then for any oo € L, ) and any destabilising sequence

Fy < i.(E|¢) - Fy € Coh”=°(X)
such that Fy,Fy are og-semistable with the same op-phase as i.(F|c), we have
TR, = T, (E|e)- Lhis gives ¢o, (1) = ¢o, (ix(E|c)), which implies that F} is o,-semistable.
However, this contradicts to the uniqueness of JH-factors of i.(E|c) with respect to o,.
Thus, i.(E|c) is o-stable for some o € L, o).

Next, we show that h®(C,E|c) = h%(X,E) > r+s. Let us consider the long exact
sequence of cohomology induced by (4.1)

0—HY(X,E(-C)) - H(X,E) - H°(C,E|¢)) = HY(X,E(-C)) - ...
As E(—C) is pg-stable and pg(E(—C)) <0, we have
H°(X,E(-C)) = Homx (Ox,E(-C)) =0.

Then we choose o, € L(ﬂv(fm)yo) sufficiently close to o and o3 € L(ﬂv(fm)vol) sufficiently
close to o' so that Poyyeq0r \ {0,0'} CT; see Figure 6. As shown above, E(—C) is o-stable
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x=r/s

T H?, 2

- y=c/s

Figure 7. w5 in the interior of Pg, . (colored area).

for any 0 € Poyyosor \ {0,0'}. In particular, E(—C) is o3-stable. According to [11, Lemma
2.15], we have

Po’Ugm, \ {0/} g V(X)

and Oy is also o,-stable. Note that 7o, = o’. By Proposition 3.1 and Proposition 2.2,
we know that Ox is os-stable and ¢, (F(—C)) = ¢o,(Ox). Then we have

H' (X, E(—C)) = Homu (Ox,E(~C)[1]) =0
where A = Coh®®)(X). Therefore, we get an isomorphism HO(X,E) —» H(C,E|¢).

By Serre duality and the stability of E, we have H?(X,FE) = Homx (E,wx) = Homx
(E,0x)=0. It follows that

R (C,E|c) =h"(X,E) > x(E) =r+s. (4.2)

This proves our claim.

In the end, the uniqueness of F follows from the fact that the JH factors of i.(E|¢) are
unique with respect to . O

A numerical criterion

As in [11], we would like to find a purely numerical condition for Theorem 4.1 to hold.
An elementary result is

Lemma 4.2. Let Por, o0 be the trapezoidal region bounded by Ly, 1, the (positive) half
z-az1s Lo o0y and the vertical ray Ly, o) in Figure 7. Then v admits no wall in Pog, 0o NT
if one of the following conditions holds

(i) v2=0 and r/ged(r,c) < g-—1.
(ii) s= LWJ and g—1 zmax{é,r—i-l}.
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Proof. (i). By Proposition 3.1, it will be sufficient to show that

Poroe € VI(X).
Due to the explicit description of V(X)) in (2.1), this is equivalent to showing that there
is no projection of root lying in Py . Suppose there exists a root § = (r',c’,s") € R(X)
with 75 € P? Then we have

0T, 00"
/

/
g/ <% and S< E, (4.3)
o s

s/

see Figure 7. Note that 2rs = ¢?(2g —2) and 2r's’ = (¢/)?(2g — 2) + 2, one can plug into
(4.3) to get

L5 S S— 4 <
ng(T7C) ng(T7C) ng(T’,C) ng(T’,C) (g - 1)CI - ng(T’,C)

1. (4.4)

which is not possible.

(ii). According to Proposition 3.4, we just need to show that Q. (o) NH, (X) = () for any
0 € Por, 0o NT. Suppose there is an integer point (z,y,z) € QF (0¢) for some o¢ € Por, oo-
By the construction of QF (Pyr, 0o NT), we have 0 < y < ¢ and the point (z,y,2) is lying
in the interior of the triangle P, 4,4, With vertices

ry gcy ry sy gey Sy
(7a ) )7“2 (77y77) and U3:( ) 57)'
C r C C S C

Uy =
Asy?*(g—1)+1>xz and 2z > %7 one has

2
T 1)+1
y<x<y(9 ) )
c sy/c

2
Note that ¢?(g—1) — % =rs, the condition s = L@_U%HJ is equivalent to r > % +1.
Then we have

2(g—1)+1 2(g—1)+1
0 VgD _7"y<max{gc rcAg—1)+ r}

sy/c c
= max{ r(e®+ %) T(é +1) }
o(Rlg-1)-%) Elg-1)-%

ax{ r(c®+r—2) r2—r }
c(2(g—1)—r+2) 2(g—1)—r+2

(4.5)

IA
B

IN
o=

Here, the last inequality follows from our assumption g —1 > max{%,r +1}. This means
O<z—"2< % which contradicts to the fact z is an integer. O
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Injectivity condition

Let us summarise our numerical criterion in short. We may say v = (r,c,s) € Hy, (X)
satisfying the injectivity condition (k) if the following inequalities holds

2
r>max{v+1,c}, c>0, s> re , ged(r,e) =1 (k—1)
2 m mr—c
and
r, if v2 =0
g—1=> 2 g2 e 2 (*72)
max{", —— r+41}, if v* > 0.

Then we have

Corollary 4.3. The restriction map ¥ : M(v) — BN¢(v) is an injective morphism with
stable image if v satisfies the condition:

Proof. The condition mr > ¢ > 0 ensures 7, lies in the first quadrant while m,_,,) lies in
the second quadrant, and the condition s(mr —c) > rc ensures o, is below o’. The assertion
then follows from the direct computation that L, »,] € A, (Lo,0)) NI € Por, 00 NI for
w=v or v(—m). O

Remark 4.4. Under the assumption r > ¢, the conditions in Corollary 4.3 can be easily
reduced to Equation (1.4).

5. Surjectivity of the restriction map

Throughout this section, we let v = (r,c,s) € H;,,(X) be a positive vector satisfying the
injectivity condition (). Due to Corollary 4.3, the restriction map

¥ :M(v) = BN¢(v)

is an injective morphism with stable image. Following the ideas in [11, 13], we give
sufficient conditions such that 1 is surjective.

The first wall

As in [11], we first describe the wall that bounds the Giescker chamber of i, F for
F € BN¢(v). The following result is an extension of [11, Proposition 4.2].

Theorem 5.1. For any F € BN¢(v), the wall that bounds the Gieseker chamber of
i.F" is not below the line Ly, «, .., and they coincide if and only if F'= El|c for some
E e M(v).

Proof. The argument is essentially the same as the primitive case proved in
[11, Proposition 4.2]. Here, we provide the details for completeness.

We first show that for any v satisfying Equation (*k—1), if both v and v(—m) admit no
wall in (0,0,], then so does

v|lg i=v—v(—m).
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Let W, r be the first wall, and let 0,/ o € W;_ F be a stability condition. Suppose W;, ¢
is below or on the line L, ,- Then for any destabilising sequence

Ty(—m
in Coh”?=%(X) such that Fy,F, are o,/ o-semistable, and
Ga,0(F1) > ¢a,0(ixF) for a<da' (5.2)

Taking the cohomology of Equation (5.1) gives a long exact sequence of sheaves
0o H N(FR) - F 2 i, F 25 HOR,) — 0. (5.3)

Set v(Fy) = (1',c,s’), then we have ' > 0 by Equation (5.2). Let T be the maximal torsion
subsheaf of Fy, and we can write v(T) = (0,¢,5) for some ¢,§ € Z. Consider the inclusions
T — F} — i, F and take the cohomology, one can get

0— H '(cok) = T — i, F — H°(cok) — 0.

Since H™*(cok) is torsion-free, it must be zero. It follows that T is a subsheaf of i, F' and
rk(i*T) = £ 1f we let v(H°(F3)) = (0,¢”,s"), by restricting (5.3) to the curve C, one can
get
'+ 5 = rk(Fy/T) +1k(i* T) > tk(i* Fy)
m
/!

> rk(i*kerd;) > rk(i* F) —rk(i* HO (Fy)) = r — —.
m

In other words,

p(FT) (™ () = ©C L CROTIT (5.4)

Using Lemma 5.2 below, we can take the destabilising sequence (5.1) satisfying

p(FL/T) > = and pfy (H7H(Fy) < <= (5.5)

This gives
pp (FL/T) = iy (H™ (F)) > m. (5.6)

Combining Equations (5.4) and (5.6), we get mr — ¢’ —é=ms’, thus

d—é d—é c
MH(FI/T>: r = " c/;:é = ;7

and both Fy/T and H™'(F,) are py-semistable. Since ged(r,c) = 1 and i, F does not
contain any skyscraper sheaf, we have ¢ = ¢” =0 and § = 0. This shows T =0, and hence
v(Fy) = (r,¢,s"). Note that by our assumption, we have m,(p) € L, ~,), which means
s <s'. If s < s'; however, as v2 < 2r — 2 by Equation (*-1), this gives
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v(F)? =c*(29g—2) —2rs
=02 42r(s—5)
<2r(s—s'+1)—-2< -2

which contradicts to the fact that Fy is pg-stable. This forces s = s’ and W;, r C
L

T, Ty(—m) *

In the case that W;_r C L, we have

Ty(—m)?

pr(F1/T) = iy (H™ (F2)) = m

and F} is a stable sheaf. Note that the map dp : Fy — i, F factors through dj,: i.(Fi|c) —
i and pp (i (Filo)) = pu (i F). Applying Theorem 4.1 to Fy, we know that i, (Fi|c)
is stable as well. It follows that dj is an isomorphism. O

Lemma 5.2. With notations and assumptions as above, one can find a destabilising
sequence (5.1) such that F; satisfies

c—mr

pa(FUT) =S and - pf(HN(F) < = (5.7)

Proof. Denote 01 =W, rNL(,, o,]- By Remark 3.3, we can take the destabilising sequence
F1 — i*F —» F2

satisfying v(F}) € QF

vl

divide the proof into three steps. O

(01) € Q) (Lioo,) and v(F) € Q (01) € 2y (Lo,o,))- We

Step 1. We show that for any point u = (x¢,y0,20) with u? > —2 and x¢ > 0, u is lying
in QF (Lio,0,)) if g <7 or 29 <s, and m, € P, . . By its definition, we know that
u e Qj(L(o,UU]) if

ueP? and (u—v)?> -2 (5.8)

O'uvi

for some o € Ly, 5,1
As my = (£2,%2) is lying in the interior of the triangle Pos, x,, we have
c xo/z0  xo _ T
B £ and 0/20 =052 (5.9)
20 S Yo/20 Yo ¢

The line L, r, will meet the open edge L(, ). Denote by o the intersection point
Lo,0,] ﬁL;ﬁmﬂu. From the construction, we know that u is coplanar to v, v} and O.
Indeed, it is lying in the planar cone bounded by the two rays Lav and Lg +- The

» Vo
(o]

Ovvl”
Moreover, when z¢ < 7,29 > s or g > 7,29 < s, we have (u—1v)% > (g—1)(yo —c)? > 0.

When x¢ <r and zg < s, then we have

condition zg < r or zg < s will ensure that u € P

by Equation (5.9).
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Step 2. Set v(F1) = (1',c,s') and v(Fy) = (—r';mr —,s —5—s') with 0 < ¢ < mr and
r’ > 0. We claim that

C c—mr
/LH(F]_) Z ; and ,U,H(FQ) § r . (510)

Firstly, we must have either v’ <r or s’ <s. Otherwise, one will have
v(F)? < (g—1)—r(s+1) < -2
or
(w(Fy) —v|e)? < (g—1)(mr—c)* —r(5+1) < —2.

Both of them are impossible as v(F}) € Qj‘c (Lo,0])-
Now, suppose ju7 (F1) < £. Then we have v(F) € Py

oo, 38 o, (F1) > ¢o, (v). According
to Step 1, we get

v(F1) € QF (Lio,0,))

*

ag(X) = 0. Similarly, we have

which contradicts to the assumption € (L, 0,1) N H
pr (Fz) < <2 as there is no integer point in Q:(_m)(L(O’Uv]). This proves the claim.
As a consequence, we get

mr’

C
= ) — F5) > —
" pr (Fr) —pm( 2)_r "

which implies ' <.

Step 3. Let (F1)min be the last pg-HN factor of Fy, hence also of Fy/T. According to
[4, Proposition 14.2], for ¢ sufficiently close to o, we always have

e (F1)min is o-semistable,
e (@) is proportional to v((F})min) for any o-stable factor G of (F})min.

As (F1)min 1s a quotient sheaf of Fy, it is also a quotient of F} in Coh#=0 (X). Since Fy
is o1-semistable, we have

¢<71 (Fl) < ¢01((F1)min)-

Combined with the fact pg (F1) > pg ((F1)min), we have mg = m(p,),... € Poo,np, - As the
triangle Pog, ., is lying below the ray LY . we get 7¢ € Py, . if uu(G) < £. Note
that rk(G) <1k(Fy) =r. We must have pug (G) > £ otherwise one will get 7¢ € QF (Lo, 4,1)
by the same argument in Step 2. It follows that

pg (F1/T) = pr (F1)min) = pr (G) =

<10

A similar argument shows pf; (H™(Fz)) < <=2, This finishes the proof.

r

https://doi.org/10.1017/51474748024000495 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748024000495

Mukai’s program for nonprimitive curves on K3 surfaces 1073

HN-polygon

Let 04,0 be a stability condition with « close to \/2/H?2. By [11, Proposition 3.4], for
fixed E, the HN filtration of 0,0 will stay the same for /2/H?+€¢> a > +/2/H?. Denote
by @ the limit of o, 0. The ‘stability function’ can be written as

Z(E)=r—s+cV/—1

if v(E) = (r,¢,s). Let P; g be the HN polygon (Here, our definition of HN polygon is
slightly different from [11, Definition 3.3]. We drop off the part on the right-hand side of
the line segment L[O,?(i*F)]) for i, F with respect to @. For € M(v), we have P;_(g|.) =
Py, ~,, where

z1=r—s+cv—=1 and ze=m(g—1)(mr—2c)+mrv—1.
As the polygon P;_(g|.) only depends on v, we may simply write it as P,.

Theorem 5.3. For any F € BN¢(v), we have P; g C P,. Moreover, they coincide if
and only if F'= E|¢ for some E € M(v).

Proof. When v? = 0, this is essentially proved in [11, Lemma 4.3]. Let us give a slightly
different argument which also works for v? > 0. Suppose the HN-filtration of i, F for
7 = (Coh”=°(X),Z) is given by

0=EyCE C---CE_, CE =i,F (5.11)

with E; := Ei/Ei,l the semistable HN-factors. To show P; g C P,, it suffices to show
that

¢5(v) 2 d5(E1) and  ¢5(Er) 2 ¢5(v(—m)) (5.12)

(see Figure 8b) since P, r is convex. According to the proof of Proposition 2.2, for any
object in Coh” (X), the angle ¢5 in Figure 8b is an increasing function of the angle 6,/ in

Figure 8a. (They are actually equal in this case, as cotf, = ny1 == % = cot ¢z ).
Therefore, it is equivalent to show

00/ (7‘(1,) Z 90/ (Tl'El) and 90/(7TEL) Z 90/ (ﬂ-v(—m)) (513)

in Figure 8a.
To prove Equation (5.13), consider the sequence

0— Ep 1% i, F — cok(f,) — 0 (5.14)

for each E,. Since the first wall is not below Lr,. g7 We have ¢, (E,n) < b, (i F). As

¢5(En) > ¢5(i+F), there exists some stability condition o € L./, ] such that the objects
in Equation (5.14) have the same o-phase. As a consequence, we have

5. € U Lmr. (5.15)

i
O'GL[U%O/)
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ImZ
22
2 Pi—1
h
(el
=5 0 ReZ
(A) Any point mg, in the colored region satisfies N
O (Ty(=m)) < b0 (7E,) < O () (B) HN-factors, where p; = Z(FE;)

Figure 8. The angle 6,/ is equal to the angle ¢5.

Take n =1, and set v(Eq) = (+',c,s’). We claim that 7g, ¢ Porr,o, \ {7y} which yields
O (R, ) < 0y (m,). This can be proved by cases as follows:
Case (1) If v2 =0, 7, € Por,o, \ {7y} automatically holds. This is because Pyrr, s, \
{my,0'} CV(X) and Equation (2.2).
Case (2) Ifv?2>0and 7’ <rors’ <s,as Ej is 5-semistable, we may assume v(E;)? > —2
otherwise we may replace FE; by its first JH-factor. According to Step 1 in
Lemma 5.2, we have

’U(El) S Qj (L(o, o’))
which contradicts to the assumption Q (Lo, o) NHL (X) = 0.
Case (3) If 7/ > r and s’ > s, we claim that " < r+ 1. Choose a stability condition

0 € Ly, oy such that ¢, (i F) = ¢ (E£1). Then v(E1) ¢ {O,v|.} is lying in the
triangle POU‘C(U‘C);. This means we have 0 < ¢’ < mr and

g(c)—r's' >0, g(c —mr)>—v'(s'+ (g —1)m(mr—2c)) > 0.

After reduction, we know that 1’ <r+1 as gc®> — (r+1)s <0 and g(c—mr)? —
(r+1)5 <0 by (*-2).

Similarly, take n =1—1 and use the -semistability of cok(f;—1) = Ej, one can prove
the second inequality of Equation (5.13).

Finally, if P; p =P, the first wall will coincide with the line L,y m, and the last
assertion follows from Theorem 5.1. O

Remark 5.4. The discussion above can be much more simplified if the following is true:
For any o on a wall of i, F, there exists a JH-filtration of 4, F" which is convex (i.e., the

polygon with vertices v(E;) is convex in the plane of Povuj)'
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Now, we provide a numerical criterion for verifying P, = P; p via Euclidean geometry.
The key ingredient is the upper bound on the number of global sections of an object
E € D?(X) established by Feyzbakhsh in [11, 13]. Recall that for any x,y € Z, there is a
function

Uz +v/—1y) == /22 + 2H2y2 + 4(ged(z,y))?

and one can define ((E) :=Y",((Z(E;)), where E;’s are the o-semistable factors of E.
Moreover, we have a metric function given by

llz+vV=1y|| := /22 + (2H2 + 4)y?

and we set |E||:=>",[|Z(E;)]|. Clearly, one has ||E|| > ¢(FE) once the y-coordinates are
nonzero.

Proposition 5.5 [13, Proposition 3.3 and Remark 3.4]. Suppose E € Coh®(X) which has
no subobject F C E in Coh®(X) with ¢1(F) =0, we have

UE:) + x(Ei) {(E;) —ReZ(E;)

°%(X,E) < b FAE 4 e 7 N
()<Y { . 3 i | 5.16)
where E;’s are semistable factors with respect to @. In particular,

IE]+x(E)
X

h(X,E) < (5.17)

Following [11], we can give a criterion for the surjectivity of .

Theorem 5.6. With the notation as in §5.2: Let 2} = 7’—5—1—1—!—0\/—1 l=r—s—
=24 (c—1)v—1 and 2z :r—s—r;yzs—i—(c—l—l)\/ 1, where v = 2- —1. Assume that

ye

(1) Cld 5=T=X > 9

c mr—c —

F| > 2¢2 4 20mr—o)®
— r+s r+s—x

(i) [lzx = 21l = 121 = 237 |+ [len — 241 = [l — 21
where x = X(i+F) =m(g—1)(2c—mr). Then the restriction map 1 will be surjective.

Proof. Suppose we have P, # P;_p for some F € BN¢(v). By Proposition 5.5 and the
convexity, we have
|3 F|| + x < htx

2 - 27

r+s<h’(C,F)=h"(X,i.F) <

where h = /(1 +s—x)2+4(mr —c)2++/(r+5)2 +4c2. Then we get

Bt x tx liaFl+x B iF
_ > _ = . 5.18
y ez 2 2 (5.18)
However, note that the polygon POZ, 2z is convex under the assumption (i), we have
h=liF|| > |20 = 211 = (12 = 27+ 20 = 23] = 125 — 27 (5.19)
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Combined with assumption (ii), we get
h+x—2(r+s)=+(r+s)2+4c2—(r+3s)

s =X A= — (15— )
2¢2 2(mr—c)?

. (5.20)
r+s r+s—x
<h— i F| (5.21)
which contradicts Equation (5.18). This proves the assertion. O

Surjectivity condition
As an application, we get an explicit criterion for v being surjective for v? > 0.

Corollary 5.7. The restriction map 1 : M(v) — BN¢(v) is bijective if we further have
the inequality

g>4rt 1. (%)
We may call it a surjectivity condition.

Proof. Asr > 1+ g, we have

This gives

s—r>4rc® —r>3c
D mr—c)? 12 (5.22)
s—r—xzW—;—T—rzllr(mr—cf—rZ3(mr—c),

as mr —c > 0. Moreover, one can compute that

2s—2r—c _ 8?2 —2r—c _ 6r—1 1 _ 4¢?
> > > — >
25+2r+c — 8rc2+2r4+c¢ — 10r+1" r —

It follows that

S—r sS—r
||21—Zi—||21—2f1||—\/( )2+4g—\/( —1)*>+4g

s—r 1
> c 2
VEE2 141+ 5)
2s—2r—c  2c2 2¢2

> >
2s+2r+c S r+s

and |21 — 25| — |25 — 27| = \/( ETEX)2 4 49— \/(S_::g —1)244g > 0. The assertion can

mr—c m

be concluded from Theorem 5.6. O
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Remark 5.8. For g sufficiently large, it is not hard to find Mukai vectors satisfying the
conditions in Theorem 5.6. For instance, when v? =0 and g > 84, the Mukai vectors given
in [11] and [13] will automatically satisfy the conditions for any m > 1. However, when g
is small, it becomes impossible to find such Mukai vectors.

6. Surjectivity for special Mukai vectors

According to Remark 5.8, Theorem 5.6 does not work well for small ¢. In this section, we
develop a way to improve the estimate in §5 for special Mukai vectors of square zero. Let
us first introduce the sharpness of the polygon P,,.

Definition 6.1. Denote by 2@ the point 7 — s +d+c¢y/—1. Let 2},2} be the points as
in the Theorem 5.6. We say the polygon P, is d-sharp if for any P, p # P,, one of the
following is true:

(i) P;, r is contained in the polygon P, _, +a_,

02727 “z522

(i) zfj is a vertex of P; g for some 1 <j <d—1.
There is a simple numerical criterion for the d-sharpness of P,,.

Lemma 6.2. With the notations as before, suppose that

2
sS—r S—r
+77

>2d 6.1
e (6.1

where v = " — 1, the polygon P, will be d-sharp.

Proof. From the definition of two polygons, one observes that the interior of
pP,-P iy only contains zf” (1<j<d-1) as integer points. If P, i is

Ozlz 2522 ) Ozlz 2522
convex, then either P; g is contained in P()z{zl*dz;Q or sz is a vertex of P;_p. A little
writing reveals the convexity of this polygon literally means Equation (6.1). O

Surjectivity condition for special Mukai vectors

The following is an enhancement of Theorem 5.6 for special Mukai vectors.

Theorem 6.3. Suppose g >3. Letv=(g—1,k,k?) € H;,,(X) be a primitive Mukai vector
with ged(g—1,k) = 1. Assume that (m,k) satisfies the conditions

g<min{2k,2(mgfm—k)}, g#k and g£m(g—1)—k, (k)
either k1g+1 orm(g—1)—ktg+1.

Then the restriction map 1 : M(v) — BN¢g(v) is surjective.
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Proof. By Lemma 6.2, if there is P; g # P, for some F, the polygon P, will be at least
3-sharp. Therefore, one of the following is true:

(i) P;, r is contained in the polygon P0z;z1+3z§@'

(ii) 2t =g —k?+ky/—1is a vertex of P;_p
(iif) 22 =g+1—k>+ky/—1 is a vertex of P;_p

We will analyse them by cases. Let us first show that case (i) is impossible if (g,k,m) #
(5,3,3). By Equation (5.18), it suffices to show that

h— i F|| > h+x—2(g— 1+ k?). (6.2)

when P;, r CP, , 320y Set k = m(g—1)—k. As in the proof of Theorem 5.6, from the

0272
convexity and a direct computation, one can get

h=liFl| > llz1 = 21l = 121 = 2] + llz1 = 23] = |25 — 7

k2 — 1 k2 — 1
e e e

k2—g+1 k2—g+1
+\/(£)2+4g—\/(l~f—3)2+4g

. 4k? N 4?
T V(g 1+ k22 +4k2 + (g 1+ k2) \/(9_14_]%2)2_’_4];2_’_(9_1_1_1%2)

=h+x—2(g—1+k?)
(6.3)

whenever (g,k,m) ¢ {(5,3,m),(6,4,3),(8,5,2)} satisfies our assumption.
In the case (g,k,m) = (6,4,3), (8,5,2) or (5,3,m) with m > 4, though the inequality (6.3)
fails, one can give an improvement of the estimate (6.3) by considering the convex hull

of integer points in POZ;zﬁz;zz' In those cases, the convex hull is a convex polygon with

vertices 21,222}, 25 and z3, where 23 is given as below:
* (g7k‘,m):(5,3,m)7 Z3:_3+2\/j1;
o (g.km)=(64,3), 23 = —8+3vV—T;
* (g7k‘,m):(8,5,2)723:_14+4\/f1

Then one can get

h=li Fl| > [lzall = llzsll = ll2s = 27 + |21 = 25]] = [l25 — 7). (6.4)

A computer calculation of their values shows that Equation (6.2) still holds.
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In case (ii) and (iii), if 2! or zer is a vertex of P;_p, there exists Ej C 4. F in the

HN-filtration (5.11) such that Z(FE;) = z;' (respectively, z,7?). Then we have

(X, i F Z { )J

I(E;)+ x(E; B, I(E;)+x(E; L,
ey e 2x< | M, (| ML | (B x

1<j i>7

< tx

- 2
For simplicity, we may use % and % to denote the first two terms in the second row. As
h°(X,i,F) > g—1+k?, following the argument in Theorem 5.6, it suffices to prove the

inequality
h+X 2 h—hl —ﬁg
SR (g—1+k oM
5 (g 1+k) < ———,
or equivalently,
4Ry <2(9 = 14K —x = [ + |27 = 2 - 2. (6.5)

For case ii), a direct computation shows

Il ==Y Bl == Q1B = 1l=1)

i<j 1<j
> S (1B - 6E) — (S I E — 1271
i<j i<j
> (1B - £(E) — (S 1Bl - 1271
i<j
>7 E;||— |zt 6.6
= ;n N (6.6)
>3 = = ) 6.7)
VE2+49-3
>0. (6.8)

Let us explain why the inequality (6.6) holds. Note that Z(E;) = x +yy/—1 satisfies
Bog<—Z<k—g+1.
Y

Then we have —z < ky and y{x by our assumption g — 1 # k, g # k, and g < 2k. This
will give
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|EL]| — €(E1) > /a2 +4gy2 — /22 +4(g—1)y2 +y2  (since y{x)

2
> 3
2y/xz2 + (49 — 3)y?
2
> %y
2¢/k2y% + (49 — 3)y?

3
>7
VE2+49—3

The inequality (6.8) holds because

(since y > 2, which is a consequence of y 1 z).

It =+ = = = D e g )y [ D g4
:\/(w—nbﬂig— (k—1+gT+1>

SARN/EETEL I (0249~ m-14 7))

2g(k—1) —29(k—1)*
k3—k2+(g+1)k  k*—k3+(g+1)k2—(g+1)k
_ 29(k—1)
(K2 +g+1)(kK2—k+g+1)
< 3
T VEk?2+49-3
when k > gT'H > 2. Note that ||z =7 =k +g—23 LWJ — > x(E;) is an
1< 1<
even number, this yields 27— hy > 2.
Next, recall that E; =i, F in the HN filtration (5.11), we can get
2 = zall = he = D (1B = €(E) = QI Bl = ll= — 2l
i>j i>]
> (1Bl = €(Er)) = (17 = 25l + 12 = 22l = [l = z]))
3 2g(k—1
> - gtk —1) >0
[k2 4493 (k2 +g+1)(k2—k+g+1)
as k> 9%1. Combining them together, we can obtain (6.5).
For case (iii), if k1 g+ 1, we have
=l =Ry =Y IEill =R+ [l =D Bl
i<j i<j
> (| Byl = (By) + |2 = 2l = N5 — =]
3
> ——— |2 = |2t = N2t — 22 6.9
EEw— 27 = [zl = llz1 = 2| (6.9)
>1. (6.10)
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Here, the inequality (6.10) holds because

e ey T B S

k
= \/(W—2)2+4g—(k—2+g—:1)
+(/<:—1)\/(W)2+4g—(k2—k+(g+1)—%)—1
29(2k —1) 2g9(k—1)

T k(g+(k=1)%)  k(g+k*+1)
B 29(k2—|—2k—|—g—1)
(K2 4g+1) (K2 —2k+g+1)

3

<7
Vk2+49-3

Note that ||z!|| — A is an odd number, this yields ||z"*|| — A; > 3. Similarly, one can get

—1.

2" = 2| — hp > 3

under the assumption m(g—1) — k4 g+ 1. Since both of them are at least positive under
our assumption, we get Equation (6.5) as well. This finishes the proof for (g,k,m) # (5,3,3).

For the remaining case (g,k,m) = (5,3,3), we have to make use of the 4-sharpness of
P,. We just need to verify P, p is not contained in P, , s and zf‘g =—2+43y/—11is

not a vertex of P; g. As above, by using the convex h{ﬁllzof i?liéger points in POziz#z;zz’
we have
A=l Fll 2z = || =3+ 2v=1l| = | = 3+2v=1 == | +||z1 — 23| — |25 — =l
= —2v6—v/89+v205+ \/795749— @
>h+x—2(g—1+k?)
which show that P; g cannot lie in P, +4 , Moreover, a similar estimate of

02127 "2522°

| E1|| —€(Fy) and || E;|| — £(F;) in (ii) and (iii) shows that 2, is not a vertex of P;, p. O

Remark 6.4. One can also directly check the small genera cases by running the computer
program in [13, Section 4] .
7. Surjectivity of the tangent map

In this section, we adapt Feyzbakhsh’s approach to study the surjectivity of the tangent
map and obtain a sufficient condition for ¥ being an isomorphism.

Theorem 7.1. Let v = (r,c,s) € Hy, (X) be a Mukai vector satisfying the injectivity
condition (k). The morphism

¥ : M(v) - BN¢g(v)

s an isomorphism whenever the following conditions hold
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(i) ¢ is surjective;
(ii) h°(X,E) =r+s for any E € M(v);
(iii) there exists 0 € Lz, _, x, yNV(X) such that
v m)s U

Q-‘r

v(—m)

(L(O,U]) NH, (X) = QXK (L(o,a]) NH; (X) =0, (71)

alg alg
where vy = (s, —¢,r);
(iv) 25 >v242c?, or 2s > v% +2 and ged(c,s) = 1.
Proof. As 1 is bijective, it suffices to show the tangent map dv is surjective. The
argument is similar as [11, §6]. For the convenience of readers, we sketch the proof as
below. For any £ € M(v), the differential map dv : Tjg)M(v) — Tig|,)BN¢c(v) at [E] can
be identified as the map
d¢) : Hom(E, E[1]) - ker (Home (Elc, Bl [1]) 5 Hom(H'(C, Elo), H'(C, E|c))

sending (E — E[1]) to (E|¢ — Elc[1)).

Let {: E|c — E|c[1] be a tangent vector in Tig|.JBN¢(v). Then Feyzbakhsh has shown
in [11, §6] that there exist morphisms & and ¢’ such that the following commutative
diagram holds

E— i.E|lc —— E(-0O)[1]
3! i€ E%
Ell] — i.Elc[l] — E(-C)[2]

\0_/

provided that

Kg=M][1] and Homx(M,E(-C)[1])=0, (7.2)
where K is the cone of the evaluation map O?;](X’E) — E — Kp in D*(X). Note that
dip(&') = &, we are therefore reduced to check (7.2) holds for every F.

Note that v(Kg) = —vkg and m,, = Tk,. We can choose the stability condition

01 € L(n,, ,0) sufficiently close to o' and o3 € L, sufficiently close to o so that
POG'20'10/ \{0;0/} g Pow,,Koo mr g V(X)a

see Figure 9. As in the proof of Theorem 4.1, we have Ox and E are oj-semistable of
0
the same phase. Then as the quotient of F by 0; (X’E), KE is also o1-semistable of the
same o1-phase. Note that Lemma 4.2 still holds if we exchange r and s in Mukai vector v.
Then we get
+ x _
Qy (Por,, 0o NT)NHZ, (X) = 0.

alg

Since vk is primitive, we have Qy, (Por,, oo NT') MH;, (X) = 0. By Proposition 3.4, vk

admits no strictly semistable stability conditions in Poy,e,0 \ {0,0'}. Therefore, Kg is
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T H2 2
rT="2Y
e
UOTE
01
o
o\
Ty
o
Ty(—m) = 2
Y
0

Figure 9. Any point in the colored region is a stability condition.

stable for any 7 € Pog,o,0r \ {0,0'}. This implies that Kg is 04, ¢-stable for a > % By

[15, Lemma 6.18], we have H™!(Kg) is a py-semistable torsion-free sheaf and H°(Kf)
is a torsion sheaf supported in dimension zero. So we can set v(H’(Kg)) = (0,0,a) and
v(H ' (Kg)) = (s, — ¢,r 4 a) for some a > 0. By [11, Lemma 3.1], we have

—2¢* <vw(H YKg))? =v? - 2sa. (7.3)

When ged(c,s) = 1, we have H ! (Kg) is slope stable and v(H *(Kg))? > —2. Then
by condition (iv), we have a = 0 and H°(Kg) = 0. So we obtain Ky = M[1], where
M =H ' (Kg) is a puy-semistable torsion-free sheaf.

Since Qyf, (Lo,01) NHi, (X) = 0, v(M) admits no strictly semistable condition in
L(o,0]- It follows that M is o-stable as it is oo-stable. Similarly, we have E(—C)[1] is
also o-stable. Since M and E(—C)[1] are o-stable of the same phase, one must have
Homy (M,E(—C)[1]) = 0. This proves the assertion. O

Conditions for reconstructing K3 surfaces

As a first application, we obtain a numerical criterion for Mukai’s program of reconstruct-
ing K3 surfaces, that is, the case v = 0.

Theorem 7.2. Assume g > 2. Let v = (r,c,ck) € Hy, (X) be a primitive Mukai vector
with v2 = 0. Suppose it satisfies the condition

r|g—1,kfg,0<k§3g—3andm>1—|—r ok (%)

(k—1)
The restriction map 1 : M(v) = BN¢(v) is an isomorphism if it is a surjective morphism.

Proof. Let us check that the conditions (ii)—(iv) in Theorem 7.1 are satisfied. By our
assumption, we know that ged(r — s,¢) = 1. According to [13, Lemma 3.1], one has

h(X,E)<r+s,
which forces h%(X,E) =r+ s by Equation (4.2). This verifies the condition (ii).
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For the condition (iv), note that we have s = @ > ¢? where the equality holds when
r=g—1.If r = g—1, the inequality in Equation (7.3) will be equality. By [11, lemma 3.1],
we have ¢ | (¢ —1) which is a contradiction. Thus, we only need to verify the condition

(iii). By Remark 3.5, it suffices to show
Por, mom \1vertices} CV(X).

To make the computation easier, we may consider the action of tensoring the invertible
sheaf Ox (H) which sends the triangle Por,, 7o to the triangle Py, p,, where p; =
T (1) and p2 = Ty(1_p,)- Then it is equivalent to show there are no projection of roots in
Py, p, — {vertices}.

Firstly, we show that there is no projection of root on the two edges joining o. By
definition, we have

ke c cr c

G0 G 4P = G T o ke =)

p1=( )
Then two open edges L, ,,) and L, ,,) do not contain any projection of roots by
Observation (B).

Next, since (m—1)r > ﬁ > ¢, we know that p; is lying in the first quadrant while
projection ps is lying in the second quadrant. So the region

Popips \ (Ljo,p1] ULjo,pa))
is contained in the union of two trapezoidal regions Pg, ., Pg,, o and the z-axis. As
r|(g—1) and ged(r,c) =1, we have an inclusion

Pgh,0 CV(X)

0p200
from Lemma 4.2 (i). Moreover, if there is a root § = (v/,¢,s") € R(X) with 7/ > 0 whose
projection 75 is lying in Pg, ., one can follow the computation in Lemma 4.2 to get
inequalities

ke < (k—1)r" < kd + (7.4)

(g—1)¢"

However, one can directly check that there are no such integers (r/,c’,s’) satisfying
Equation (7.4) under the assumption k <g—1or 3 <k <3g—3.
It remains to show that Py, ,, Ny-axis C V(X). Note that

c/(k—1)

N x-axis = (m7

0)

L[Plapz]

which is below o’. It follows that P, ,, Ny-axis C L, o) € V(X). O

Conditions for reconstructing hyper-Kihler

Now, we reconstruct hyper-Kéhler varieties as Brill-Noether locus for Mukai vectors given
in Corollary 5.7.
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Theorem 7.3. Assume v € Hy, (X) satisfying conditions (*) and (** ). The restriction

map ¥ : M(v) = BN¢(v) is an isomorphism.

Proof. By Corollary 5.7, v is a bijective morphism. We only need to verify the conditions
(ii)—(iv) in Theorem 7.1. We will check them one by one.

(1) Let us first verify that h°(X,E) =r+s for any £ € M(v). By [13, Proposition 3.1],
it suffices to show that

V(r—s)2+ (29 +2)c? - r+s

1. 7.5
2 2 + (75)
After simplification, one can find that Equation (7.5) is equivalent to
1)c? -1
g+ -1
2r42

This holds when (g —1)c?> —rs <r and g > 4r? +1.

(2) For condition (ii), we claim that

L(ﬂ'v(—m)ﬂrvK) NI 75 @,

and hence Lz, », yNV(X)#0. Let us write v(—m) = (r,¢,5) and vk = (s, —¢,7)

with ¢=c—mr and 5§ = \_%J

equation

. Then we only need to show that the quadratic

g(1=t)te+t(—c))? = ((1—t)r+ts) (1 —t)5+1tr) (7.6)
has roots for 0 < t < 1. By calculating the discriminant of (7.6), we know it has a
solution tq satisfying
2g—rs

0<tpo <
O™ s541r2+2ecg+2(2g—13)

<1 (7.7)

(3) Choose o € L, o) NI We first verify that

v(—m)»
QL) NHEL(X) = 0.

v(—m) alg

Suppose there is an integer point pg = (x,%0,20) € Qj(,m)(L[a,o))~ By Lemma 7.4
below, we have

c—1<yy<0.

Moreover, one may observe that pg is lying in a (closed) planer region enclosed by
the conic

Q={y=yo, (9- 1)y’ +1=uz}

and two lines

S t
Ly = {y:yOa z = y(js}y Ly = {(1_t)y0 (r’57§)—ﬂ(3, _caT)7t€R}.
C C
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It has three vertices given by the intersection points L1 N Ly, L1 NQ and Ly NQ.
This yields

Yor

t/
<o < (1-#) B -, (78)
where t’ is the smaller root of the quadratic equation
Yyor  tyos Yos  tyor
—Dye+1=[1-t — 21—t E - =,
(9-Dyo+1=[1-t)77 == -1)= — =]
Solving the equation, one can get
=2
Y <2(9—1)~y~3+1— D < 2¢(ydr+c2) (7.9)
- ] ~ (—¢E8s —2rc8)c?

as (g —1)¢® —r3 <r. Plugging Equation (7.9) into (7.8), we get

)

(yo)(y§r+62)( sc+rc
C sc+2rc

yor 2cyo(y2r +¢&%) sé+re

O<z — = =
0T e = (C8s+2rc§)c® " cc

¢ 5¢2
< 3(r :|— 1)
5
3r(r+1)
(g-De&—r
1
< -z,
¢
where the last inequality holds because g —1 > 4r2. This contradicts to xq,yo € Z.
A similar computation shows that Qf (L, o) NH;,(X) =0 as well.

alg
(4) Condition (iv) holds since our assumption g > 4r2 + 1 ensures that

25 > 2r — 24+ 2¢% > 0% +2¢7. O
Lemma 7.4. For any integer point (xo, yo, 20) € Qj(_m) (L(o,01) in Theorem 7.3, we have
c—1<yy<0.
Proof. Set v, = (1 —t)v(—m) +tvk. Let 0 <ty <t; <1 be the roots of Equation (7.6).
We set
w = (2',y",2") = Lo,wyy N Lu(—m),v(—m)+vr, -
Then Q:'(_m) (L(o,0]) is contained in the tetrahedron To,(—m)ww With four vertices

O,v(—m),w and w = (r,é,ﬁ). This gives 3’ < yg < 0. Hence, we only need to estimate

T
the lower bound of y'.
Set ve, = (Tt4,Ctys Sty ), then we have w = c%ovto € Lo,v,,- Note that w— v(—m) € Lo, e,
is lying on the hyperboloid

{(3071%2) ER3| gy? —az= O}.
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Then one can see that y’ <¢—1 if

i—1 [
S, —v(-m) € {(I,y,Z) eR’| gy —xz < 0}7 (7.10)

Cto

that is,

c—1
Tt _T)(C

—§)>g. 711
Ctq Ctq St S) g ( )

Plugging the coordinates of v;, into Equation (7.11) and simplify all the terms, one can

obtain a quadratic inequality of ¢y and one can easily see that Equation (7.11) holds if
(2—8)(c?g—13)

érs—r2—s5+(2—2c)glc+e)+r2+s5—(c+2)rs

to <

Using the upper bound of ¢y given in Equation (7.7), we are reduced to check
E(ré—r?—s5+(2—8)glc+é)+r*+s5—(c+2)r5 < (2—&)(s5+1r>—2r5+2¢9(¢+c)).
After further simplification and reduction, the inequality above becomes
0<s5+7°4+2ég+c—(6+c—2)(Pg—r3). (7.12)
The right-hand side can be estimated as below

RHS > 7% + s§+ 26 — (¢4 ¢ — 2)(é%g —r3)

2

:r2+s§+2ag+(mr+2—2c)(é2+%)

. ) (7.13)
>ré4s5+2cg—r(C°+r)

—1)c2 —1)
2((9 )e —1)((9 )e — 1) +26g — ré
r T

> 0. O

8. Proof of the main theorems

We now prove our main theorems by finding suitable Mukai vectors v € HZlg (X)) satisfying
the conditions in Theorem 7.2 and Theorem 7.3, respectively.

Proof of Theorem 1.1

As the case of m =1 is already known, we may always assume m > 1. There will be two
cases:

(i) If (g,m) # (7,2), we can choose the Mukai vector v = (g — 1,k,k?) with k given in
the Table 1.
Note that when g > 8, we have

k= min{ko | ko > %gcd(g— 1,ko) = 1} <g-—2.
By a direct computation, one can easily see that the values of £ and m in
Table 1 satisfy the special surjectivity condition (**') given in Theorem 6.3. This
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TABLE 1. Choices of Mukai vectors.

Values of ¢ Values of k Range of m
3 k=25 m>5
4 k=5 m >4
5 k=3 m>3
6 k=4 m>3
7 k=5 m>3
>8 k=min{ko | ko > 4, gcd(g—1,ko) =1} m>2

ensure the restriction map 1 : M(v) = BN¢(v) is surjective. The assertion follows
from Theorem 7.2 as it satisfies the condition (**>). Indeed, the only nontrivial
condition one needs to check is

]{52
(g—1)(k—-1)
(ii) If (g,m) = (7,2), Theorem 6.3 cannot be applied because primitive Mukai vectors

of the form (6,k,k?) do not satisfy the assumptions in Theorem 6.3. However, we
can choose v = (2,1,3), and the assertion can be concluded by the following result.

m>1+4+

Proposition 8.1. Suppose g = 7. The restriction map ¥ : M(2,1,3) = BN¢(2,1,3) is an
isomorphism for any irreducible curve C' € |2H|.

Proof. Note that v satisfies the injectivity condition (*), 9 is an injective morphism
with stable image. It also satisfies the condition (*>*>). Due to Theorem 7.2, it suffices
to show that 1 is surjective. The idea is to use Theorem 5.3. Suppose one has

Pv 7é Pi*F

for some F' € BN¢(v). A direct computation shows P, is at least 2-sharp. Then either
P;, r lies inside the polygon P 2H220 OF it has zfl as a vertex. For the first case, one
has

h=li F|| > ll21 = 21| = 121 — 72| + |21 — 23] = |25 — 27|

T

3 3
>V29+V877T—34=h+x—10

which contradicts Equation (5.18). For the second case, it forces Z(E1) = 2! and hence

U n 2 — 25l 41125 — 22l +x _ htx

<h0 =KX <

https://doi.org/10.1017/51474748024000495 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748024000495

Mukai’s program for nonprimitive curves on K3 surfaces 1089

However, we have

h— +1 I Y +1 1
U= =l el =zal) 86| L (g ayg) 4 T -
2 2 6 2

1

> 5 (V29+ VBT - 34)
h+x

=X _5

2
which is impossible. It follows from Theorem 5.3 that v is surjective. O

Proof of Theorem 1.2

By Corollary 5.7, for each n > 0, we need to find a positive Mukai vectors v = (r,¢,s) with
v? = c%(2g — 2) — 2rs = 2n satisfying conditions (*) and (*%), that is,

g>4r? 41, r >max{n—|— 1,5}, 5> and ged(r,c) = 1.
m

A key tool is

Lemma 8.2. For each n, there is an integer N = N(n) such that for g > N, one can find
a prime number p satisfying that

(i) n+l<p< —”2_1 and ged(p,8(g —1)n) =1,

(ii) the equation x? = (g—1)n mod p has a solution.

Proof. The idea is to use the bound for prime character nonresidues. In [19, Theorem
1.3], it has been proved that there exists an integer mg with the property: if j > jo and x
is a quadratic character modulo j, there are at least log(j) primes £ < /5 with x(£) = 1.
Choose N to be the minimal integer satisfying

o 8(N—1)n>jo,
o the [log(8(N —1)n)|-th prime number >n-+1,
o YB(N-1n< =L

Clearly, N only depends on n. For g > N, we write

k
(g_ 1)” = Cl2 Hle
=1

where ¢; are distinct primes. Let y; be the character defined by

(@ = (4] e

%

2
if ¢; is odd and x;(d) = (—1)% if ¢; = 2. Consider the quadratic character
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modulo 8(g —1)n. As 8(g—1)n > N > jo, there exists a prime p such that x(p) =1 and

vg—1
n+l<p<y/8g—1)n< g2 :

Moreover, one can compute the Jacobi symbol
k k
n(g—1 i
<H> =11 () =[x =x) =1
p i1 \P i=1

by the law of reciprocity. It follows that 22 = (g — 1)n mod p has a solution. O

Due to Lemma 8.2, when g > N (n), we can find an odd prime p and an integer 0 < ¢ <p
satisfying

n+l<p< and p divides ¢*(g —1) —n.

Vg—1
2

Here, c(g —1) is actually a solution of the equation of 22 = (g —1)n mod p. Choose the

2
Mukai vector v = (p,c,%), then we have

p> max{n—&—Lc}, g>4p*+1,

and

Ag—1)—n _ 4c*p*—p
>
p

by Lemma 8.2 (i). The assertion then follows immediately.

=4c*p—1> pe,
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