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Abstract

Recently, there has been a large number of works on bilinear sums with Kloosterman sums and on sums
of Kloosterman sums twisted by arithmetic functions. Motivated by these, we consider several related new
questions about sums of Kloosterman sums parametrised by square-free and smooth integers. Some of our
results are presented in the much more general setting of trace functions.
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1. Introduction

1.1. Motivation. For a prime p and an integer n, we define the s-dimensional
Kloosterman sum

Ks,p(n) = p−(s−1)/2
p−1∑

x1,...,xs=1
x1···xs≡n (mod p)

ep(x1 + · · · + xs),

where ep(x) = exp(2πix/p). The celebrated result of Deligne [7] gives the bound

|Ks,p(n)| � s. (1.1)

(See also [16, Section 11.11].) In the classical case of s = 2, we denote

Kp(n) = K2,p(n).

Recently, there has been active interest in estimating sums of Kloosterman sums
either over sequences of parameters n of arithmetic interest or twisted by arithmetic
functions, such as
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Ps,p(L) =
∑
��L

� prime

Ks,p(�) and Ms,p( f ; N) =
∑
n�N

f (n)Ks,p(n), (1.2)

with some multiplicative function f (n) such as the Möbius function μ(n) or the divisor
function τ(n). (See, for example, [5, 8, 18, 21].)

These results rely on recent progress on bounds of bilinear Type-I and Type-II
sums with Kloosterman sums (see [2, 4, 5, 8, 17, 19, 20, 22, 23]). In particular,
[8, Theorem 1.5] implies power-saving bounds on the sums Ps,p(L) given by (1.2) with
L � p3/4+ε for an arbitrary fixed ε > 0. These bounds have been subsequently improved
in [5, Theorem 1.8] in the case of s = 2 and for the same range of L.

For the sums Ms,p( f ; N) given by (1.2), [8, Theorem 1.7] gives power-saving bounds
on Ms,p(μ; N), provided that N � p3/4+ε for an arbitrary fixed ε > 0. Similar bounds are
given by [20, Corollary 1.4] on Ms,p(τ; N), provided that N � p2/3+ε. These thresholds
have both been reduced to N � p1/2+ε in [18], however with a logarithmic saving
instead of a power saving in the bound.

1.2. Outline of our results

1.2.1. Sums of Kloosterman sums over square-free numbers. We first consider sums
of Kloosterman sums over square-free numbers (that is, over numbers which are not
divisible by the square of a prime):

Qs,p(N) =
∑
n�N

|μ(n)|Ks,p(n) =
∑
n�N

n square-free

Ks,p(n). (1.3)

The trivial bound

Qs,p(N) � N (1.4)

is implied by (1.1). Our goal is twofold: to obtain a nontrivial bound (possibly with a
power saving) for N as small as possible and to have a bound as good as possible for
any given N. Our main result in this direction is given by Theorem 2.1, which is proved
in Section 4.

A rather straightforward approach (see the remarks following the statement of
Theorem 2.1), implies that if p1/2+ε � N � p for an arbitrary fixed ε > 0, then

Qs,p(N) � N1/2 p1/4+o(1), (1.5)

which already improves the trivial bound (1.4) in this range. Our Theorem 2.1 provides
a power-saving improvement upon (1.5) for any given N in the range p1/2+ε � N � p.
For example, if N = p, then Theorem 2.1 implies

Qs,p(p) � p3/4−1/232+o(1), (1.6)

while (1.5) only gives Qs,p(p) � p3/4+o(1).
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1.2.2. Sums of Kloosterman sums over smooth numbers. Next, we recall that an
integer n � 1 is called y-smooth if P(n) � y, where P(n) denotes the largest prime
divisor of n. See [13, 15] for background and classical estimates on smooth numbers.
For N � y � 2, we denote by S(N, y) the set of y-smooth positive integers n � N and,
as usual, we denote Ψ(N, y) = #S(N, y).

We consider the sum

Rs.p(N, y) =
∑

n∈S(N,y)

Ks,p(n),

for which we have, in analogy to (1.4), the trivial bound

Rs,p(N, y) � Ψ(N, y) � N.

As in the case of squarefree numbers, our goal is to obtain nontrivial bounds for N as
small as possible and, at the same time, to have a bound as good as possible for any
given N and y. Additionally, we are also interested in obtaining nontrivial bounds for
y as small as possible.

In fact, it turns out that the estimates we have for Rs,p(N, y) hold in a much broader
context of trace functions (see Section 1.3). Thus, given a trace function K(n), we
consider the generalisation of Rs,p(N, y),

RK(N, y) =
∑

n∈S(N,y)

K(n), (1.7)

for which, if the values of K(n) are uniformly bounded, we have, in analogy to (1.4),
the trivial bound

RK(N, y) � Ψ(N, y) � N.

Our main result in this direction is given by Theorem 2.2, which is proved in
Section 4. As a special case of Theorem 2.2, if log y/log log N → ∞, then

RK(N, y) � Ψ(N, y)y1/2 p1/8N−1/4+o(1), (1.8)

which is nontrivial when N > y2 p1/2+ε. (See the remarks following the statement of
Theorem 2.2.)

1.3. Trace functions. Many of the results that are mentioned in Section 1.1 also
apply to more general sums involving trace functions (apart from several exceptions
described in [5, 17, 20–23]). The exact definition of these trace functions requires some
notions from algebraic geometry, which go beyond the more analytic frameworks of
this work. Instead, we refer to [8–10] and especially [11] for a general background, and
precise definitions and properties of trace functions.

It turns out that Kloosterman sums are representatives of a much richer class of
isotypic trace functions K(n), which are associated with isotypic trace sheaves F
modulo p of bounded conductor (we refer to [8, 9] for precise definitions and properties
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of trace functions). In addition to Kloosterman sums, other concrete examples of
isotypic trace functions include:

• traces of Frobenius of elliptic curves modulo p;
• exponential functions of the form e(ψ(n)/p) with rational functions ψ(Z) ∈ Q(Z) and

similar values of multiplicative characters as well as their products.

Some of our principal tools, such as Lemmas 3.1 and 3.2 below, are presented for
trace functions. Because of these observations, in Theorem 2.2, we present a bound on
RK(N, y) for a large class of trace functions, including Kloosterman sums, rather than
a bound on just Rs,p(N, y).

However, the main ingredient in the proof of Theorem 2.1, Lemma 3.3, is based
on [20, Theorem 4.3], which, at the moment, is only known for Kloosterman sums.
Thus, it is not clear how to extend Theorem 2.1 to arbitrary trace functions (though an
analogue of the trivial bound (1.5) still holds).

1.4. Structure of the paper. The rest of the paper is organised as follows. In
Section 2, we formulate our main results, and also show how the bounds (1.6) and
(1.8) follow from them. Then, in Section 3.2, we state some preliminary results
including estimates for sums of trace functions and a variant of the Type-I estimate
for Kloosterman sums, which are crucial in our treatment of smooth numbers and
square-free numbers. Then, in Section 4, we prove Theorems 2.1 and 2.2.

2. Main results

2.1. Sums of Kloosterman sums over square-free numbers. Our main result in
this direction is the following bound. Recall the definition of Qs,p(N) from (1.3).

THEOREM 2.1. For any positive integer s � 2 and any even positive integer �, if
p1/2+2/� � N � p, then

|Qs,p(N)| � N1/2 p1/4
( p1/2+2/�

N

)1/2(4�−3)
po(1).

For a specific value of N, one can optimise the bound in Theorem 2.1 by making
the choice of � that minimises the term

( p1/2+2/�

N

)1/2(4�−3)
.

For example, if N = p, then by choosing � = 8, we derive (1.6). We also note that
the bound (1.5) can be quickly obtained by combining (4.1) and (4.2) in our proof of
Theorem 2.1.

Our approach works for N > p as well. However, the optimisation of our argument
becomes more cluttered in such generality. Since we are mostly interested in short
sums and to exhibit our ideas in the simplest possible form, we focus on the case
N � p.
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2.2. Sums of trace function over smooth numbers. Before formulating our main
result in this direction, we recall some well-known estimates in the theory of smooth
numbers. Let α(N, y) be the saddle point corresponding to the y-smooth numbers up
to N as discussed in [14, 15]. In particular, α(N, y) satisfies

α(N, y) = (1 + o(1))
log(1 + y/log N)

log y
,

provided that y ≤ N and y→ ∞ (see [15, Theorem 2]). In particular, if
log y/log log N → ∞, then α(N, y)→ 1 and if y = (log N)K for some K ≥ 1, then
α(N, y) = 1 − 1/K + o(1). We have

Ψ(N, y) = Nα(N,y)+o(1) (2.1)

(see, for example, [14, Section 2] or [15, Theorem 1]).
Our main result in this direction is the following bound. Recall the definition of

RK(N, y) from (1.7).

THEOREM 2.2. Let K be a nonexceptional isotypic trace function associated to some
sheaf F modulo a prime p of bounded conductor. For N ≥ p1/2 and y ≥ log N,

|RK(N, y)| � Ψ(N, y)y1/2 pβN−γ+o(1),

where

β =
1

4(1 + α(N, y))
and γ =

α(N, y)2

2(1 + α(N, y))
.

Some remarks on the bound are in order. If y = No(1), then y1/2 can be dropped from
the bound giving

RK(N, y) � Ψ(N, y)pβN−γ+o(1),

which is nontrivial when N � pβ/γ+ε = p1/2α(N,y)2+ε for arbitrary fixed ε > 0. In
the special case N = p, we have a nontrivial bound for RK(N, y), provided that
α(N, y) > 1/

√
2 or y ≥ (log N)2+

√
2+ε.

However, if log y/log log N → ∞, then α(N, y) = 1 + o(1). Hence, β = 1/8 + o(1)
and γ = 1/4 + o(1). Thus, Theorem 2.2 yields (1.8).

3. Preparations

3.1. Notation. We use the standard notation U � V and V � U as equivalent to the
statement |U| ≤ cV , for some constant c > 0, which, throughout this paper, may depend
only on the integer parameters � and s.

For a finite set S, we use #S to denote its cardinality.
The variables of summation d, k, m and n are always positive integers.
We also follow the convention that fractions of the shape 1/ab mean 1/(ab) (rather

than b/a as their formal interpretation might suggest).
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The letter p always denotes a prime number and we use Fp to denote the finite field
of p elements.

We denote by p(�) and P(�) the smallest and the largest prime factors of an integer
� � 0, respectively. We adopt the convention that p(1) = P(1) = +∞.

Finally, we write
∑

k�K to denote the summation over positive integers k � K.

3.2. Preliminary bounds on sums of trace functions and Kloosterman sums.
We recall the following bound, which is a combination of [8, Proposition 6.2] and
[8, Theorem 6.3] (see [10–12] for several other variations of this result).

LEMMA 3.1. Let K be a nonexceptional isotypic trace function associated to some
sheaf F modulo a prime p of bounded conductor. There exists a set EF ⊆ Fp of
cardinality #EF � 1, such that uniformly over d ∈ Fp \ EF and h ∈ Z,

∑
x∈Fp

K(x)K(dx) ep(hx) � p1/2.

The standard completion technique (see [16, Section 12.2]) shows that Lemma 3.1
implies the following bound on incomplete sums.

LEMMA 3.2. In the notation of Lemma 3.1, for any K � p, uniformly over d, e ∈ Fp

satisfying d � 0 and e/d � EF,
∑
n�K

K(dn)K(en) � p1/2 log p.

Furthermore, only in the case of Kloosterman sums, we need the following estimate
of the Pólya–Vinogradov type: for any K � p, uniformly over d ∈ F∗p,

∑
n�K

Ks,p(dn) � p1/2 log p. (3.1)

(See [11, Theorem 6.2]. The result also follows from [10, Corollary 1.6] and the
completion techniques of [16, Section 12.2].)

We now record a bound on a variant of Type-I sums of Kloosterman sums. Instead of
Type-I sums with Ks,p(mn), we consider sums with Ks,p(mrn), where r is an arbitrary
integer (if r is negative, we consider the argument of the corresponding Kloosterman
sum modulo p). This is obtained by a slight extension of the argument of [20]. As we
have mentioned, this result does not immediately extend to general trace functions.
(See [3, 4, 8, 17, 19, 20] for several other bounds on related sums.)

LEMMA 3.3. Fix an integer r � 0 and an even integer � � 2. Let D, N � p be positive
integers with N > 2p1/�. For each d � D, let Nd ⊆ [1, N] be an interval. Then, for any
complex weights α = {αd}d�D with αd � 1,

∑
d�D

∑
n∈Nd

αdKs,p(drn) � DN
(
N−1 +

p1+1/�

DN2

)1/(2�)
po(1).
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PROOF. We follow the proof of [20, Theorem 4.3], which is conveniently summarised
in [3, Section 4.3] and also extended to sums when the nonsmooth variable runs
through an arbitrary set. Let

S =
∑
d�D

∑
n∈Nd

αdKs,p(drn).

Let A and B be integer parameters to be chosen later for which

2AB � N. (3.2)

By introducing averages over a ∼ A and b ∼ B (where a ∼ A denotes the dyadic range
A ≤ a < 2A and similarly for b ∼ B), and replacing n by n + ab,

S =
1

AB

∑
a∼A

∑
b∼B

∑
d≤D

αd

∑
n∈Z

n+ab∈Nd

Ks,p(dr(n + ab))

=
1

AB

∑
a∼A

∑
d≤D

αd

∑
n∈Z

∑
b∼B

n+ab∈Nd

Ks,p(dr(n + ab)).

Since the range for the inner sum over b is an interval, by the completion technique
(see [16, Section 12.2]),

S � log p
AB

∑
a∼A

∑
d≤D

N∑
n=−N

∣∣∣∣∣
∑
b∼B

Ks,p(dr(n + ab)) e(bt)
∣∣∣∣∣

for some t ∈ R, where e(z) = exp(2πiz). By making a change of variables u = dra and
v = an,

S � log p
AB

∑
u,v∈Fp

ν(u, v)
∣∣∣∣∣
∑
b∼B

Ks,p(u(v + b)) e(bt)
∣∣∣∣∣,

where ν(u, v) is the number of triples (a, m, n) with a ∼ A, m ∈ {dr : 1 ≤ d ≤ D} and
n ∈ [−N, N] such that

u ≡ an (mod p) and v ≡ ma (mod p).

Following the steps in [3, Section 4.3] leading to [3, (4.9), (4.10) and (4.11)] and
definingM = {dr : 1 ≤ d ≤ D},

S2� � A−2B−2�D2�−2N2�−1(B�p2 + B2�p)J(2A,M)po(1), (3.3)

where J(H,M) denotes the number of solutions to the congruence

xk ≡ ym mod p (3.4)

for which x, y ∈ [1, H] and k, m ∈ M. Taking B = �p1/��, we see that (3.3) simplifies as

S2� � A−2D2�−2N2�−1J(2A,M)p1+o(1). (3.5)
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In the setting of the proof of [20, Theorem 4.3], the condition

2A max
m∈M

m < p (3.6)

is satisfied, which allows us to replace (3.4) with an equation xk = ym in integers. Then,
using the classical bound on the divisor function (see [16, (1.81)]), it is shown in [20]
that, under the condition (3.6), we have J(2A,M) � (A#M)1+o(1). However, (3.6) is too
restrictive for our purpose, so we instead use a result of Ayyad, Cochrane and Zheng
[1, Theorem 2] which, similarly to the proof of [6, Theorem 4.1], leads to the bound

J(2A,M) � A2D2/p + (AD)1+o(1). (3.7)

Substituting (3.7) in (3.5),

S2� � (D2�N2�−1 + A−1D2�−1N2�−1 p)po(1).

Since N > 2p1/� � 2B, we may choose

A =
⌊ N
2B

⌋
� N p−1/�,

which guarantees that the condition (3.2) is met. We obtain the stated bound after
simple calculations. �

4. Proofs of the main results

PROOF OF THEOREM 2.1. Using inclusion–exclusion, we can write

Qs,p(N) =
∑

d�N1/2

μ(d)
∑

n�N/d2

Ks,p(d2n).

Next, we split the sum Qs,p(N) into dyadic intervals with respect to some parameter
D � 1 to get O(log N) sums of the type

S(D, N) =
∑
d∼D

μ(d)
∑

n�N/d2

Ks,p(d2n)

for some D � N1/2. By (3.1),

S(D, N) � Dp1/2 log p. (4.1)

By the Deligne bound (1.1),

S(D, N) � DN/D2 = N/D. (4.2)

However, for any fixed even integer � > 0, by Lemma 3.3,

S(D, N) � DK
(
K−1 +

p1+1/�

DK2

)1/(2�)
po(1),
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where K = N/D2, provided that K > 2p1/�. Note that DK = N/D � N � p � p1+1/�

and thus,

K−1 �
p1+1/�

DK2 .

It follows that if K > 2p1/�, then

S(D, N) � DK
( p1+1/�

DK2

)1/(2�)
po(1) =

N
D

(D3 p1+1/�

N2

)1/(2�)
po(1). (4.3)

Using the bounds (4.1) or (4.3) for K > 2p1/� and the bound (4.2) for K ≤ 2p1/�, we
arrive at

S(D, N) � min{ f1(D), f2(D)}po(1) + N1/2 p1/(2�), (4.4)

where

f1(D) = Dp1/2 and f2(D) =
N
D

(D3 p1+1/�

N2

)1/(2�)
.

Choose the parameter

D0 =

( N2�−2

p�−1−1/�

)1/(4�−3)
= N1/2 p−1/4

( p1/2+2/�

N

)1/2(4�−3)

such that f1(D0) = f2(D0). Clearly, 1 � D0 � N1/2 since N ≥ p1/2+2/� by assumption.
Hence,

min{ f1(D), f2(D)} � f1(D0) � N1/2 p1/4
( p1/2+2/�

N

)1/2(4�−3)
.

It can be easily verified that

p1/2� � p1/4
( p1/2+2/�

p

)1/2(4�−3)
� p1/4

( p1/2+2/�

N

)1/2(4�−3)
.

Hence, the second term on the right-hand side of (4.4) is dominated by the first term,
and

S(D, N) � N1/2 p1/4
( p1/2+2/�

N

)1/2(4�−3)
po(1).

This concludes the proof. �

PROOF OF THEOREM 2.2. Let L0 ∈ [1, N] be a parameter to be chosen later. Observe
that any y-smooth integer in (L0, N] can be uniquely factored as n = �m such that

� ∈ (L0, yL0],
�

P(�)
≤ L0, p(m) ≥ P(�),

where P(�) denotes the largest prime factor of � and p(m) denotes the smallest prime
factor of m. Indeed, this factorisation can be obtained by writing n = p1 p2 · · · pk with
primes p1 � · · · � pk and by setting � = p1 p2 · · · pr, where r is the smallest positive
integer such that p1 p2 · · · pr > L0.
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Thus,

RK(N, y) =
∑

L0<�≤P(�)L0
�∈S(y)

∑
m∈S(N/�,y)
p(m)≥P(�)

K(�m) + O(L0).

After dyadic partition of the range for �, we see that there is L ∈ (L0, yL0] such that

RK(N, y) � U log N + L0, (4.5)

where

U =
∑

L<�≤min{P(�)L0,2L}
�∈S(y)

∑
m∈S(N/�,y)
p(m)≥P(�)

K(�m).

We now employ the completion technique as in [16, Section 12.2] again. That is,
first, we write

U =
∑

L<�≤min{P(�)L0,2L}
�∈S(y)

∑
m∈S(N/L,y)
p(m)≥P(�)

K(�m)
1
N

∑
1�k�N/�

N∑
a=1

e(a(m − k)/N),

where, as before, e(z) = exp(2πiz). After changing the order of summation and using
[16, (8.6)] (similarly to the argument in Section 4), we derive

U �
∑
�∼L
�∈S(y)

∣∣∣∣∣
∑

m∈S(N/L,y)
p(m)≥P(�)

K(�m) e(ηm)
∣∣∣∣∣ log N

for some real η ∈ R.
By the Cauchy–Schwarz inequality,

U2 � (log N)2Ψ(L, y)
∑
�∼L
�∈S(y)

∣∣∣∣∣
∑

m∈S(N/L,y)
p(m)≥P(�)

K(�m) e(ηm)
∣∣∣∣∣
2
.

Writing q = P(�) and replacing � by q�,

U2 � (log N)2Ψ(L, y)
∑
q≤y

∑
�∼L/q

∣∣∣∣∣
∑

m∈S(N/L,y)
p(m)≥q

K(q�m) e(ηm)
∣∣∣∣∣
2
,

where we have dropped the primality condition on q. Expanding the square,

U2 � (log N)2Ψ(L, y)
∑
q≤y

∑
m1,m2∈S(N/L,y)

∣∣∣∣∣
∑
�∼L/q

K(q�m1)K(q�m2)
∣∣∣∣∣. (4.6)
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The contribution Y1 to the right-hand side of (4.6) from terms with m1/m2 ∈ EF is

Y1 � (log N)2Ψ(L, y)
∑
q≤y

Ψ(N/L, y)
L
q
� LN−αΨ(N, y)2(log N)3,

where α = α(N, y) and we have also used the standard bounds (see [14, Section 2])

Ψ(L, y) �
( L
N

)α
Ψ(N, y), Ψ(N/L, y) � 1

Lα
Ψ(N, y).

To estimate the contribution Y2 to the right-hand side of (4.6) from terms with
m1/m2 � EF, we observe that Lemma 3.2 implies that∣∣∣∣∣

∑
�∼L/q

K(q�m1)K(q�m2)
∣∣∣∣∣ � p1/2 log p

when m1/m2 � EF. Hence,

Y2 � (log N)2Ψ(L, y) · yΨ(N/L, y)2 p1/2 log p � yp1/2L−αΨ(N, y)2No(1).

Overall, with α = α(N, y), then,

U2 � Y1 + Y2 � (LN−α + yp1/2L−α)Ψ(N, y)2No(1)

� y(L0N−α + p1/2L−α0 )Ψ(N, y)2No(1).

Choosing L0 = p1/2(1+α)Nα/(1+α) to balance the two terms depending on L0, we
conclude that

U � y1/2 p1/4(1+α)N−α
2/2(1+α)Ψ(N, y)No(1).

Hence, we see from (4.5) that

RK(N, y) � Ψ(N, y)y1/2 p1/4(1+α)N−α
22(1+α)+o(1) + p1/2(1+α)Nα/(1+α)

= Ψ(N, y)y1/2 pβN−γ+o(1) + p2βNα−2γ.

We may assume that pβ � Nγ since otherwise, the claimed bound is trivial. Using (2.1),

p2βNα−2γ � pβNα−γ = Ψ(N, y)pβN−γ+o(1)

and the result follows. �
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