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WHAT IS INVEXITY?
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Abstract

Recently it was shown that many results in Mathematical Programming involving convex
functions actually hold for a wider class of functions, called invex. Here a simple
characterization of invexity is given for both constrained and unconstrained problems.
The relationship between invexity and other generalizations of convexity is illustrated.
Finally, it is shown that invexity can be substituted for convexity in the saddle point
problem and in the Slater constraint qualification.

1. Introduction

In [13], Zang, Choo and Avriel studied functions whose stationary points are
global minima and applied their results to Mathematical Programming.

A few years later, Hanson [5] considered differentiable functions from R" into
R for which there exists a vector function TJ(X, u) e R" such that

/ ( * ) - / ( « ) > [i,(*, «)] V / (« ) , (1)
where V denotes the gradient. Clearly, differentiable convex functions satisfy (1),
since in that case one can take rj(x, u) = x — u. Hanson [5] showed that if,
instead of the usual convexity conditions, the objective function and each of the
constraints of a nonlinear programming problem all satisfy (1) for the same
j}(x, u), weak duality and sufficiency of the Kuhn-Tucker conditions still hold.

Hanson's paper inspired a great deal of additional work. For example, in [1],
Craven called functions satisfying (1) invex and established duality theorems for
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fractional programs with such functions. In [12], Mond and Hanson extended the
concept of invexity to polyhedral cones while in [2] Craven defined it for more
general cones and gave second-order conditions for invexity. In [3], Craven and
Glover showed that the class of invex functions is equivalent to the class of
functions whose stationary points are global minima.

A number of other forms of invexity have also recently appeared. In [11],
Martin defines Kuhn-Tucker invexity and weak duality invexity, in [6] Hanson and
Mond speak of Type I and Type II functions, while in [7] Jeyakumar defines
strong and weak invex functions.

Our purpose here is first to give a simple characterization of invexity for both
constrained and unconstrained problems and, secondly, to present some new
results for invex functions. These include a sufficient condition for functions to be
invex and proofs that invexity can be substituted for convexity in the saddle point
problem and in the Slater constraint qualification.

2. Unconstrained optimization

Some of the results in this section were first given by Craven and Glover [3],
where invexity for quasi-differentiable functions was defined, and by Jeyakumar
[7], where strong and weak invexity were discussed. Some of their results are
repeated here for completeness, and in order to present them in a simpler setting.
The next theorem, for which we provide a simple proof, was first stated in [3].

THEOREM 1. fis invex if and only if every stationary point is a global minimum.

PROOF. Clearly, if/ is invex, then V/(w) = 0 implies f(x) > /(«). Assume now
that

V/(«) = 0 =>/(*)>/(«) .
If V/(u) = 0, take -q(x, u) = 0. If v/(«) * 0, take

COROLLARY. If ']has no stationary points, then f is invex.

Hanson [5] noted that there are simple extensions of (1) to

[V(x,u)]'vf(u) > 0 =»/(*) - / («) > 0 (2)
and

/(*) - / («) < 0 =» [r,(x, u)]'vf(u) < 0. (3)
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Functions satisfying (2) and (3) were subsequently [1] called pseudo-invex and
quasi-invex respectively.

It is clear, by taking TJ(X, u) = (x — u), that convex, pseudo-convex and
quasi-convex functions are, respectively, invex, pseudo-invex and quasi-invex. It is
also obvious from the definitions that invex functions are both pseudo-invex and
quasi-invex. It follows easily, from Theorem 1, that both pseudo-convex and
pseudo-invex functions are invex. Thus (unlike pseudo-convex and convex) there
is no distinction between pseudo-invex and invex functions.

Theorem 1 has the following analogue for pseudo-convex functions.

PROPOSITION. A differentiable function f is pseudo-convex if and only if for all
x, u

(x- M ) V / ( « ) = 0 =» / (« ) < / ( M + t(x- «)) , forallt>0. (4)

PROOF. Only if. Obvious from the definition of pseudo-convexity. Here (4)
holds for all real /.

//. Suppose / is not pseudo-convex; that is, there exists x, u such that

{x- «)'v/(«)>0 and f{x)<f[u).

If (x - U) 'V/ (M) = 0, then (4) is contradicted. If (x - u) 'v/(«) > 0, then there
exists v which maximizes / on the line segment from u to x. Thus V/(u) = 0 and,
therefore

(x-v)'vf(o) = 0 and f(v) >f(u)> f(x) = f(v + l(x - v)),

contradicting (4).
Although pseudo-convex and pseudo-invex functions are both invex, this is not

the case with quasi-convex and quasi-invex functions.

EXAMPLE 1. f(x) = x3.

f is not invex, since the stationary point x — 0 is not a global minimum. As is
known, x3 is quasi-convex and hence, also quasi-invex.

Although an invex function is quasi-invex, it need not be quasi-convex.

EXAMPLE 2. f(x) = x3 + xx - IOJC3, - x2.

Since there are no stationary points, / is invex. Taking u = (0,0), xx = 2,
x2 = 1, gives f(x)-f(x) < 0 but (x - u)'vf(u) > 0 so that / is not quasi-con-
vex.

The relationship between the different forms of convexity and invexity is
illustrated in Diagram 1.
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DIAGRAM 1.

REMARK. In [8], Kaul and Kaur call functions satisfying (1), (2) and (3),
Tj-convex, ij-pseudoconvex and Tj-quasiconvex, respectively. Their result that
" Every Tj-convex function is ij-pseudoconvex for the same TJ but the converse is
not true" does not contradict the result stated here and in [3] that all pseudo-
invex functions are invex. An ij-pseudoconvex function may not be Tj-convex for
the same TJ but will be Tj-convex for some TJ. Indeed, it is easy to see that the
counterexample from [8] of a function that is Tj-pseudoconvex but not Tj-convex
for the same TJ is, indeed, ij-convex for the TJ described in the proof of our
Theorem 1.

We now give a sufficient condition for invexity.

THEOREM 2. If f is differentiable and there exists an n-dimensional vector function
TJ(X, u) such that

f(u + \r,(x,u))^\f(x)+(l-X)f{u), O < A < 1 , (5)

then f is invex.

PROOF. Rewrite (5) as

f(u + \V(x,u)) -/(«) <\[f(x) -/(«)],
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assume X > 0 and divide by X to obtain

£[/(« + M*,«))-/(«)]«/(*) -/(«)•
Taking the limit as X -» 0+ gives (1).

Note that unlike the situation for convexity (where r)(x, u) = x — u), (5) plus
differentiability implies (1), but not conversely.

3. Constrained optimization

Consider the nonlinear programming problem

(P) Minimize/(x) subject to g(x) < 0,

where / and g are differentiable functions from R" into R and Rm. Since / and
g(, i = 1, . . . , m invex, for the same function TJ, implies that for any e Rm such
that

y>0, (6)

the function

f(x)+y'g(x) (7)

is invex, the role of invexity for problem (P) can be discerned by applying
Theorem 1 to the unconstrained Lagrangian function (7). From Theorem 1, it
follows that (for fixed y) (7) is invex if and only if

V/(«) + Vy'g(u) = 0 (8)

implies

/ ( « ) + / « ( « ) < / ( * ) + / * ( * ) (9)
for all x, u <= R". If x is feasible, y'g(x) < 0 and (9) yields

f(u)+y'g{u)<f(x). (10)

Thus, (10) holds if x is feasible for (P), (M, y) satisfies (6) and (8), and (7) is invex.
This establishes weak duality between (P) and its Wolfe dual: (D) maximize
/ ( " ) + y'g(u) subject to (6) and (8), the result stated by Hanson [5].

Sufficiency of the Kuhn-Tucker conditions when (7) is invex also follows
readily from (10). Thus, if u is feasible for (P) and yt = 0 if g^u) < 0, then
y'g(u) = 0 and (10) becomes

/ ( « ) < / ( * ) (11)
for all feasible x.
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It should be stressed that for sufficiency our proof requires that the Lagrangian
(7) be invex, or, equivalently, that a stationary point of (7) be a global minimum
of (7). Even if / and each g, are individually invex, f + y'g may not be invex.
This is equivalent to / and g, being invex for different TJ but f + y'g is not invex
for any TJ. An example of a problem where both / and g are invex but f + y'g is
not, is the following:

EXAMPLE 3. Minimize \{x - I)2 subject to x3 + x < 0.
If we take x = 0, y = 1, the Kuhn-Tucker conditions are all satisfied. Here both
/ , which is convex and g, which is pseudo-convex, are invex, but, for y = 1, the
Lagrangian / + y'g = x3 + \xx + \ is not; so that neither the sufficiency result
proved here nor in [5] is applicable (although, of course, x = 0 is minimal).

Martin [11] and Hanson and Mond [6] observed that by weakening slightly the
requirement that all g, be invex, invexity not only remains sufficient for a
Kuhn-Tucker point to be optimal for (P), but becomes necessary as well.

Recall that g, invex means

gi(x)-gi(u)>V(x,u)'vgi(u). (12)

If JC is feasible and g, is a tight constraint at u, we have

0>T,(x,U)Vg,(«) . (13)

This is the requirement on the tight constraints of g at u set by Martin [11], who
gives necessary and sufficient conditions for every Kuhn-Tucker point to be a
global minimizer.

Hanson and Mond [6] require instead

-gM>v(x,y)'vgl(u) (14)

for all g,. It is clear that, if (11) holds, there exists an TJ(X, M) satisfying (1) and
(13) or (14). Simply set TJ(JC, M) = 0. Hanson and Mond [6] give conditions for the
existence of a non-zero TJ(X, M) satisfying (1) and (14).

For a given pair of points x, u the condition (1) is a linear inequality in
TJ = i](x, u). If V/(«) =£ 0, (1) has a solution for all x, and the general solution is

v'vf(u) < 0.

Thus the general solution (15) is a closed half-space. For an invex function / and
a point u with v / (u ) = 0, any TJ will do in (1) for all x, and the general solution
is the whole space.
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Consider now a given finite collection of invex functions { flt..., fm } , and the
question of the existence of a common TJ satisfying

fi(x)-fi(u)>V(x,u)'vfi(u),i=l,...,m (16)

for all x, u. Let

The existence of a common TJ is equivalent to the nonemptiness of the following
intersection of closed half spaces

n
for all x, u. A sufficient condition for (17), stated in terms of u alone, is that the
set (v / , (") : i ^ J(u)} be nonnegatively independent, i.e.

a . = o, / < E J ( W ) . (18)
a, > 0, / G / ( W ) /

If (18) holds, then for any x there is an TJ(X, u) satisfying (16). The condition (18)
is a well-known constraint qualification.

We turn now to the saddle-point problem. A point (3c, y), y > 0 is said to be a
solution of the saddle-point problem if

/(3c) + y'g{x) < /(3c) + y'g(x) < / ( * ) + y'g(x) (19)

for all x G R", y e Rm, y > 0. It is well known (see e.g. [10]) that if (3c, y) is a
solution of (19), then 3c is an optimal solution of (P). On the other hand, if 3c is an
optimal solution of (P), one needs a constraint qualification and convexity to
assure the existence of y such that (3c, y) is a solution of (19). We now show that
this convexity requirement can be weakened to invexity.

THEOREM 3. //3C is optimal for (P), a constraint qualification is satisfied, and (7)
is invex for y > 0, then there exists y > 0 such that (3c, y) is a solution of the
saddle-point problem.

PROOF. Since x is optimal for (P) and a constraint qualification is satisfied,
then by the Kuhn-Tucker necessary conditions, there exists y e Rm such that
(with u = x) (6) and (8) are satisfied as well as y'g(x) = 0. Since (7) is invex, (8)
implies (9) by Theorem 1, which is the right side of (19). The left side holds since
y > 0, g(x) < 0, y'g(x) = 0.
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COROLLARY 2. Assume that a constraint qualification is satisfied at x and that (7)
is invex for all y > 0. Then x is optimal for (P) if and only if there exists y > 0 such
that (x, y) is a solution of the saddlepoint problem.

Finally, we show that invexity can be substituted for convexity in the Slater
constraint qualification.

THEOREM 4. Assume that x is an optimal solution of (P). Assume, also, that
there exists a point x* such that g(x*) < 0 and that all g, for which g,(3c) = 0 are
invex with respect to the same vector function 7j(x,u). Then there exists y e Rm

such that (x, y) satisfy the Kuhn-Tucker necessary conditions.

PROOF. Let Bo denote the set of active constraints at x, i.e., Bo = {/: g,(x) = 0}.
If we can show that

z'Vg,(x) < 0 (Vi e Bo) => z'vf(x) > 0 (20)

the result will follow as in [9] by applying Farkas' Lemma and setting y, = 0 for
/ fl£ Bo.

Assume (20) does not hold, i.e., there exists z e R" such that

z 'Vg,(3c)<0Vief l o and z'v/(3c) < 0. (21)

Since by the assumed Slater-type condition, g,(x*) - g,(x) < 0, / e Bo, by
invexity there exists T/(JC*, X) such that

) < 0, / e Bo. (22)

Therefore

[z + Pr,(x*,x)]'vg,(x)<0, i s 2*O, (23)

for all 0 < p. Hence for some positive T small enough

g,(x + T[Z + PV(x*,x)]) < g,(x) = 0, i e 2?0.
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