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SMOOTH FAMILIES OF FIBRATIONS AND
ANALYTIC SELECTIONS OF POLYNOMIAL HULLS

MiraN CERNE

Constructed are strictly increasing smooth families £* C 8D x C?, t € [0,1], of
fibrations over the unit circle with strongly pseudoconvex fibers all diffeomorphic
to the ball B* such that there is no analytic selection of the polynomial hull of
£° and which end at the product fibration ' = 8D x B*. In particular these
examples show that the continuity method for describing the polynomial hull of
a fibration over 8D fails even if the complex geometry of the fibers is relatively
simple.

1. INTRODUCTION

Let P, be the algebra of holomorphic polynomials in n complex variables and let
X C C” be a compact subset of the complex space C™. The polynomial hull X of X
is defined as

X := {20 € C™|p(20)] < sup |p(2)|,p € Pn} -

Let D C C be the unit disc in the complex plane C and let 8D be its boundary,
the unit circle in C. An H® analytic disc with boundary in X is an H° mapping
h: D — C” such that

h(¢) € X almost everywhere dm(€),

where dm(£) stands for the Lebesgue measure on 8D. By the maximum principle it
follows immediately that if A is an H® analytic disc with boundary in X, then the
whole disc h(D) lies in the polynomial hull X of X, that is, k(D) C X. It is a classical
result by Stolzenberg, [10], that it is not always the case that the set b \ X can be
given as the union of the H* analytic discs with boundaries in X. Later Wermer,
[11], refined Stolzenberg’s example and constructed a fibration over the unit circle D
with fibers in C with the same property.
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On the other hand there is a series of papers [1, 4, 5, 7, 8, 9] on the polynomial

hull of a fibration
X:=J{xX,copxcr
¢€oD

over 8D, which show that in the case the geometry of the fibers X¢, £ € 8D, is tame,
that is, arbitrary dimension n and all fibers are geometrically convex [1, 4, 7, 9] or
n =1 and the fibers are only connected and simply connected [5, 8], one can describe
the polynomial hull of X as the union of the graphs {(z,h(2));2 € D} of the H®
analytic discs h in C™ for which

h(¢) € X¢ almost everywhere dm(¢) .

A disc h of this kind is called an analytic selection of the polynomial hull of X . An
example by Helton and Merino, [6], shows that the condition on the fibers to be only
connected and simply connected is not enough for the same result to hold for n > 2.
Namely, they found an example of a fibration X over 8D with connected and simply
connected fibers in C?, whose polynomial hull Xis nontrivial, but there is no graph
of an H* analytic disc whose boundary lies in X .

All proofs of the above positive results for n > 2 are essentially based on a very
clever use of the Hanh-Banach theorem and are, therefore, linear (convex) in their
nature. One could hope that exploiting the complex geometry of the fibers X, £ € 0D,
one could still get some positive results on the description of the polynomial hull of X
as Forstneri¢ did in [5] in the case of one dimensional fibers. See also [8]. In this paper
we give two examples, inspired by the example by Helton and Merino, [6], which show
that the so called continuity method for describing the polynomial hull of a fibration
over D, which was so successfully used by Forstneri¢ for n = 1, [5], fails even in the
case the complex geometry of the fibers is simple. See also {2].

THEOREM 1.1. There exists a smooth family of fibrations

== J (=2t (telo)
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in 8D x C? with the following properties:

1. for all t € [0,1] and for all £ € OD the interiors Q} of the fibers X}
are strongly pseudoconvex domains in C? with smooth boundaries, all
diffeomorphic to the ball and such that Q—é =X,

2. all fibers of the fibration X! are Euclidean balls in C?,

3. the family is strictly increasing in the sense that for all £ € 3D and for
all pairs t,7 € [0,1], t < 7, the inclusion

5 c g
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holds,
4. the fibration ©.° has the property that its polynomial hull is nontrivial,
but there is no H* analytic selection of the fibration X°.

THEOREM 1.2. There exists a smooth family of fibrations

2= | {x 2 (te(0,1)
¢€dD
in D x C? with the properties (1), (2) and (3) of Theorem 1 and with the additional
properties :
4. for every t € [0,1] and for every & € 8D there is a fixed small open ball
B, included in the interior Q} of all fibers ¥},
5. there is a point z, in the polynomial hull of £°, z, ¢ £°, through which
there is no graph of an H® analytic selection of %°.

2. BLOWING UP AN ARC
In this section we prove the following proposition.
ProrposiTION 2.1.
Let v be a smooth arc in R? C C?. Then there exists a smooth strictly plurisub-
harmonic function p on C? such that
(a) 7={z€C¥Hz) =0} = {z € C; VA(z) = 0} and
(b) there exists C > 0 such that for every ¢ > C the level set {z € C%; p(z) =
¢} is an Euclidean 3-sphere.

PROOF: Let f be any smooth nonnegative function on R? such that

(a) the zero set of f and the zero set of the gradient V f are both equal to
v and
(b) there exists an r, > 0 such that f(zi,z2) = 23 + 22 for 22 + 22 > 2.
Here the coordinates in R? C C? are z;,z; and the coordinates in C? are z; = z; +iy;

and 2; = 23 +1iy;. For A > 0 we define
pA(z1,22) = fz1,22) + Ay} +43) -

Then

(1) the zero set of py and the zero set of Vpy are both equal to the arc v
and
(2) the Levi form of the function p, is

1 (lea:l +2 lezz )

L = -
(p)‘) 4 f:lzz f:zzz -+ 2\
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where the notation f; - ; stands for the second partial derivative of the
function f with respect to z; and z;, 7,7 = 1,2.
Condition (b) on the function f ensures that if X is large enough, the function py is
strictly plurisubharmonic on C?. We fix such a A and denote the function py by p.
Let x : R — [0,1] be a smooth function whose support is contained in the interval
[~1, (o + 2)?] and which equals 1 on the closed interval [0, (r, + 1)]. Also, let g be a
smooth nonnegative function on R such that
(1) g(z)=0 for z < 72,
(2) ¢'(z) >0 and g"(z) > 0 for = > 72,
(3) p(z)x’(lzlz) + g'(|z|2) 20 for every z € C2.
For € € (0,1) we define

pe(z) = ex(12*) o) + 9 (12") (€ C?) .

If € is small enough, the function p is strictly plurisubharmonic on C? and its zero set
is the arc 4. We fix such an € and denote the corresponding function by p. Thus the
prcposition will be proved once we prove the following lemma.

LEMMA 2.1. The zero set of the gradient Vp is the arc 7.

PROOF: Let 2° = (z{ + iy?,23 + ty5) be a point where the gradient V3 is zero.
We consider the following three cases:

1. Case |2°| < 7,. Then p = ¢p in a neighbourhood of the point z° and thus
z° €.

2. Case |z°| > 7o + 2. Then p(z) = g(|z|2) in a neighbourhood of the point z°.
Since g'(z) > 0 for = > rZ, we get a contradiction.

3. Case r, < |2°] € 7o +2. The y components of the gradient Vp, that is, the
derivatives of p with respect to y; and y. at the point z are equal to

%(z) =2(dex(I21") + ep(alx' (11°) + ' (1) )3 (G =1,2).
Therefore, if Vp(2°) = 0, one concludes that since
1) dex(1a8) +ent2)x' (1217) + ' (121?) > e (p(a)x’ (1217) +9'(1217) ) > 0

on C2, it follows
v =y;=0.
Our initial assumption (b) on the function f and the fact that |2°| > 7, imply

fz1(23,22) = 227 and f,,(27,23) = 225 ..
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The z components, that is, the derivatives with respect to z; and z; variables, of the
equation Vp(2°) = 0, together with (1) give

8
-0

=z5=0.

Hence also the assumption r, € |2°]| < 7, + 2 leads to a contradiction and the lemma,
thus also the proposition, is proved. g

A more geometric interpretation of the above proposition is that for every simple
arc 7 in R2? C C? there exists a smooth family of strictly pseudoconvex domains

Q= {z € C*p(z) <t} (t€(0,0)),

in C? with smooth boundary which starts at +, is strictly increasing in the sense that
for each pair of parameters t < 7 the domain §2; is compactly included in the domain
2, and which ends at some large Euclidean ball. Observe also that since the gradient
V75 is nonzero except on 7 all the domains {2, ¢t € (0,00), are topological cells.

REMARK 2.1. If one is given a smooth family of simple arcs v¢, ¢ € D, in R? C C?,
then one can choose a smooth family of smooth functions f¢, £ € 8D, satisfying
conditions (a) and (b) for each ¢ € dD. Since the set of parameters is compact,
the functions x and g and the constants A and € can be chosen uniformly, that is,
independent of the parameter £ € 3D, and the corresponding strictly plurisubharmonic
functions p¢(z) vary smoothly in both variables ¢ and z.

REMARK 2.2. The above construction can be applied to any arc 4 in C? for which
there exists a holomorphic automorphism & of C? such that ®(y) C R2.

3. FIRST FAMILY OF FIBRATIONS

We consider now the following family of arcs in R? C C2. Let 74, be the semicircle
in R? given by the equation

2?4+22=1, z,20.
For ¢ € 0D we denote by R the map
R¢:C? — C?

defined by
R¢(2y,22) := (€21, 22) -
Observe that R is a linear isomorphism of C%. For ¢ € 8D such that 0 < arg (¢) < 7/2
or (3m)/2 < arg(€) < 2m let
Ye =N
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and for the parameters § € 8D such that 7/2 < arg(¢) < (37)/2 we smoothly perturb
the initial arc 7, to get arcs 9¢ which do not pass through the point (0,1) but they
still pass through the points (1,0) and (—1,0). For instance, for ¢ = e'* one may take
~e¢ to be defined by the equation

(1—p(s))’2} + 23 =(1-o(s))®, 2220,

where o : R — [0, 1) is any smooth function whose support is the interval {r/2,(3r)/2].
We define

Te:= R g(7e) -

Here by /€ we mean the principal branch of the square root, that is, «/—1 = 1. Since
we have 7; =71 in a neighbourhood of £ = 1 and since the arc v, is symmetric with
respect to the z;-axis, the family of arcs J¢, £ € 0D, is smooth. Using our initial
construction for an arc v C R? and Remarks 2.1 and 2.2, one gets a smooth family
of fibrations ¥, ¢t > 0, in 8D x C? such that for each ¢ the interiors of all fibers
are strongly pseudoconvex domains with smooth boundaries and for ¢ large enough all

fibers of £ are Euclidean balls centred at the point (0,0) with the fixed radius /2.
Also, for every pair t,7 € (0,00), ¢t < 7, all fibers of the fibration ¥* are included in
the interiors of the corresponding fibers of X7.

REMARK 3.1. Observe that by a theorem of Docquier and Grauert {3] the above prop-
erties of the family of fibrations £*, ¢ > 0, assure that the fibers of £* remain polyno-
mially convex for each parameter ¢ > 0.

To finish our example we first observe that since

(V&o0),(-v&0) e (¢coD),

the polynomial hull of £* contains the point (0,0,0) for all ¢ > 0. Finally we prove
the following lemma.

LEMMA 3.1. For t > 0 small enough there is no graph of an H™ analytic
mapping F : D — C? with boundary in the fibration ©* C 8D x C2.

PROOF: We prove the lemma for

2= J{x7%-

11322

Once this is proved the normal family argument finishes the proof of the lemma. Namely,
assume that there is a sequence t, | 0, n € N, such that for all n there exists an H*
analytic selection F,, for £ := Li». By the normal family argument there exists a
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subsequence of {F,}nen, still denoted by F,, which normally converges to an H*®
function F,. Then for every holomorphic polynomial p in three variables and every
z € D we have

[p(z, Fo(2))| = lim |p(z, Fa(2))| < Lim sup [p(z)| = sup |p(z)] -
n ™ zexn z€XO

The inequality follows because the discs F,, n € N, are analytic selections for the
fibrations ™, n € N, and the last equality is true since the family of fibrations Xt,
t > 0, is continuous in Hausdorff topology of compact sets in C?. Therefore the graph
{(z,F,(2)); 2 € D} is contained in the polynomial hull of £° and so F, is an analytic
selection of £°. Here we used the fact that all fibers of the fibration £° are polynomialy

convex in C2?.

Let us assume now that there is an analytic mapping
(f,9): D — C?

such that
(f(€),9(¢)) € 7¢ ( almost everywhere £ € 8D) .

Therefore the imaginary part of the function g almost everywhere on 8D equals to 0
and thus g is a constant function, that is, there is a real number a € [0,1] such that
9(§) = a for every £ € OD. Since the arcs 3¢ for 7/2 < arg(€) < (37)/2 do not pass
through the point (0,1) the constant ¢ has to be less than 1. But then for all £ € 6D

we have
((1/v8) £(6).a) €7
and so
f(€)? = (1 - @®)¢ almost everywhere dm(¢),
which leads to a contradiction. 0

4. SECOND FAMILY OF FIBRATIONS
Let vy C R2 C C? be the arc
2l +zi=1 220

as before. Let X; := + and let
Xf = R\/EXI -

Since again

(VZ.0),(-v&0) € X¢ (¢ € 0D)
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it is obvious that the polynomial hull of

X:= |J {&} x x¢

é€dD

contains the point (0,0,0).

LEMMA 4.1. Thereis no H*® analytic selection F : D — C? of X which passes
through the point (0,0).

PROOF: Let us assume that there is an analytic disc F' = (f,g) whose graph has
boundary almost everywhere contained in X and is such that F(0) = (0,0). This
implies, as in the previous section, that

9(§)=0 (¢€D).

Thus
f2(¢) = ¢ (almost everywhere ¢ € 8D) ,

a contradiction. 1

Since all fibers X¢, £ € 8D, of X contain the point (0,1), all fibers of the fibrations
*, t > 0, constructed similarly as the first family of fibrations, have the point (0,1) in
its interior. Finally, repeating the argument from the previous section shows that there
exists t, > 0 such that there is no analytic selection for the fibration % which passes
through the point (0,0). Details are omitted.
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