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Abstract. Recent high-resolution simulations together with theoretical studies of the dynamical
evolution of galactic disks have shown that contrary to wide-held beliefs a ‘live’, dynamically
responsive, dark halo surrounding a disk does not stabilize the disk against dynamical instabil-
ities. We generalize Toomre’s Q stability parameter for a disk-halo system and show that if a
disk, which would be otherwise stable, is embedded in a halo, which is too massive and cold, the
combined disk-halo system can become locally Jeans unstable. The good news is, on the other
hand, that this will not happen in real dark haloes, which are in radial hydrostatic equilibrium.
Even very low-mass disks are not prone to such dynamical instabilities.
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1. Introduction
The classical paradigm is that at given total mass of the system a galactic disk is

stabilized against local dynamical Jeans instabilities, if it is embedded in a dark halo.
This can be seen for instance from Toomre’s QT stability index for a stellar disk,

QT =
κσd

3.36GΣd
, (1.1)

where κ denotes the epicyclic frequency of the orbits of the stars, σd is the radial velocity
dispersion of the stars, and Σd the surface density of the disk. G denotes the constant of
gravitation. If all other parameters are kept constant, but Σd is lowered, QT rises and the
disk becomes more stable against Jeans instabilities. The physical reasoning is that the
self-gravity of the disk, which has a destabilizing effect, is reduced by the surrounding
halo. Similarly the onset of non-axisymmetric coherent large-scale instabilities of the
entire disk such as the bar instability was thought to be damped by a surrounding halo.
Ostriker & Peebles (1973) showed in their classical numerical simulations of the dynamical
evolution of a self-gravitating disk that the bar instability could be suppressed, if the
disk was embedded in a halo potential. However, modern high-resolution simulations in
which the surrounding halo is treated as a dynamically responsive system, have shown
that actually the opposite is true. Athanassoula (2002) showed that in her simulations
of the bar instability the bar grows stronger, if the disk is embedded in a live dark
halo rather than in a static halo potential. This was explained there and, particularly,
in Athanassoula (2003) as due to the effect of the live halo on the angular momentum
exchange within the galaxy. First doubts about an entirely passive role of the halo were
already raised by Toomre (1977). These findings were supported by theoretical studies
of the swing amplification of shearing spiral density waves which is also enhanced, if the
disk is embedded in a live dark halo instead of a static potential (Fuchs 2004, Fuchs &
Athanassoula 2005).
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Here we return to the severe local Jeans instability of a self-gravitating disk and inves-
tigate the effect of the presence of a live dark halo. In the next section we demonstrate
how Toomre’s concept of the QT parameter can be generalized in order to take into
account the effect of such a halo. In the final section we discuss implications for realistic
disk-halo systems (cf. also Esquivel & Fuchs 2007).

2. Modification of the QT stability index
We study the Jeans instability of an infinitesimally thin galactic disk using the model

of a patch of the galactic disk developed by Toomre (1964), Goldreich & Lynden-Bell
(1965) and Julian & Toomre (1966) (cf. also Fuchs 2001). The patch is assumed to rotate
around the galactic center and the differential rotation of the stars is approximated as
a linear shear flow. The surface density is assumed to be constant over the patch. Polar
coordinates are approximated by pseudo Cartesian coordinates (x, y) with x pointing in
the radial direction and y in the direction of rotation, respectively. Toomre (1964) has
calculated the dynamical response of the disk to a small ‘ring-like’ perturbation of the
gravitational disk potential of the form

Φkexpi(ωt + kx) (2.1)

by solving the linearized Boltzmann equation. The induced density perturbation can be
written in the limit ω → 0 as

Σke
ikx = −Σd

σ2
d

[
1 − exp

(
−k2σ2

d

κ2

)
· I0

(
k2σ2

d

κ2

)]
Φke

ikx , (2.2)

where I0 denotes the modified Bessel function and Σd the background surface density of
the disk, respectively. In deriving eq. (2.2) a Gaussian velocity distribution of the stars
with a velocity dispersion σd has been adopted. The disk is assumed to be self-gravitating,
so that the density – potential pair has to fulfill the Poisson equation implying

Φk = −2πG

|k| Σk . (2.3)

Equations (2.2) and (2.3) define together a line in a space spanned by QT and the
wavelength of the perturbation λ = 2π/k expressed in units of λcrit = 4π2GΣd/κ2 , which
separates neutrally stable (ω2 � 0) from exponentially unstable (ω2 < 0) perturbations
of the disk. The criterion that ensures that all perturbations are neutrally stable is the
famous Toomre criterion

QT � 1 . (2.4)

The model of a local patch of a galactic disk has been extended by Fuchs (2004) by
embedding it into a dark halo. All density gradients in the halo are neglected as in the
disk so that the halo density distribution is assumed to be homogeneous. The dark matter
particles follow straight-line orbits with an isotropic velocity distribution modelled also
by a Gaussian distribution. We can directly apply the results of Fuchs (2004). The dark
matter halo responds to the potential perturbation Φd in the disk and develops potential
perturbations Φh which have the same radial structure exp(ikx) as in the disk. From
eqns. (26) and (28) of Fuchs (2004) follows that the Fourier coefficients of the potential
perturbation in the halo at the midplane of the disk are given by

Φhk =
2πGρh

σ2
h

1
k2 Φdk , (2.5)
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Figure 1. Separation of stable from unstable perturbations of a self-gravitating disk embedded
in a live dark halo. QT denotes the usual Toomre stability index and λ is the wavelength of the
perturbation measured in units of λcrit . Unstable perturbations are located in the parameter
space below the dividing lines. Lines are shown for values of the β-parameter, which describes
the dynamical responsiveness of the dark halo, β = 0, 0.2, 0.25, and 0.3, respectively.

where ρh and σh denote the density of the dark halo and the velocity dispersion of the
dark matter particles, respectively.

This induced perturbation of the gravitational potential of the dark halo has to be
taken into account on the rhs of eq. (2.2),

Φk → Φdk + Φhk ∝ Φdk , (2.6)

which means that the halo supports the perturbation of the disk and the density per-
turbation in the disk is stronger than in an isolated disk. Combining eqns. (2.2) to (2.6)
leads to an implicit equation that describes the line of neutrally stable (ω = 0) pertur-
bations in the space spanned by QT and λ/λcrit as in the case of an isolated disk, but
now modified by the extra term given in eqns. (2.5) and (2.6). This can be cast into
dimensionless form as

αQ2
T =

[
1 − exp

(
− αQ2

T

(λ/λcrit)2

)
· I0

(
αQ2

T

(λ/λcrit)2

)]
λ

λcrit

×
(

1 + β

(
λ

λcrit

)2
)

(2.7)

with the parameters α = (3.36/2π)2 = 0.286 and β = (2πGρh/σ2
h) · (2πGΣd)2/κ4 .

In Fig. 1 we illustrate solutions of eq. (2.7) for various values of β. The case β = 0
reproduces Toomre’s classical (1964) result. The unstable perturbations (ω2 < 0) are
located in the parameter space below the line. Thus for QT � 1 all perturbations are
neutrally stable (ω2 � 0). This is no longer the case, if finite values of β are considered.
The graphs of the solutions shown in Fig. 1 always turn upwards at large wavelengths
λ. Thus at large enough wavelengths all perturbations of the disk – halo system become
unstable and grow exponentially. This behaviour is related to the Jeans collapse of the
halo component. Its Jeans length is given by λJ =

√
πσ2

h/Gρh or

λJ

λcrit
=

1√
2β

. (2.8)

In real haloes the Jeans length will be of the order of the size of the halo or even larger,
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Table 1. Local parameters of the Milky Way

Σd 38 M�/pc2 (Holmberg & Flynn 2004)
σd 40 km/s (Jahreiß & Wielen 1997)
κ

√
2 · 220 km/s/8.5 kpc (flat rotation curve)

ρh 0.01 M�/pc3 (Bahcall & Soneira 1980)
σh 220 km/s/

√
2 (isothermal sphere)

λcrit 4.8 kpc
λJ 39 kpc (β = 0.0078)

because otherwise the haloes would have collapsed to smaller sizes. Thus the inferred
instability of the disk – halo system on large scales seems not to occur in real galaxies.
As can be seen from Fig. 1 stability on small scales can be ensured by QT indices at
thresholds which are slightly larger than in isolated disks.

3. Discussion and Conclusions
As a first application of the stability criterion derived here we test the stability of the

Milky Way disk and the surrounding dark halo in the vicinity of the Sun. The local disk
and halo parameters listed in Table 1 imply QT = 2.8 and β = 0.0057, respectively. If we
include in our estimate the cold interstellar gas with a local surface density of 4M�/pc2

(Dame 1993) and assume a velocity dispersion of the interstellar gas of σg = 5 km/s,
which leads to a reduced mass weighted effective velocity dispersion of the combined
stellar and gaseous disks, the parameter values change to QT = 2.2 and β = 0.0078,
respectively. Equation (2.8) implies that λJ = 8λcrit = 39 kpc. Thus the Milky Way disk
and halo system seems to be very stable.

In order to explore in what range the β-parameter of spiral galaxies is to be expected,
we consider the model of a Mestel disk with the surface density Σd = Σ0 R−1 embedded
in a singular isothermal sphere representing the dark halo with the density distribution
ρh = ρ0 R−2 . The rotation curve of the model galaxy is given by

υ2
c (R) = υ2

d(R) + υ2
h(R) (3.1)

with the disk contribution υ2
d(R) = 2πGΣdR = const. and the halo contribution υ2

h(R) =
4πGρhR2 = const. (Binney & Tremaine 1987). From the radial Jeans equation,

1
ρh

dρhσ2
h

dR
= −v2

c

R
, (3.2)

follows immediately that the velocity dispersion of the dark matter particles is given by

σ2
h =

1
2
(υ2

d + υ2
h) , (3.3)

because the particles are bound by both the gravitational disk and halo potentials. We
find then

β =
υ2

h

R2

1
υ2

d + υ2
h

R2

4
υ4

d

(υ2
d + υ2

h)2 =
1
4

υ2
hυ4

d

(υ2
d + υ2

h)3 , (3.4)

which implies the maximal value

β � βmax(υ2
d = 2υ2

h) = 0.037 . (3.5)

This means that in realistic halo models its density cannot be increased, on one hand, and
the velocity dispersion of the halo particles lowered, on the other hand, indiscriminately,
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Figure 2. β-parameters of mass models of the low surface brightness galaxy F568-1.

because the halo has to stay in radial hydrostatic equilibrium. Equation (3.5) implies
λJ = 3.7λcrit . In order to ensure stability at smaller wave lengths the Toomre stability
index must be larger than QT � 1.02.

As another concrete example we analyse the dynamics of the low surface brightness
galaxy F568-1. De Blok et al. (2001) have observed its rotation curve and constructed
mass models for the galaxy. Using the parameters of the models with isothermal haloes
and with either a ‘realistic’ M/L-ratio of the disc or a ‘maximum-disc’, we have solved
numerically the radial Jeans equation for the dark matter particles. As shown in Fig. 2
the resulting β-parameters of both models are consistent with the above estimate.

We conclude from this discussion that embedded galactic disks are not prone to Jeans
instabilities, provided their Toomre stability index is a few percent higher than QT = 1.
From a practical point of view the destabilizing effect of the surrounding dark halo on
the Jeans instability of the embedded galactic disks seems to be negligible.
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