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1. In [2,5,6,7] a.o. several interpretations of the inequality

(1) 2 Pkf(qk) ^ £ Pkf(Pk)

for all

(2) pt > 0, qk > 0 (k = 1,2, •••, n) such that £ pk = I ^ = 1

were given and the following was proved.
If the inequality (1) is satisfied for a fixed n greater than two on the domain (2)

and if f is differentiate on the open interval ]0,1[, then and only then there
exist two constants a Si 0, b so that

(3) /GO = a log p + b for all p e ]0,1[.

We mention here only two interpretations. The first is the following. We ask
from an expert his estimations on a certain probability distribution (outcomes of
an experiment, market situation, weather, etc.). He gives this as (qi,q2,---,qn)
while his subjective probabilities for the same events are G>i,p2> "">£,.)• Suppose
that he agrees to be paid only after the outcome of the experiment (market situa-
tion, etc.) is known and that his payoff will be f(qk) if the fc-th event happens.
Then his expected earning will be

n

£ PkfiqO-

In order to "keep the expert honest" it seems wise (for the customer) to choose
the "payoff function" / so that the expert's expected earning will be maximal if
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he has given his subjective probabilities as estimates for the customer, i.e. so that
on the domain (2) the inequality (1)

n n

2 pj(qk. ^ 2 Pkf(Pk)

holds.
The other interpretation is connected with Shannon's inequality

n n

(4) - 2 pklogqk^- 2 pklogpk

on (2) which is rather important in coding theory [see e.g. 3]. The quantity on
the right is Shannon's entropy. One can ask which functions g satisfy, like in (4)
the negative logarithm, an inequality of the form

n rt

(5) 2 pkg(qk) ^ 2 pkg{pk)
k=l ; = 1

on (2).
Evidently, if a function g satisfies (5), then f=—g satisfies (1) and vice

versa, so the general (differentiable) solution of (5) on (2) for a fixed n > 2 is
given on]0, l[by

(6) g(p) = — a log p + b (a^0,b arbitrary constants).

With these g, the right-hand side of (5) still is the Shannon entropy up to a (non-
negative) multiplicative and an additive constant. So the above and the more
general theorem to be proved in this note are also characterizations of the Shannon
entropy.

We choose here to formulate the results in terms of (1) rather than (5). The
implications on (5) are obvious.

It has been conjectured in [1] and proved by Fischer in [4] that the condition
of differentiability can be discarded in the above result. Renyi has written but not
published a modified version of this proof. Since we think that Renyi's elegant proof
should be published to which his early death gives tragic actuality, and since we
have succeeded to further shorten and simplify his proof even in two different ways
and also to generalize it slightly (Renyi has supposed (1) for a fixed n > 2 and for
n=2, we do not need the latter), we give here these modified proofs. We mention
yet, that the same theorem was announced in [8] with credit given to Gleason,
but without proof and without the restriction n > 2 (without which it is not true,
a counter example being f(p) = 2p — p2, [for detailed discussions of the case
n = 2 see 2,4,9]). However, Gleason has sent (later than Fischer and Re"nyi, but
independently) a correct proof of the same theorem to one of the authors of the
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present paper. His proof was in many respects similar to that of Fischer and
Renyi, but longer.

2. We give now our two versions of the proof (they differ only in a few steps).

THEOREM. / / / satisfies the inequality

(1) I £k = l k-1

for one n > 2 and for all pltp2, ••-,/>„, q\.,q2, •">#« sucn

n n

(2) pk>0, qk>0 (k = l,2,-,n), £ Pk= Z qk=\,
k = 1 k = 1

f/zen and on/_y then there exist constants a}zO and b so that

(3) /(p) = a log p + b for all pe]0,1 [.

PROOF. We get by multiplying (4) by (— a) and by adding b that (3) (with
a 2: 0) satisfies (1) on (2). (The Shannon inequality (4) is a well-known consequence
of the inequality between the arithmetic and the geometric means: [3]). Our two
ways of proving that the validity of (1) on (2) implies (3) have their first steps in
common:

(i) / is nondecreasing,
while the second steps are different in the two proofs:

(iia) all Dini derivatives are equal in every point and

(7) pf'(p) = a (constant) a ^ 0 (p e ]0,1 [)
resp.

(iib) the function p *-+pD+f(p) is a nonnegative finite constant on ]0,1[.

PROOF OF (i). Put into (1) pk = q, (k Si 3) in order to get

(8) PiUbi) - / (P i ) ] ^ PiUiPi) - /fo2)]

for all Pi,p2,<li><l2 satisfying

(9) pL > 0, p2 > 0, qx > 0, q2 > 0, pt + p2 = qx + q2 < 1.

The conditions in (9) remain unchanged if we interchange the pair {Pi,p2)
With {q2,qi), so the inequality (8) remains true also if we write pt and p2 instead
of q2 and qx and vice versa:

(10) QiUiPz) ~/(«2)] ^ ?i[/(?i) - / (Pi)]-

Multiply (8) by q2 and (10) by p2 and compare the two inequalities. We get

(11) «2i>l[/(«l) " / (Pi)] ^

for all pu p2, qu q2 satisfying (9).
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M Pi < €i» t n e n (9) implies q2 < p2 so (11) will hold ill /(qj — ){px) 2;0.
Thus

(12) / ( P i ) ^ / ( « i ) i f P i < « i ,

that is,/is nondecreasing. The inequality (12) holds for all pl, q in ]0,1[, because
then p2,q2 can be found so that (9) be satisfied.Thus/is nondecreacing ;n]0,l[
and (i) is proved.

We will need two consequences of (8).
Put qi=Pi+S, q2=p2 — 3 into (8) and (9), in order to get, after division

by 3,

n,. „ / ( P , +S)- f(Pl) f(Pl) - f(p2 - 5)
(13) Pi ^ S p2—__

for all Pi,p2,S satisfying 0 < 3 < p2 and

(14) p1 + p2 < 1, pL >0. p2> 0.

Now put into (8) (and (9)) px = qY + 8, p2 = q2 - 3 in order to get, after
division by (— 3),

(15) (q2 - 3)

for all qu q2, 3 satisfying 0 < 3 < q2 and

(16) qL + q2 < 1, qt > 0, q2 > 0.

3. PROOF OF (iia) AND FIRST PROOF OF THE THEOREM. The function / , being
monotonic, is differentiable almost everywhere in ]0,1 [. Fix a point r e ]0, e[
(0 < e < 1) at which / is differentiable. We will prove that / ' exists and (7) holds
for every pejO, 1 — e[. Since e can be chosen as small as we wish, this will prove
(iia) for all peJO, 1[. But, for the time being, we have

(17) p + r < 1, p > 0, r > 0.

If we take px = p, p2 = ''{the ^equalities (17) assure that (14) is satisfied) and let
3 tend to 0 in such a manner that the lefthand side of U3) tend to its lim sup, then
we have

(18) pD+f(p) ^ rf'{r),

s ince/ is differentiable at r. (D + ,D~,D + ,£)_ denote the right upper, left upper
right lower, ieft lower Dini derivatives, respectively.) If, on the other hand, we
choose in (13) pL — r, p2 = p and let 3 tend to 0 so that the right-hand side tend to
its lim inf, i.e. to pD_f{p) then we get similarly

(19) rf'(r) ^ pD.f(p).
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Exactly the same manoeuvres as above, with (q2,Qi) instead of (pl,p2), lead
from (15) to

(20) pD-f(p) ^ rf\rj

and to

(21) rf'(r) ^ PD+f(p).

By combining (21) with (18), and (19) with (20) since by definition D+ ^ D + ,
D_ ^ D~, we have

rf'(r) ^ pD,J(p) ^ pD+f(p) ^ rf'(r)

and rf '(r) rg pD _f(p) £ pD -f(p) ^ rf '(r).

Taking into consideration that r was fixed, so rf'(r) = a (constant, nonnegative
since / is nondecreasing), we have proved (iia),

DJ(p) = D+f(p) = D.f(p) = D-f(p) = j ,

that is,/is everywhere differentiable and we have (7)

(22) f'(p) = ~

for all p e ]0,1 — a[ and, since £ is as small as we wish, for all p e ]0,1 [. Equation
(22) implies (3) which concludes the first proof of the Theorem.

4. The second proof does not depend on the fact that every monotonic
function is almost everywhere differentiable and it does not use any other result in
measure theory either. Instead it applies a more elementary theorem of Scheeffer
[10]. The proof proceeds to (8), (9), (13), (15) and to the nondecreasing mono-
tonicity of/ as above and then continues in the following way.

PROOF OF (iib) AND SECOND PROOF OF THE THEOREM.

Let 6\0 in (13) in such a manner that the right hand side tend toitslim inf,
i.e. to p2D-f(p2)- No cluster point of the left handside is smaller than its lim inf,
that is, than p^D+iXp^. So we have

(23) PiDM ^ P2DJ(p2)

for all plt p2 satisfying (14). Similarly, from (15) we get

(24) f

for all qu q2 satisfying (16). Comparing (16) with (14) we see that (24) remains
true if we replace qx by pL and q2 by p2. So we have

P2D-f(p2) ^

which, together with (23), gives
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(25) PiD+f(Pl) = p2DJ(p2)

for all pt, p2 satisfying (14).
Fix now p2 e ]0,e[, then,/being nondecreasing, (14) and (25) give for arbitrary

p = pl<=]0,l - e [

(26) pD+f(p) = a ^ 0 (constant)

on ]0,1 — e[ and, since e is as small as we wish, also on ]0,1[.

A priori a could be infinite. But then we would have from (25) and (26)

(27) DJ(p) = ao= D_f(p) on ]0,1[

and, even for arbitrarily large constants A,

(28) D+lf(p)-Ap-] = D+f(p)-A = oo = DJ(p)-A = D.{/(p)-Ap]

on ]0,l[,

in particular p *->f(p) — Ap would be increasing on ]0,1[.
On the other hand, for all A > 2/(3 /4) - 2/(1 /4) we have

which is impossible if p t+f(p) — Ap is increasing on ]0,1[. Thus (27) leads to a
contradiction and a in (26) is a finite constant, which concludes the proof of (iib).

Since D+f(p) is finite everywhere on ]0,1[, the same follows by (25) for
D_/(p). But then / must be continuous on ]0,1[ since a discontinuity of a mono-
tonic function is always a jump and there either D+f(p) of D_/(p) would be oo.

Further we have from (26)

(29) D+/(p) = 2)+(a log p) on ]0, l [ .

However, L. Scheeffer [10] has proved in a very elementary manner that the
continuity of/ and F and the validity of

D+f(p) = D+F(p)

(both finite) on an interval implies that there exists a constant b such that on this
interval

= F(p) + b.

So (29) implies (3) and our Theorem is proved again.
We have used above (after (28)) the fact that a function g is increasing on an

(open) interval I, if both

D+g(x) > 0 and D_g(x) > 0 for all xel.

For completeness sake we give here a proof of this proposition. If, for xx e / , we

k = D+g(Xl) > 0
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then there exists a 8 such that

(30) 9(Xl + h)
h ~

 g ( X l ) > A > 0, i.e. g(Xl + h)> g(Xl), whenever 0 < h < 5.

Similarly, D_g(x^ > 0 implies

(31) g(xi - h) < g{xi) whenever 0 < h <5.

We have to prove that for any xoel

(32) g(x) > g(x0)

whenever x > x (x c /). Let x, be the smallest number with the property that (32)

holds for all xe]xo,Xj[ c / . We prove that x, has to be the right extremity of / .

For else we had, by (30) and (31), for sufficiently small positive h,

9(x0) < 9(xi -h)< g(Xi) < g(xt + h)

contrary to the definition of x,. This concludes the proof of the above proposition.

We are grateful to Professor W. Walter for a comment which has helped us

to shorten the second version of the proof.
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