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Quantum phase estimation

The authors are grateful to Patrick Rall and Ronald de Wolf for reviewing this

chapter.

Rough overview (in words)

The quantum phase estimation (QPE) subroutine produces an estimate of an

eigenvalue of a unitary operator. It is a cornerstone of quantum algorithms

primitives and has numerous applications. For example, Shor’s algorithm for

factoring can be viewed as an application of QPE together with modular expo-

nentiation. Similarly, when combined with Hamiltonian simulation, QPE can

produce an estimate for an eigenvalue of a Hamiltonian (given an appropriate

initial state), an important problem in areas such as quantum chemistry. Gen-

erally, since quantum computations enact unitary operators, quantum phase es-

timation is an essential algorithmic tool for accessing information about these

operators, specifically, information about their periodicities, and the properties

of their eigenstates.

As one of the oldest quantum primitives discovered [624, 299], QPE has

played a significant historical role in the development of quantum algorithms.

In a typical use case, QPE is used as a first step to compute an estimate of the

eigenvalue of the unitary into an ancilla register. Then, the ancilla register is

used as a control for subsequent operations. However, in some applications,

such as Gibbs sampling and solving the quantum linear system problem, this

procedure must be applied coherently to a superposition of eigenstates with

different eigenvalues, and the estimate of the eigenvalue must be uncomputed

at the end. As discussed below, coherent usage of the QPE primitive in this

manner must be handled with care, due to several identified caveats. While

QPE still provides essential intuition for how these applications work, in some
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13. Quantum phase estimation 229

cases, modern techniques leveraging quantum signal processing and the quan-

tum singular value transformation [431] lead to a cleaner and more direct anal-

ysis than QPE.

In the discussion below, we begin with the textbook presentation of QPE

[299, 801], and expound on the aforementioned caveats. We also present exam-

ple use cases, noting the instances where QPE was originally a key ingredient

but no longer features directly in state-of-the-art solutions.

Rough overview (in math)

Let U be a unitary with eigendecomposition U =
∑

j ei2πϕ j |ψ j⟩⟨ψ j|. Given as

input the state |ψ j⟩, the QPE subroutine produces an estimate ϕ̂ j for ϕ j. The

algorithm requires the ability to apply controlled U2p

for non-negative integers

p. If ϕ j is an exact multiple of 2−P, then an exact estimate of ϕ j can be learned

with certainty using only p ∈ {0, 1, . . . , P − 1}. In general, an estimate ϕ̂ j of ϕ j

satisfying |ϕ j − ϕ̂ j| ≤ ϵ can be learned with high probability by taking the max-

imum value of 2p on the order of 1/ϵ. The algorithm also requires application

of an inverse quantum Fourier transform to orchestrate the constructive inter-

ference near the estimate for ϕ j. The quantum circuit for the standard approach

to QPE is shown in Fig. 13.1.

Phase estimation can also be applied coherently onto a superposition of

eigenstates. Suppose that the input state is |ψ⟩ = ∑
j α j|ψ j⟩. By linearity, if

each phase ϕ j is a multiple of 2−P and phase estimation is run with sufficient

resolution, then QPE enacts the following unitary

|ψ⟩|0⟩ 7→
∑

j

α j|ψ j⟩|ϕ j⟩, (13.1)

where |ϕ j⟩ holds a P-bit binary representation of ϕ j. If the auxiliary register

is measured—here assuming for simplicity that the eigenvalues ϕ j are

nondegenerate—then with probability |α j|2 (consistent with the Born rule) the

estimate ϕ j is obtained and the state collapses to the corresponding eigenstate

|ψ j⟩.1 If the phases ϕ j are not multiples of 2−P, an approximate version of

this operation can still be accomplished as long as the precision is sufficiently

small to resolve the eigenvalues, subject to some caveats (discussed below).

1 Alternatively, if ϕ j is known ahead of time (to sufficient precision), QPE can be wrapped

inside of amplitude amplification and the state |ψ j⟩ can be prepared using O(|α j |−1)

applications of the QPE circuit, rather than O(|α j |−2). Note that amplitude amplification can be
understood through the QSVT [431] formalism, and in many applications, such as projecting
onto the ground state of a Hamiltonian [688], one can achieve this sort of scaling directly
without explicitly relying on QPE.
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230 13. Quantum phase estimation

|ψ⟩ / U U2 U4 · · · U2P−1

|0⟩ H • · · ·

QFT−1

|0⟩ H • · · ·

|0⟩ H • · · ·
...

...
. . .

...

|0⟩ H · · · •

Figure 13.1 Quantum circuit implementation of QPE. The measurement out-

comes on the P ancilla qubits give a P-bit estimate of the phase ϕ j (correct up

to error O(2−P)) with high probability.

Dominant resource cost (gates/qubits)

The QPE subroutine is typically dominated by calls to the controlled unitary

U. If resolution ϵ is desired, one must perform controlled U2p

operations for

p ∈ {0, 1, . . . , ⌈log2(1/ϵ)⌉ + O(1)}; thus, the number of calls to a controlled U

oracle will be O(1/ϵ). This dependence on ϵ is optimal; the O(1/ϵ) scaling is

known as the Heisenberg limit.

In the context of estimating the eigenenergy of a Hamiltonian H, one can

choose U = eiH , and then implement controlled U t, that is, controlled eiHt, with

Hamiltonian simulation. In this case, given the ability to prepare an eigenstate

of H, an ϵ-approximation of the eigenvalue requires values of t up to O(1/ϵ).2

However, one must also factor in the error in the Hamiltonian simulation. In a

typical setting, access to the n-qubit Hamiltonian is given through a linear com-

bination of L unitaries, for instance, Pauli matrices. Let ∥H∥1 denote the sum of

the coefficients in the combination. Then, methods for Hamiltonian simulation

based on quantum signal processing can approximate eiHt to error O(ϵ) with

O(nL(∥H∥1t + log(1/ϵ))) gate complexity, whereas methods based on product

formulas incur cost O(nL(∥H∥1t)1+1/2kϵ−1/2k) for (2k)th-order product formu-

las, although the actual cost can be lower after accounting for structure in the

Hamiltonian terms. Balancing the error from phase estimation against the error

from Hamiltonian simulation can cause sub-Heisenberg-limited performance,

such as in the case of the product formula approach. The overhead associated

with imperfect Hamiltonian simulation can be avoided by applying QPE to

different functions of H; for example, a promising choice is the qubitization

2 The fact that learning energies to greater precision requires a proportionally greater amount of
time t is a manifestation of the energy-time Heisenberg uncertainty principle, and forms the
origin of the term “Heisenberg limit.”
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13. Quantum phase estimation 231

operator, which acts in a similar way to U = ei arccos(H/α), where α is the nor-

malization factor of the qubitization operator. The reason this is advantageous

is that the qubitization operator can be implemented exactly given access to

a block-encoding of H [717, 841, 139]. In general, we require the unitary U

on which phase estimation is performed to be a known, classically invertible

function of the Hamiltonian U = f (H). The complexity of QPE depends on

the desired uncertainty in the energy eigenvalue, which can be related to the

uncertainty in the measured eigenphase via the magnitude of the derivative of

the function, ∥ f ′(·)∥.
The number of qubits for QPE is simply the size of the register needed to

hold the input state |ψ j⟩ plus the size of the register needed to hold the estimate

ϕ̂ j (i.e., roughly ⌈log2(1/ϵ)⌉ bits). Additionally, QPE requires an inverse quan-

tum Fourier transform (QFT), which (using the textbook QFT implementation)

adds only O(log2(1/ϵ)) additional gates to the protocol.

Another version of QPE [627] achieves the same task with only a single

ancilla qubit, but, as a result, learns only one bit of the output at a time. Ad-

ditionally, it requires an exact eigenstate as input. The latter problem can be

avoided using a statistical approach [690, 1013].

Caveats

The main caveats of QPE are related to the fact that eigenphases are not always

exact integer multiples of 2−P, resulting in noncertain outcomes of QPE, which

can lead to complications in certain applications.

• Fat tails and boosting of success probability: Whenever the phases ϕ j are

not exact integer multiples of 2−P for some integer P, phase estimation

will not return the answer ϕ j with certainty. Rather, there will be a dis-

tribution of possible estimates ϕ̂ j that is peaked near ϕ j. If one chooses

P = ⌈log2(1/ϵ)⌉ + O(1), then most of the probability mass of this distribu-

tion lies within ϵ of ϕ j. As P is increased further, the distribution becomes

more sharply peaked near ϕ j, and if an ϵ-accurate estimate with 1 − δ prob-

ability is desired, one must take P = ⌈log2(1/ϵ)⌉ +O(log(1/δ)), correspond-

ing to a multiplicative O(1/δ) overhead in the query complexity to U and

O(log(1/δ)) additional ancilla qubits. This poor δ dependence is due to “fat

tails” on the distribution of estimates of ϕ̂ j. One way to avoid this overhead

is to take the median of estimates obtained from O(log(1/δ)) repetitions of

QPE [792, Lemma 1]. A downside of this approach is that it may be diffi-

cult to implement coherently on a superposition of eigenstates, in the sense

of Eq. (13.1), since computing the median would require a coherent quan-

tum sorting network. An alternative way to circumvent the fat tails problem
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232 13. Quantum phase estimation

is to modify the QPE protocol to have a nonuniform superposition in the

register that controls applications of U; a judicious choice of superposition

leads the distribution over estimates ϕ̂ j to be a Kaiser window (see [143, Ap-

pendix D] and [144]) or discrete prolate spheroidal sequence (DPSS) func-

tion [829], which minimizes the probability of deviating from ϕ j by more

than ϵ. See also [260], where a Gaussian profile is used to suppress the tails.

Boosting the success probability to 1 − δ in this fashion incurs multiplica-

tive O(log(1/δ)) cost, rather than O(1/δ). The overall cost in queries to U by

these methods matches a lower bound of Ω(ϵ−1 log(1/δ)) shown in [736].

• Performing coherent QPE: When ϕ j are noninteger multiples of 2−P, the co-

herent operation in Eq. (13.1) cannot be straightforwardly performed with

exact fidelity. This is because for each value of j, the second register will

be in a superposition of many values of ϕ̂ j (most but not all of the ampli-

tude will lie on estimates close to ϕ j). To restore coherence, one might try

coherently rounding the estimate ϕ̂ j onto a coarser net of grid points (and

then uncomputing the original estimate ϕ̂ j); however, there will always be

edge cases where ϕ j falls very near the midpoint between two grid points

and rounding destroys some of the coherence in the input. This is true even

as the precision of QPE is taken to zero (ϵ → 0). See [854] for a discussion.

One possible way to mitigate this issue is presented in the “consistent phase

estimation” protocol of [975, Section 5.2], where a random shift is applied to

the grid points to avoid this situation for any particular eigenphase with high

probability. However, this does not generically work simultaneously for all

eigenphases. In [854], it is shown that performing the map of Eq. (13.1) is

impossible without a “rounding promise” on the set of eigenphases {ϕ j}.
• Biased estimator: A further consequence of the noncertainty of the QPE

output is that the estimate ϕ̂ j is biased; that is, its expectation value is not

exactly equal to ϕ j. This issue can also be fixed with a random shift idea,

yielding an unbiased (and symmetrically distributed) version of QPE [691,

49].

Example use cases

• In quantum chemistry and condensed matter physics, QPE can be used to

measure the eigenvalues (and especially the ground state energy) of the

Hamiltonian H, which gives knowledge about reaction mechanisms, stable

configurations, and other equilibrium properties. For QPE to succeed, a trial

state |ψ⟩ with substantial overlap with the eigenstate of interest must be in-

put to QPE, which is challenging in the general case. The problem of ground

state preparation has garnered intense study, and state-of-the-art techniques

do not always follow the textbook method that relies on the QFT, presented
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13. Quantum phase estimation 233

above. For example, quantum signal processing can be leveraged directly

to filter out unwanted eigenstates [689, 688], effecting a similar outcome as

QPE.

• In Shor’s algorithm, given a composite integer N and a (randomly chosen)

base x < N, QPE is used to determine the order of x, that is, the minimum

integer r for which xr ≡ 1 mod N, which is in turn used to infer the prime

factors of N. Here, the unitary U is the modular multiplication unitary that

sends |y⟩ 7→ |xy mod N⟩.
• In amplitude estimation [186], given a unitary U that prepares a state

U |ψ0⟩ = a|ψg⟩ + b|ψb⟩, QPE is used to estimate |a| or |a|2. More advanced

approaches to amplitude estimation not relying on QPE have since been

developed. These leverage Grover’s algorithm, or more generally quantum

signal processing, without using the QFT. While these do not surpass the

QPE-based method in asymptotic complexity, they potentially offer other

benefits, such as improved practical performance and versatility. See [855]

and references therein.

• In the Monte Carlo–style quantum algorithms for Gibbs sampling of quan-

tum (i.e., nondiagonal in the computational basis) Hamiltonians, roughly

speaking, the quantum state undergoes a random walk on the eigenbasis

of the Hamiltonian. Steps of this random walk are accepted or rejected ac-

cording to how much the energy changes at each step. The QPE subrou-

tine is used to simultaneously (approximately) project onto the eigenba-

sis of the Hamiltonian and to produce an estimate of the energy, used to

determine whether the step should be accepted or rejected. Early studies

[984, 1076, 1048] of this approach were hampered by the caveats related to

rejecting quantum states and imperfect energy estimates, but recent works

[856, 260, 259] circumvent these problems (by randomizing the grid points

or completely abandoning phase estimation).

• To follow the ground state |ψ0(s)⟩ of a Hamiltonian H(s) as some param-

eter s is varied from 0 to 1, one can run the adiabatic algorithm. Alterna-

tively, one can consider a discretization of steps st ∈ {s0, . . . , sT }, where

0 = s0 < s1 < s2 < · · · < sT−1 < sT = 1, and run QPE on H(st) in succes-

sion, each time causing a measurement in the eigenbasis of H(st). Due to the

quantum Zeno effect, as long as sufficiently small steps are taken, each pro-

jection will be onto the ground space with high probability (see, e.g., [944]).

Larger steps can be tolerated if one boosts the probability that each step suc-

ceeds with amplitude amplification [162]. This approach is similar to the

idea in Hastings’ short-path algorithm [505, 329], which solves combina-

torial optimization problems. However, note that modern implementations

along these lines would likely elect to perform the ground state projection
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234 13. Quantum phase estimation

via eigenstate filtering [689] or related QSVT-based methods, rather than

QPE.

• While state-of-the-art quantum linear system solvers (QLSSs) do not explic-

itly use QPE, the original QLSS by Harrow, Hassidim, and Lloyd [500] uses

QPE to coherently measure the eigenvalues of a matrix A into an auxiliary

register. These eigenvalue estimates are subsequently inverted with coherent

arithmetic in order to produce the state A−1|b⟩ corresponding to the solution

to the system Ax = b. Achieving optimal asymptotic performance requires

additional ingredients beyond QPE, and is best understood through the lan-

guage of block-encodings and quantum linear algebra. This framework al-

lows for manipulation of eigenvalues without explicitly reading them into

an ancilla register with QPE.

• In certain machine learning tasks related to linear algebra, such as principal

component analysis [708] and recommendation systems [608], quantum al-

gorithms have been proposed that leverage QPE to access the information

about the eigenvectors and eigenvalues. As explained in [854], these have

not always fully accounted for the caveat related to coherent QPE, although

typically these caveats can be circumvented using the framework of quan-

tum linear algebra [248, 431].

Further reading

• The standard circuit and analysis of QPE appears in Nielsen and Chuang

[801]. See also [299].

• Many variants of the QPE algorithm have been explored, which can be supe-

rior to the standard version in certain settings. See, for example, [854, 690]

for additional references and informative overviews of various methods,

along with their advantages and drawbacks.

• Reference [687] contains a pedagogical overview of QPE including some of

its variants and applications.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.216, on 27 Jun 2025 at 07:48:16, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.016
https://www.cambridge.org/core

