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ABSTRACT. 

We give an overview over the theory of geometrically thin a-accretion disks: further we introduce 
the two different proposed mechanisms that can cause outbursts of accretion disks: and finally we 
compare the results of these models applied to symbiotic stars (=SS) . 

1. INTRODUCTION. 

Accretion disks were invented almost a quarter of a millennium ago: In 1755 Immanuel Kant 
explained the origin of the solar system by a model that we today would call an accretion disk model. 
The main principles behind accretion disks, namely the inward transport of matter with outward 
transport of angular momentum, were formulated by von Weizsacker (1943) and, especially. Lust 
(1952). It took another two decades until accretion disk physics made the next major step forward: 
in 1973 Shakura and Sunyaev introduced the so-called a-accretion disks. We shall follow the line of 
this model and its approximations in presenting the basic physics of accretion disks in Sect. 2. 

While this ansatz was successful in describing the overall behaviour of accretion disks, especially 
in dwarf nova systems, there remained the problem of the outbursts or active phases of these systems. 
As early as 1972 and 1974, Bath, and Osaki. resp., proposed two different models. While in Bath's 
description the outburst takes place in the envelope of the companion star (an instability there leads to 
a strong increase in the mass transfer rate; what we observe is this material being processed through 
the disk), in Osaki's picture an essentially constant mass transfer feeds an unstable accretion disk 
(matter first stored in the outer regions of the disk, is released by a - then unknown - instability 
and processed through the disk). Meyer and Meyer-Hofmeister (1981) found an instability with the 
properties required by Osaki's model. In Sect. 3 the different possible outburst mechanisms are 
discussed. 

The application of accretion disks to and their outburst behaviour in SS was analyzed by several 
authors (Bath. 1977; Bath and Pringle. 1982; Plavec. 1982; Kenyon and Webbink, 1984; Kenyon, 
1985, 1986; Duschl, 1985a, 1986a. 1986b; among others). We are discussing SS with a characteristic 
behaviour like CI Cyg. Z And, or AR Pav. In Sect. 4 we shall describe the present situation and 
compare the different models for SS. An independent indication that accretion disks exist in SS comes 
from the observations of for instance bipolar outflow (Solf, 1984). 

2. ACCRETION DISKS ... 

In this Section we give a concise overview over accretion disk physics; for a more detailed treat-
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ment, and for original references we refer to Frank et al. (1985). 
We treat the accretion disk in a cylindrical coordinate system {a,z,<p}. and introduce a radial 

distance r = y/s2 +z2. The structure and evolution is described by the continuity equation, the 
Navier-Stokes-equations. and equations for the energy transport. In the following we first present 
these basic equations and introduce the relevant quantities (2.1.): then we discuss the commonly used 
approximations [thin a-dlsk theory) (2.2.); in the next paragraph (2.3.) we shall describe the set of 
resulting equations that are actually solved; and finally the results for stationary disks are presented 
(2.4.). If not stated otherwise, we use cgs-units. 

2.1. Basic equations. 

2.1.1. The continuity equation. 

f + P-Yv = o , (l) 
where p is the matter density, t the time, and v the velocity vector. 

2.1.2. Navier-Stokes-equation. 

= _Y*-i(vP+V0), (2a) 
dt 

P being the pressure, and 0 the viscous stress tensor (see e.g. Landau and Lifshitz. 1959). The 
gravitational potential <& is that of a point mass, M: 

We assume the gas to be an ideal one (Pg: gas pressure), and take into account radiation [Pr). With 
the temperature T. and the molecular weight n we get (5R is the gas constant.) 

• = P. + P r - m + ±.T*. (2c) 

2.1.3. The Energy Transport Equation. 

! _ _ £ . V » - i . ( ( 6 v ) v - V , ) . (3a) 

e is the specific internal energy, and q the heat flux vector. After Baker and Kippenhahn (1962) we 
take e to be 

e = | ' 7 ( 2 - / 5 ) , (3b) 

with f) being the gas pressure in units of the total pressure: 

\ • (3c) 

The heat flux , q, consists of a radiative (qr) and a convective (qc) part: 

q = q_r + <\c • (3d) 

For the radiative part we use the diffusion approximation, and for the convective contribution the 
mixing length formalism as described by Kippenhahn et al. (1967). 
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2.2. Approximations. 

2.2.1. Symmetry. 
We assume the accretion disk to be symmetric in azimuth, i.e. in the ^-direction, and in the 

z-direction. 

2.2.2. Mass of the disk. 
The mass of the accretion disk shall be negligible compared to the central mass (M); only this 

justifies a) taking (2b) for the potential, and b) neglecting selfgravitation in the vertical direction. 

2.2.3. Velocities in the disk. 
Velocities in the vertical, i.e. z-direction are neglected: which is equivalent to assuming that 

equlibrium in this direction is always reached on time scales shorter than the ones we are interested 
in. 

The influence of pressure on the horizontal disk structure shall be very small compared to that 
of gravity: 

8P 3 $ 

as da ' 

this means v, <.vv. We further assume that the velocities do not vary in the z-direction, i.e. 

2.2.4. Surface density, vertical scale height. 

The time dependent evolution of the disk will be evaluated only for the equations integrated in 
vertical direction, and a surface density, E, is introduced: 

•-F 
J—( 

p dz . (5a) 

Futher a vertical scale height, h. is defined, where p is the density averaged in z-direction: 

2.2.5. Time scales. 
Lightman (1974) has shown that in geometrically thin accretion disks the longest time scale is 

that over which variations due to viscosity occur. Only processes which run on this time scale are taken 
into account: this means that all other processes are regarded as reaching equilibrium instantaneously. 
During outbursts also processes on shorter time scales are included, if important. 

2.3. Resulting Equations. 

Applying the approximations described in Paragraph 2.2. to the equations introduced in Paragraph 
2.1. gives the set of equations to describe the stationary structure and time dependent evolution of 
a-accretion disks. 

2.3.1. Stationary accretion disks. 
For a (constant) mass flow rate, M. one gets from the continuity and Navier-Stokes-equations 

(subscripts s,z, and <p denote the components of the vectors/tensors in the respective directions: in 
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brackets we give the results for an even simpler approximation where integrations and differentiations 
with respect to z are replaced by multiplications with, and divisions by, h, resp.): 

/

oo 

p dz (= - 2 • •* • s • £ • v,) 
-oo 

GM 

(6a) 
M • s • vv = 2 • x • s2 • / e , p dz + I ( » 2 • JT • s2 • 0 , ^ • (2 • h) + l\ , 

J — oo 

( „ s / i - n 2 \ dP^ = _Gj_M_ z_ ( „ S / i - n 2 > 

I is the net flux of angular momentum; M and / are determined by boundary conditions. In all models 
we give M as the mass inflow rate at the disk's outer boundary, and assume no net flux of angular 
momentum, i.e. 1 = 0. 

In geometrically thin accretion disks heat flows predominantly in the vertical direction, i.e. 

q « ?« • e_* , (6b) 

where ez is a vector in the z-direction of unity length. From Eqs. (3) we get: 

dz ' v da ' 

• qz , for radiative energy transport 
Z 
p 

where Vc o„„ is the convective gradient, K the opacity, and f l = vv/s the angular velocity. 

(6c) 

P • |? • Vc o„„ , for convective energy transport. 

2.3.2. Time dependent evolution of accretion disks. 
The evolution of the disk is described - under these approximations - by a diffusion-type equation: 

an 3 d ( r a , r ,.\ n 

with the normalized stress tensor element integrated in vertical direction, 

' - F n - / . " 6 " * - (7b) 

2.4. Stationary accretion disks. 

2.4.1. Material functions. 
In order to solve Eqs. (6) we have to define a set of material functions; for our models we use: 

e.„ = a • P , 
(8) a = min I 0.05, 5 • f - j J . 

We choose a following Meyer and Meyer-Hofmeister (1983). but introduce also a satuaration value 
(Duschl. 1986a). The exact values in the a-prescription were chosen to give the best fit to the observed 
time scales. 
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Figure 1: The mass transfer rate as function of the surface density for different distances to the 
accretor. 
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Figure 2: The different domains of energy 
transport, viscosity parameter, and main contribu­
tors to the opacity, for a typical case ("H" indicates 
the region of ionization/recombination of hydrogen, 
"H20" the domain of disintegration/formation of 
water). 

We take K from Cox and Stewart (1969) for 
logT > 4. and Alexander (1975) for logT < 3.8; 
in between we interpolate between the two sets 
of tables: the chemical composition is taken to be 
X = 0.739, Y = 0.240. The specific heat is cal­
culated as described by Kippenhahn et al. (1967) 

for the regime of the Cox and Stewart-opacities, and taken from tables by Sharp (1981) for the lower 
temperatures. For the molecular weight we follow Kippenhahn et al. (1967), and Alexander (1975). 
resp.. The central accreting mass is assumed to be one solar mass. 

Figs. 1 show the surface densities for different radii and mass transfer rates. Tickmarks on 
the log I! — log Af-curve mark the points where the saturation value of a is reached; for higher mass 
transfer rates a is constant; at the two largest radii (1012, and 1012,6cm) the entire curve shown has 
a constant viscosity parameter. 

In Fig. 2 the different domains are indicated for a characteristic radius. 1 0 u cm. The saturation of 
the viscosity was already discussed above. The two distinct S-shaped features in the curve result from 
strong changes of the opacity within a comparatively small temperature range: at about M = 10- 7-2 

M© jyr it is due to the ionization/recombination of hydrogen, while at around 10~8,a M© /yr it is due 
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to the formation/disintegration of the water molecule. These S-shaped features indicate the regions 
of the disk instabilities. 

The resulting accretion disks a) are geometrically thin, and b) have negligible mass compared to 
M. so that the approximations introduced above are justified. In contrast to the results for dwarf 
novae the accretion disks in SS are always optically thick. 

3. ... AND THEIR OUTBURSTS ... 

There are basically two different reasons why accretion disks may show outbursts: Either the 
mass inflow into the disk changes strongly, or - at an essentially constant inflow rate - there exists 
an intrinsic instability in the disk. 

Integrating the energy equation (6c) in the vertical direction and introducing an effective tempe­
rature. Tejj. one obtains locally a relation between TCJJ and M: 

4 _ 3 GMM 
'•r'"-8T"-~15 • I9) 

i.e. the higher the local mass flux, the higher is the corresponding temperature. This shows that an 
outburst has to be associated with an increased mass flow - at least somewhere in the disk. 

The remaining, but crucial question is which physical reason stands behind the increase in M. 

3.1. The mass transfer instability ( = M T I ) . 

Bath proposed in 1972 that actually the instability is situated in the atmosphere of the companion; 
because of such an instability the mass overflow to the accretion disk may vary quite strongly, and 
cause thus the outbursts. Although there seem to exist some problems (Gilliland. 1985) the question 
whether such an instability exists or not is not settled as yet (Bath, 1975; Edwards, 1985: among 
others). 

In the following we shall not deal with the question how such an increase of M can originate, but 
take for the time being the optimistic point of view that some suitable mechanism exists. 

Eq. (7a) allows us to define an accretion time scale, Taccr. that describes the time within which 
variations of the mass flow at some radius - because of whatever reason - reach the inner edge of the 
disk due to viscous transport: 

Taccr = ~ , (10a) 

where we used the fact that according to Eqs. (6a) (integrated in the z-direction) 

Comparing the fastest changes in the observed light curves with raccr, one obtains a lower limit 
for the viscosity parameter a , as variations on time scales shorter than roccr cannot be caused by a 
viscous process that involves large parts of the disk. Further the definition of a gives an upper limit 
for it as one expects turbulence to be sub-sonic (assuming that the length scale of the turbulence is 
of the order of the smallest length scale in the disk, the vertical scale height h): 

a > 1 . (10c) 

Bath and Pringle (1982) find that the M T I model needs a •)£. 0.2 to be capable of reproducing the 
light curves of SS. For smaller a, raccr becomes so large that not even a step-like change of M at the 
outer edge suffices to reproduce fast modulations of the luminosity. 
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The results of model calculations for SS in the framework of the MTI will be presented and 
discussed in Sect. 4. 

3.2. The disk instability (=DI). 

Meyer and Meyer-Hofmeister (1981) were the first to calculate the stationary vertical disk struc­
ture with a realistic description of the energy transport a n d the opacity. They realized that an 
instability as proposed by Osaki (1974) may exist since in some regions Lightman's (1974) stability 
criterion 

i - <«> 
is violated. (The exact form of this condition depends on the choice of I (see Eq. (6a)): for I as 
chosen here, Eq. (11) is exact, for other / the principles of this reasoning do not change.) 

The calculations presented in Figs. 1 and 2 show that for a certain range of M and s condition 
(11) is violated. The resulting behaviour of the disk is shown in Fig. 3. 

Figure 3: 77ie limit cycle ABCD in an unstab­
le disk (the Figure is taken from Meyer and Meyer-
Hofmeister s (1981) models for dwarf novae; in ad­
dition to mass flow rate and surface density, it also 
shows the viscosity integral (Eq. (7b)). 

If at some radius the stationary solution lies 
on an unstable branch, we shall instead have a limit 
cycle type evolution of the disk. This will influence 
neighbouring regions thus leading to a cooling or 
heating front moving through the disk. "Cooling 
(heating) front" means that the transition from the 
stable branch with high (low) local mass flow, i.e. 
effective temperature, to the other stable branch is 
initiated. Such a front can move through the disk 
until it reaches zones where for the involved range 
of M only stable solutions exist. Meyer (1984) 
has discussed their behaviour in detail; other aut­
hors used slightly different physical and numerical 
approximations to describe this phenomenon (see 

-to 

- i i 

log I 

e.g. Faulkner et al., 1983; Mineshige and Osaki. 1983, 1985; Papaloizou et ai. 1983; and others). 
Such fronts move through the disk with a velocity that is of the order of the sound velocity of 

the front's final state times the viscosity parameter a. Thus one can define a time scale, r/,a. that 
describes within which timespan a front can change the energy output of an accretion disk markedly 
(a stands for c or h. which again stand for cooling, or heating front, resp.): 

T/.a = a • c, (Ta) ' 

The (relatively) thinner an accretion disk, the shorter is T/ compared to ra, 

(12a) 

y = - • (12b) 

the type of the front determines h. 
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So in the Dl model one can reproduce variations on shorter time scales than is possible with the 
MTI model, i.e. has a larger allowed range of values of a. although M is kept constant. On the other 
hand the rise and the decay time are related to each other (Eq. (12a)). With TJ+ being the rise, and 
Tf- the decay time scale, we get: 

Tf- ah • \J%, 
(12c) 

Here we introduced the possibilty that the hot and the cool state may have different values of the 
viscosity parameter as is indicated from dwarf nova models (e.g. Meyer and Meyer-Hofmeister, 1983: 
Mineshige and Osaki. 1983: Smak. 1984). A further restriction arises from the timescale within which 
outbursts follow each other. One expects the disk to be refilled after an outburst within the accretion 
time scale of the cool state, so the typical repetition time scale of outbursts. r 0 „ t . is 

W = f ^ - (12d) 

All these arguments are only of the order of magnitude type but are shown to be reasonably 
accurate by numerical models that will be discussed later. 

There are obviously stronger restrictions on the parameters in the Dl model than there are in 
the M T I model. The reason is that in the latter one is free to choose any suitable form for the 
mass overflow rate as one cannot give a selfconsistent physical model for the actual form as yet. In 
contrast to that, in the Dl model these restrictions come from the physical processes that determine 
the outburst: this means that the Dl model has a higher degree of selfconsistency compared to the 
MTI model. In this sense the higher degree of freedom in the latter ansatz actually results from the 
partial lack of a physical description, rather than being model inherent. 

4. ... IN SYMBIOTIC STARS. 

In the following we shall discuss the two outburst models and their application to SS; for the 
details we refer to the papers by Bath and Pringle (1982; MT I ) . and Duschl (1985a, 1986b; Dl). 

4 .1 . The accretor: main sequence star vs. white dwarf. 

The first question is whether one expects a main sequence star, or a white dwarf to be the 
accreting object. Integrating Eq. (9) one gets for a stationary accretion disk a luminosity, L, of 

r G MM 
L = , (13) 

where s« is the radius of the accreting star. One can deduce from this for both cases some average 
accretion rates: in the case of a white dwarf these would be smaller by a factor of the order 102. 
According to Eq. (10a) we have Taccr oc T~,\, estimating the relation between temperature and mass 
inflow at the (here relevant) outer radius of the disk (that does not depend on the central object) we 
find that Tejj oc Af 1 / 4 . This would be equivalent to a higher accretion time scale for a white dwarf 
accretor. We give as an example the following numbers (s0: outer radius of the disk): M = M© ; 
s, = RQ: s0 = 101 2 cm; L = 103 6 erg/a, and a = 1. and get an accretion time scale of the order 
one year, while for a white dwarf we would reach already several years, which is definitely too long. 
As we have natural upper limits for a and M (white dwarf), and observed values for L. the only way 
out would be a much smaller s0. From the observed orbital periods of SS, and from the relative sizes 
of accretion disks in dwarf novae (e.g. Smak, 1982), we regard that as very unlikely. This argument 
only uses T^^ and thus applies strictly only to the M T I . But similar arguments are true for r0„t. So 
both models point strongly towards a main sequence accretor. 

https://doi.org/10.1017/S025292110010329X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110010329X


145 

This is in agreement with the analysis of spectra of SS (e.g. Mikotajewska and Mikotajewski, 
1983: Kenyon and Webbink. 1984: Kenyon. 1985. 1986; for a more detailed compilation see Kenyon. 
1986). 

4.2. The MTI ansatz. 

Figure 4: The evolution of the mass transfer 
rate for CI Cyg in the model calculations by Bath 
and Pringle (1982); the Figure is taken from their 
paper. 

Bath (1977). and Bath and Pringle (1982) in­
vestigated how far the MTI model is capable of 
reproducing the lightcurves of SS. They chose CI 
Cyg as their example. In Figure 4 we show the 
evolution of the mass transfer rate they needed for 
their best fit of the lightcurve. Their model di­
mensions were the following: Af=M© ; a, = RQ] 
30 = 8.5 • 1012 cm: a = 1. They find good 
agreement with the observed lightcurves. But there 
remains a problem with the evolution of the mass 
transfer rate which this model needs to reproduce 
the lightcurves: a) The minimum mass overflow 
rate between outbursts has to vary itself by more than order of magnitude within few orbital periods; 
this could be attributed to long term variations in the companion's atmosphere, so that it does not 
seem to be a serious problem, although it is a remarkable feature in the evolution of the transfer rate; 
b) The structure of the bursts of M itself varies; while most bursts show a very sharp increase over 
several orders of magnitude, followed by a much shallower decline, at least for some cases the opposite 
configuration is necessary: this points towards two different types of instabilities being needed in the 
companion star's envelope (which remains to be explained). 

The basic assumption of the disk theory presented here is that the disks are geometrically thin: 
as stated by Bath and Pringle, during the maxima of the outbursts this becomes a poor approximation 
as the disk's thickness reaches values of a third of the distance to the accretor, i.e. the neglected 
quantities (which are of relative order (h/s)2) are less than an order of magnitude smaller then those 
taken into account, so one is at the limit of the applicability of the theory. This latter statement is 
also true for the Dl ansatz. 

4.3. The Dl ansatz. 

Duschl (1985a. 1986a, 1986b) and Mineshige (1986) have applied the Dl model to SS. Since in 
this type of model the degrees of freedom are far fewer one cannot reasonably try to reproduce an 
individual system as this would need fine tuning of all parameters to an exactness that is far beyond 
what one can reach observationally; since one on the other hand does not expect a unique parameter 
set to fit all the observations, it is also not suitable as a part of observational diagnostics. One 
therefore attempts to model an average system and analyze which parameter range is allowed; these 
results are then compared with observations. 

We also assume a one solar mass main sequence star as accretor: here we take the a-prescription 
as defined in Eq. (8). The outer radii are varied from 101 1 6 to 101 2 8 cm. the - constant - mass 
inflow rate between 10_0 and 10 - 3 Mo jyr. What one wants to reproduce are lightcurves with 
typical variations of the order of several month to years: the increase in luminosity is sharper than 
the decrease: one observes only minima that last for about the same timespan as - or less than -
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the outbursts (in contrast to dwarf novae where the minimum state is far longer than the outburst). 
One can mark a region in the s0 - Af-diagram where the parameter combinations lie that are capable 
of producing light curves like the ones observed in SS (Fig. 5). The limitations are the following: A: 
(dashed line) The disks are no longer geometrically thin. i.e. the approximations break down (this 
might very well be a technical rather than a physical limit): B: rout becomes too long as the disks 
become too large: C: ront becomes too long as M (=> Tc/f => c,) becomes too small; D: The 
maximum brightness becomes so small that it is no longer consistent with observations: E: There are 
no bursts at all as the entire disk is stable. o 

i 

Figure 5: The domain where the models for 
SS according to the Dl model can be found. -^ c 

One might wonder how changes of this a-pre- £ 
scription would change these results. While the 
value of a determines the overall timescale of the 
evolution, it has almost no influence on the relation 
between rout and TJ as h/s is only weakly depen­
dent on a. So a change in the viscosity parameter 
would not leave unaffected the good absolute and ~H.6 n.8 12.0 
relative agreement of time scales as well as the lu- I 9 
minosities, that is achieved in the models. Changes in a would either change the frequency of outbursts 
or the luminosity: either are undesired effects thus making the possible range for an a-law rather small: 
this means that the results shown in Fig. 5 are not strongly dependent on a. 
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4.4. Comparison to dwarf nova models. 

1-10° 

Figure 6: A typical light curve for a SS in 
the Dl model; the parameters for this model are: 
M = 1021 g/s. and Ig s0 = 1012 cm. 

The MTI as well as the Dl model were both 
originally developed to model dwarf nova outbursts 
(e.g. Bath and Pringle. 1981: Meyer and Meyer-
Hofmeister. 1981). While the behaviour of accre­
tion disks in the MTI model is essentially the same 
as in the case of dwarf novae - only scaled to the 

dimensions of SS - in the Dl model new types of behaviour of the fronts show up. In dwarf novae 
one has usually only either a heating or a cooling front moving through the disk, o r - i n the minimum 
state - no fronts at all; in the models for SS one almost always finds fronts moving through the disk; 
often there are several fronts of both types moving through the disk; and these fronts can interact. 
Because of the different timescales (see Eq. (12c)) two types of interaction are possible: a) A slower 
moving cooling front is overtaken by a faster heating front, and the two fronts cancel each other out; 
b) Two fronts of the same type move towards each other, also cancelling themselves out. These 
different interactions are the reason for the typically not very smooth light curves as shown in Fig. 6. 
Duschl (1986b) gave a color figure showing the evolution of the fronts in an accretion disk of a SS; 
this may be compared to the case of dwarf novae (Duschl. 1985b; there the color bar was reversed 
during the printing process!) 

4.5. Comparison of the two outburst models. 

Both models are capable of reproducing the observed light curves reasonably well. The Dl model 
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has a higher degree of physical selfconsistency. In the field of dwarf novae where the comparison of 
both models with observations is in a much more detailed state than in that of SS. there are strong 
indications that the Dl model is in better agreement with the observations although this question is 
far from being settled. 

In both models one has Tc!! during the maxima of the outbursts of several 104 K; in addition 
one expects a boundary layer between the disk and the star where the characteristic temperatures 
during the outbursts reach values of the same order, i.e. sensible temperatures for SS. 

5. SUMMARY. 

There exist many - mutually incompatible - models for SS, and hopefully nobody will expect 
one model to be applicable to all SS. For a subgroup of the type-S-SS accretion disks seem to be the 
main reason for the behaviour we observe. Members of this subgroup are stars like CI Cyg, Z And, 
and AR Pav. 
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