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Santiago de Compostela, 15706 Santiago de Compostela, Spain. E-mail: alvarez@zmat.usc.es
2 Department of Mathematics, Ufa State Aviation Technical University, 12 K. Marx str.,
450025 Ufa, Russia. E-mail: yurikor@math.ugatu.ac.ru

(Received: 3 March 1998; accepted: 29 September 1999)

Abstract. For anyRiemannian foliationF on a closedmanifoldMwith an arbitrarybundle-like
metric, leafwise heat £ow of differential forms is proved to preserve smoothness onM at in¢nite
time. This result and its proof have consequences about the space of bundle-like metrics on
M, about the dimension of the space of leafwise harmonic forms, and mainly about the second
term of the differentiable spectral sequence of F.
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1. Introduction and Main Results

For a smooth foliation F on a closed Riemannian manifold M, leafwise heat £ow
means the physical evolution of an initial temperature distribution on M when
the leaves are thermally isolated from each other. This evolution is given by the
usual heat equation involving the Laplacian on the leaves. A more general leafwise
heat £ow is given by the usual heat equation involving any leafwise elliptic
differential operator** with symmetric leading symbol. In this paper, these
operators will be induced by leafwise elliptic differential complexes in the usual way.

Let E be a Z-grade Riemannian vector bundle over M, and d a ¢rst-order leafwise
elliptic differential complex on C1�E�öthe space of smooth sections of E. Let d
denote the formal adjoint of d on Möit need not be formal adjoint of d on the
leaves. Then D � d � d and D � D2 � dd� dd are symmetric differential operators
on C1�E�, and thus essentially selfadjoint in the L2-completion L2�E� of C1�E�
* Partially supported by Xunta de Galicia, grant XUGA20701B95.
** A leafwise differential operator is a differential operator onMwhose local expressions only

contain derivatives along leaf directions, and thus can be restricted to the leaves. If furthermore
the restriction to the leaves is elliptic, then it is called a leafwise elliptic differential operator. The
definition of leafwise ellipticdifferential complex is similar. On the other hand, a transversely ellip-
tic differential operator is a differential operator onMwhose leading symbol is an isomorphism at
nontrivial covectors normal to the leavesöa covectorofM is normal to the leaves if it vanishes on
vectors tangent to the leaves.
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(Theorem 2.2 in [10]). Then the spectral theorem de¢nes the leafwise heat operator
eÿtD on L2�E� for each tX 0.

The leafwise heat operator has a nice behavior on smooth sections at ¢nite time:
According to the work of J. Roe in [28], eÿtD de¢nes a continuous operator on
C1�E� which depends continuously on t 2 �0;1). But the main objective of this
paper is to study the behavior of eÿtD on C1�E� at the limit when t!1.

Let P be the orthogonal projection onto the kernel of the unbounded operator
de¢ned by D in L2�E�. Recall that, by the spectral theorem, the heat operator
eÿtD strongly converges to P on L2�E�. By setting eÿ1D � P, we get a continuous
map �0;1� � L2�E� ! L2�E� given by �t;f� ! eÿtDf, where [0,1] is the one point
compacti¢cation of �0;1� (see section 2). Observe that P need not preserve
C1�E� because D is not elliptic on M except in the trivial case where F is of
codimension zero.

Suppose there is a transversely elliptic differential operatorA on C1�E� that com-
mutes with d and d. It is well known thatP preservesC1�E� in this case, which can be
easily seen as follows. On the one hand, P obviously commutes with the leafwise
elliptic operator D, and thus P preserves leafwise smoothness. On the other hand,
D commutes withA by our assumption, and thus so doesP, yielding thatP preserves
transverse smoothness as well. But the existence of such an A commuting with d and
d is a too strong condition. Fortunately, `exact' commutation is not needed for P to
preserve C1�E�, as shown by the following result, which is proved in section 2.

THEOREM A. With the above notation, suppose that, on C1�E�, there is a
transversely elliptic ¢rst order differential operator A, and there are morphisms
G, H, K and L such that

Ad � dA � Gd � dH; Ad� dA � Kd� dL: �1�

Then P de¢nes a continuous operator on C1�E�, we have the leafwise Hodge
decomposition

C1�E� � kerD� imD � �ker d \ ker d� � im d � im d;

and �t;f� 7! eÿtDf de¢nes a continuous map �0;1� � C1�E� ! C1�E�.

In this paper, Theorem A is applied to Riemannian foliations. Such foliations are
characterized by having isometric holonomy for some metric on local transversals.
This property is equivalent to the existence of a bundle-like metric on Möa metric
so that the foliation is locally de¢ned by Riemannian submersions. Let us mention
that Riemannian foliations were introduced by B. Reinhart [27], and certain descrip-
tion of their structure was given by P. Molino [24, 25].
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A leafwise differential complex of F is constructed as follows. LetO(M) (or simply
O) be the de Rham algebra of M. Consider the bigrading of O given by

Ou;v � C1
û

TF?� 

v̂

TF�
� �

; u; v 2 Z:

The de Rham derivative and coderivative decompose as sum of bihomogeneous
components,

d � d0;1 � d1;0 � d2;ÿ1; d � d0;ÿ1 � d1;0 � dÿ2;1;

where the double subindixes denote the corresponding bidegrees. See [1^3] for the
properties of these components; in particular

. each di;j is the formal adjoint of dÿi;ÿj on M,

. d2;ÿ1 and dÿ2;1 are of order zero,

. D0 � d0;1 � d0;ÿ1 and D0 � D2
0 are leafwise elliptic and symmetric, and

. D? � d1;0 � dÿ1;0 is transversely elliptic and symmetric.

Let L2O be the L2-completion of O, andP the orthogonal projection onto the kernel
of the unbounded operator de¢ned by D0 in L2O. We prove in section 3
(Proposition 3.1) that, if F is a Riemannian foliation and the metric bundle-like,
(O, d0;1) satis¢es the conditions of Theorem A with D? as A, obtaining the following
result which solves af¢rmatively a conjecture of the ¢rst author and P. Tondeur [6].

THEOREM B. Let F be a Riemannian foliation on a closed manifold M with a
bundle-like metric. Then P de¢nes a continuous operator on O, we have the leafwise
Hodge decomposition

O � kerD0 � imD0 � �ker d0;1 \ ker d0;ÿ1� � im d0;1 � im d0;ÿ1; �2�

and �t; a� 7! eÿtD0a de¢nes a continuous map �0;1� � O! O.

The so-called basic complex O�M=F� is the part of the kernel of D0 with zero
tangential degree, i.e. O�M=F� � O�;0 \ kerD0. The closure of O�M=F� in L2O is
L2O�;0 \ kerD0, and will be denoted by L2O�M/F ). Observe that Theorem B implies
that the orthogonal projection L2O! L2O�M/F ) preserves smoothness, i.e. there is
an orthogonal projection O! O�M=F�. This projection was explicitly constructed
in [3] and [26] by using integration along the leaf closures of F , but such an easy
construction does not seem to be possible for the whole kernel of D0.

The above bigrading is useful to understand the so-called differentiable spectral
sequence �Ei; di� of F (see, e.g., [1, 2]: There are canonical identities

�E0; d0� � �O; d0;1�; �E1; d1� � �H�O; d0;1�; d1;0��: �3�
Moreover, the C1 topology induces a topology on each Ei so that di is continuous.
Such topology on E1 need not be Hausdorff [15], and so we may de¢ne the bigraded
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subcomplex �01 � E1 as the closure of the trivial subspace. The quotient bigraded
complex E1=�01 will be denoted by E1. We get

Eu;v1 � Ou;v \ kerD0; u; v 2 Z

as a direct consequence of Theorem B, yielding the following dualities where
p � dimF and q � codimF : If M is oriented, then Eu;v1 � Eqÿu;pÿv1 ; if F is oriented,
then Eu;v1 � Eu;pÿv1 ; and if F is transversely oriented, then Eu;v1 � Eqÿu;v1 . These
isomorphisms are respectively induced by the Hodge star operators on

V
TM�,V

TF� and VTF?�
This ¢ts into a more general setting. First obserse that �O0;�; d0;1� can be

canonically identi¢ed with the leafwise de Rham complex �O�F�; dF �, where
O�F� � C1�VTF�� and dF is de¢ned by the de Rham derivative on the leaves. Thus
E0;�
1 can be identi¢ed with the leafwise cohomology, and E0;�1 with the leafwise reduced

cohomology. Furthermore the whole �O; d0;1� can be considered, up to sign, as the
leafwise de Rham complex of F with coef¢cients in the vector bundleV�TM=TF�� with the £at F -partial Bott connection; i.e. the partial connection
induced by the partial Bott connection on the normal bundle [7, 8]. The condition
that F be Riemannian is equivalent to the existence of a metric on the normal bundle
such that the partial Bott connection is Riemannian. Thus, with more generality, we
can consider the leafwise de Rham complex �O�F ;V �; dF � with coef¢cients in any
Riemannian vector bundle V with a £at Riemannian F -partial connection. The
leafwise reduced cohomology with coef¢cients in V will be denoted by H�F ;V �.
The operator dF on O�F ;V �, de¢ned by the de Rham coderivative on the leaves,
is adjoint to dF . Let DF � dF � dF and DF � D2

F . Let also L2O�F ;V � be the
L2-completion of O�F ;V �, and P the orthogonal projection of L2O�F ;V � onto
the kernel of DF in L2O�F ;V �. The following result easily follows from the case
with coef¢cients in R (section 4).

COROLLARYC. LetF be a Riemannian foliation on a closedmanifoldM, and let V
be any Riemannian vector bundle with a £at Riemannian F -partial connection. Fix
any Riemannian metric on the leaves, smooth on M. Then P de¢nes a continuous
operator on O�F ;V �, we have the leafwise Hodge decomposition

O�F ;V � � kerDF � imDF � �ker dF \ ker dF � � im dF � im dF ;

and �t; a�7!eÿtDF a de¢nes a continuous map �0;1� � O�F ;V � ! O�F ;V �. Thus
H�F ;V � can be canonically identi¢ed with kerDF , and, if F is oriented, then the
leafwise Hodge star operator on kerDF induces on isomorphism
Hv�F ;V � � Hpÿv�F ;V��.

If we take coef¢cients in the normal bundle, then Corollary C helps to understand
in¢nitesimal deformations of [16]. If we take coef¢cients in the symmetric tensor
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product S2((TM/TF )*), then Corollary C has the following consequence (section 5)
which solves a problem proposed by E. Mac|̈as.*

COROLLARY D. Let F be a Riemannian foliation on a closed manifold M. Then,
with respect to the C1 topology, the space of bundle-like metrics on M is a
deformation retract of the space of all metrics on M.

Corollary C also has the following consequence which partially generalizes results
from [4].

COROLLARYE. LetF be a Riemannian foliation on a closed manifoldM, and let V
any Riemannian vector bundle with a £at Riemannian F -partial connection. For any
metric on the leaves, smooth on M, if there is a nontrivial integrable harmonic r-form
on some leaf with coef¢cients in V, then Or�F ;V � \ kerDF is of in¢nite dimension.

As suggested in [4], Corollary E may be used to ¢nd examples of Riemannian
foliations on closed Riemannian manifolds with dense leaves and in¢nite
dimensional space of smooth leafwise harmonic forms.

Theorem B and its proof are also useful to get a better understanding of the term
E2 in the spectral sequence of any Riemannian foliation F on a closed manifold
M. LetH1 � kerD0 and ~H1 � imD0 in O, and let L2H1 and L2 ~H1 be the correspond-
ing closures in L2O. Consider the bigrading of H1 induced by the one of O. If F is
Riemannian and the metric bundle-like, by (3) and Theorem B, the differential
map d1 on E1 corresponds to the map Pd1;0 on H1, which will be also denoted
by d1. Hence, Hu�E�;v1 ; d1� � Hu�H�;v1 ; d1�. Consider also the following operators
on H1: d1 � Pdÿ1;0, D1 � d1 � d1 and D1 � D2

1. Such a d1 is adjoint of d1, and thus
D1 and D1 are symmetric in L2H1.

We also de¢ne a differential map ~d1 on ~H1 as follows. First we slightly change the
bigrading that O�;� induces on ~H: Set

~Hu;v
1 � d0;1�Ou;vÿ1� � d0;ÿ1�Ou�1;v�; u; v 2 Z:

Let ~P�;v be the projection of O into ~H�;v1 according to (2), and set ~d1 � ~P�;vd on ~H�;v1 .
We shall see that ~d2

1 � 0 (section 7); indeed Hu��0�;v1 ; d1� � Hu� ~H�;v1 ; ~d1�ösee section
7 for a better understanding of this modi¢ed bigrading. Then set ~d1 � ~P�;vd on
~H�;v1 for each v, and let ~D1 � ~d1 � ~d1 and ~D1 � ~D2

1. Such ~d1 is adjoint of ~d1, and thus
~D1 and ~D1 are symmetric in L2 ~H1. By using Theorem B and the role played by
D? in its proof, we prove in section 7 the following result which generalizes the
basic Hodge decompositions of [17] and [18].

*Problem 4.12 of `Open Problems' in: AnalysisandGeometry inFoliatedManifolds. X.Masa, E.
Mac��asVirgös and J. A. Älvarez Löpez (Editors). Proceedings of theVII International Collo-
quium on Differential Geometry, Santiago de Compostela, 26^30 July, 1994.World Scientific,
Singapore,1995.
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THEOREM F. Let F be a Riemannian foliation on a closed manifold M. For any
bundle-like metric on M, the operators D1 and ~D1 are essentially self-adjoint on
L2H1 and L2 ~H1, respectively. Moreover L2H1 and L2 ~H1 have complete orthonormal
systems, ffi : i � 1; 2; . . .g � H1 and f ~fi : i � 1; 2; . . .g � ~H1, consisting of
eigenvectors of D1 and ~D1, respectively, so that the corresponding eigenvalues satisfy
0W l1 W l2 W . . ., 0 < ~l1 W ~l2 W . . ., ;with li " 1 if dimH1 � 1, and ~li " 1 if
dim ~H1 � 1; thus all of these eigenvalues have ¢nite multiplicity. In particular
we have

H1 � kerD1 � imD1; ~H1 � im ~D1:

In Theorem F, the fact that kerD1 � 0 will follow from the following known result.

THEOREM G (X. Masa [23]; see also [1, 2]). Under the same conditions we have
H��01� � 0 and E2 � H�E1�, which is of ¢nite dimension and, ifM is orientable, satis¢es
the duality Eu;v

2 � Eqÿu;pÿv
2 , u; v 2 Z, where p � dimF and q � codimF .

It would be interesting to show that ker ~D1 � 0 without using Theorem G, which
would be a consequence. In contrast with [23], our approach does not use Molino's
description of Riemannian foliations [24, 25]. Theorem G has important impli-
cations about tautness of Riemannian foliations [3, 23]; a different approach to
the same type of tautness results is also given in [22], where Molino's theory is
not used either.

Observe that some parts of Theorem G follow from Theorem F and are not sat-
is¢ed by arbitrary foliations on closed manifolds [29]. So, if there is a version of
Theorem B for more general foliations with the same kind of arguments, then
D? should be replaced in its proof by other transversely elliptic operator and perhaps
more general conditions should be used in Theorem A (see Remarks 2 and 3). There
are related results for non-Riemannian foliations with very different proofs [19, 21].

In possible generalizations of Theorem B, a key role may be played by the fact that
our leafwise elliptic operators are symmetric onM instead of being symmetric on the
leaves. For Riemannian foliations and bundle-like metrics both points of view are
the same. In general, the Laplacian on the leaves acting on functions induces
the physical leafwise heat £ow, while D0 induces a modi¢cation of the physical
leafwise heat £ow by `exterior in£uence'. For non-Riemannian foliations, the physi-
cal leafwise heat £ow may `break' continuous functions at in¢nite time, as can
be easily seen for foliations on the two dimensional torus with several Reeb
components. We hope the modi¢ed leafwise heat £ow induced by D0 has a better
behavior at in¢nite time for more general foliations.

Theorems B and F, and the estimates in their proofs, are used in [5] to study
relations between spectral sequences of Riemannian foliations and adiabatic limits;
concretely, the results in section 5 of [14] are proved without the strong hypothesis
that the positive spectrum of D0 is bounded away from zero.
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NOTATION. The kth Sobolev completion ofC1�E�,O andO�F ;V �will be respect-
ively denoted by Wk�E�, WkO and WkO(F , V). Fix a norm k � kk in any of these kth
Sobolev spaces, and let k � kk also denote the corresponding norm of bounded
operators on that space. Finally, closure in kth Sobolev spaces will be denoted
by clk .

2. The General Result

This section is devoted to the proof of TheoremA. To do it, a result of J. Roe in [28] is
needed as a ¢rst step. We ¢rstly state it in our setting. LetA be the Frëchet algebra of
those functions f on R that extend to entire functions on C such that for each
compact subset K � R the functions fx 7! f �x� iy� : y 2 Kg form a bounded subset
of the Schwartz space S�R�. Such an A is a module over the polynomial ring
C�z�, and contains all functions with compactly supported Fourier transform
and the Gaussians x 7! etx

2
. With the notation of Theorem A, without assuming

(1), the same arguments as in Propositions 1.4 and 4.1 in [28] give the following
(see also [20] for a discussion of the action of functions of tangentially elliptic
operators in Sobolev spaces on the ambient manifold).

PROPOSITION 2.1 (J. Roe [28]). The functional calculus map f 7! f �D� given by the
spectral theorem restricts to a continuous homomorphism of algebras and
C�z�-modules from A to the space of bounded endomorphisms of each Wk�E�,
and thus to the space of continuous endomorphisms of C1�E�. In particular, eÿtD

de¢nes a bounded operator on eachWk�E� and a continuous operator on C1�E�, which
depends smoothly on t 2 �0;1�.

Now assume (1) is satis¢ed. Then Theorem A clearly follows from the following
six properties, which are proved by induction on k � 0; 1; 2; . . .:

(i) There exists ck;1 > 0 such that the bounded operator eÿtD on Wk�E�, de¢ned by
Proposition 2.1, satis¢es

keÿtDkk W ck;1 for all t > 0

(ii) DeÿtD de¢nes a bounded operator on Wk�E� and there exists ck;2 > 0 such that

kDeÿtDkk W
ck;2��
t
p for all t > 0

(iii) DeÿtD de¢nes a bounded operator on Wk�E� and there exists ck;3 > 0 such that

kDeÿtDkk W
ck;3
t

for all t > 0

(iv) The operator eÿtD is strongly convergent in Wk�E� as t!1. Moreover
�t;f� 7! eÿtDf de¢nes a continuous map �0;1� �Wk�E� !Wk�E�.
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(v) We have

Wk�E� � ker�D in Wk�E�� � clk�im D�
� ker�D in Wk�E�� � clk�im D�:

The corresponding projection of Wk�E� onto the kernel of D in Wk�E� is obvi-
ously de¢ned by P.

(vi) There exists ck;4 > 0 such that

kdfkk � kdfkk W ck;4kDfkk

for all f2C1�E�. Thus

ker�D in Wk�E�� � ker�d in Wk�E�� \ ker�d in Wk�E��
clk�im D� � clk�im d� � clk�im d�:

For k � 0, properties (i)^(v) follow directly from the spectral theorem.

Proof of property (vi) for k � 0. Since the image of d is orthogonal to the image of
d in L2�E�, we get kDfk20 � kdfk20 � kdfk20 for any f 2 C1�E�. Thus

kdfk0 � kdfk0 W
���
2
p
kDfk0: &

Now suppose properties (i)^(vi) hold for a given k � l and we shall prove them for
k � l � 1.

The direct sum decompositions in properties (v) and (vi) for k � 1 de¢ne
projections P and Q of Wl�E� onto cll�im d� and cll�im d�, respectively. Thus
id � P� P �Q.

LEMMA 2.2. There are bounded operators B1; . . . ;B5 on Wl�E� such that

Ad � dA � B1d � dB2

Ad� dA � B1d� dB2

�A;D� � B3D� DB4 �DB5D:

Proof. We clearly have

dP � Pd � dP � Pd � dP � Pd � dQ � Qd � 0:

So

d � dQ � DQ � Pd � PD; d � dP � DP � Qd � QD:

Hence, (1) yields the ¢rst two equalities in the statement with B1 � GP � KQ and
B2 � QH � PL. Thus AD�DA � B1D�DB2 , yielding the third equality by using
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the equation

�A;D� � �AD�DA�D�D�AD�DA�: &

LEMMA 2.3. For any bounded operator R : Wl�1�E� !Wl�E�, we have the
following Duhamel type formula

�R; eÿtD� � ÿ
Z t

0
eÿ�tÿs�D�R;D�eÿsD ds

as a bounded operator Wl�1�E� !Wl�E�.
Proof. This follows by arguing as in the proof of the usual Duhamel's formula (see

Lemma 12.51 in [11]). &

LEMMA 2.4. �A; eÿtD� de¢nes a bounded operator on Wl�E�, and there exists ~cl;1 > 0
such that k�A; eÿtD�kl W ~cl;1 for all t > 0:

Proof. By Lemmas 2.2 and 2.3 we have �A; eÿtD� � I2 � I2, where

I1 � ÿ
Z t

0
e�tÿs�DB3DeÿsD dsÿ

Z t

0
e�tÿs�DDB4e

ÿsD ds;

I2 � ÿ
Z t

0
e�tÿs�DDB5DeÿsD ds:

On the one hand, property (ii) for k � l yields

kI2kl W c2l;2

Z t

0

ds����������������tÿ s�sp
which is bounded independently of t since this integral is easily seen to be p.

On the other hand,

I1 � eÿtD=2�B3 ÿ B4�eÿtD=2 � eÿtDB3 � B4e
ÿtD ÿ

ÿ
Z t=2

0
eÿ�tÿs�DD�B3 � B4�eÿsD ds ÿ

ÿ
Z t

t=2
eÿ�tÿs�D�B3 ÿ B4�DeÿsD ds;

where we have decomposed the integrals in the de¢nition of I1 as sum of integrals on
the intervals �0; 1=2� and �1=21�, and we have used integration by parts with the
equalities

DeÿsD � ÿ @
@s

eÿsD; Deÿ�tÿs�D � @

@s
eÿ�tÿs�D:
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Hence, by properties (i) and (iii) for k � l we get

kI1kl W c2l;1kB3 ÿ B4kl � cl;1�kB3kl � kB4kl� �

� cl;1cl;3 kB3 � B4kl
Z t=2

0

ds
tÿ s
� kB3 ÿ B4kl

Z t

t=2

ds
s

� �
which is bounded independently of t since both of these integrals are equal to ln 2.&

LEMMA 2.5. ADeÿtD �DeÿtDA de¢nes a bounded operator on Wl�E� and there
exists ~cl;2 > 0 such that

kADeÿtD �DeÿtDAkl W
~cl;2��
t
p for all t > 0:

Proof. By Lemma 2.2 we have

AD�DA � B1D�DB2

yielding

ADeÿtD �DeÿtDA � AeÿtD=2DeÿtD=2 � eÿtD=2DeÿtD=2A

� �A; eÿtD=2�DeÿtD=2 � eÿtD=2D�A; eÿtD=2� �
� eÿtD=2�AD�DA�eÿtD=2

� �A; eÿtD=2�DeÿtD=2 � eÿtD=2D�A; eÿtD=2� �
� eÿtD=2B1DeÿtD=2 � eÿtD=2DB2e

ÿtD=2:

Thus the result follows by Lemma 2.4 and properties (i) and (ii) for k � l. &

Since D is a leafwise elliptic operator of order one and A is transversely elliptic of
order one, there exist el;1; el;2 > 0 such that

el;1kfkl�1 W kfkl � kDfkl � kAfkl W el;2kfkl�1 �4�

for all f 2Wl�1�E�.

Proof of property (i) for k � l � 1. For f 2Wl�1�E�, we have the following:

keÿtDfkl W cl;1kfkl W cl;1el;2kfkl�1;
kDeÿtDfkl � keÿtDDfkl W cl;1kDfkl W cl;1el;2kfkl�1;
kAeÿtDfkl W k�A; eÿtD�fkl � keÿtDAfkl

W ~cl;1kfkl � cl;1kAfkl
W �~cl;1 � cl;1�el;2kfkl�1;

where we have used property (i) for k � l, Lemma 2.4 and (4). &
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Proof of property (ii) for k � l � 1. For f 2Wl�1�E� we have the following:

kDeÿtDfkl W
cl;2��
t
p kfkl W

cl;2el;2��
t
p kfkl�1;

kDeÿtDfkl � kDeÿtDDfkl W
cl;2��
t
p kDfkl W

cl;2el;2��
t
p kfkl�1;

kADeÿtDfkW k�ADeÿtD �DeÿtDA�fkl � kDeÿtDAfkl
W

~cl;2��
t
p kfkl �

cl;2��
t
p kAfkl

W
�~cl;2 � cl;2�el;2��

t
p kfkl�1;

where we have used property (ii) for k � l, Lemma 2.5 and (4). &

Proof of property (iii) for k � l � 1. This follows directly from property (ii) for
k � l � 1 since DeÿtD � DeÿtD � DeÿtD=2DeÿtD=2 on C1�E�. &

Let ~P � idÿP. Set B � B4Pÿ B3 ~P, which is a bounded operator onWl�E�. For
further reference, we point out the following estimates which are similar to (4): There
exist e

0
l;1, e

0
l;2, e

00
l;1, e

00
l;2 > 0 such that

e0l;1kfkl�1 W kfkl � kDfkl � k�A� B�fkl W e0l;2kfkl�1; �5�
e00l;1kfkl�1 W kfkl � kDfkl � k�Aÿ B1�fkl W e00l;2kfkl�1: �6�

LEMMA 2.6. The operator �A� B; eÿtD� strongly converges to the zero operator on
Wl�E� as t!1. Moreover �t;f� 7! �A� B; eÿtD�f extends to a continuous map
�0;1� �Wl�E� !Wl�E� vanishing on f1g �Wl�E�.

Proof. Take any a > 1 that will be ¢xed later. Let us write �A� B; eÿtD� � I1 � I2 ,
where

I1 � �A� B; eÿ�tÿt=a�D�eÿtD=a;
I2 � eÿ�tÿt=a�D�A� B; eÿtD=a�:

By Lemma 2.2 and since DP � 0, we easily get

�A� B;D� � �D�B3 � B4� �DB5D� ~P: �7�

Hence, by Lemma 2.3 we have I2 � I2;1 � I2;2, where

I2;1 � ÿeÿ�tÿt=a�D
Z t=a

0
eÿ�tÿs�DD�B3 � B4�eÿsD ~P ds;

I2;2 � ÿeÿ�tÿt=a�D
Z t=a

0
eÿ�tÿs�DDB5DeÿsD ~P ds:

LONG TIME BEHAVIOR OF LEAFWISE HEAT FLOW 139

https://doi.org/10.1023/A:1002492700960 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002492700960


Properties (i), (iii) and (vi) for k � l yield the following estimate for f 2Wl�E�:

kI2;1kl W c2l;1cl;3kB3 � B4klk ~Pfkl
Z t=a

0

ds
tÿ s

W c2l;1cl;3kB3 � B4klk ~Pfkl ln
a

aÿ 1
:

Similarly, properties (i), (ii) and (vi) for k=l yield the following estimate for
f 2Wl�E�:

kI2;2fkl W cl;1c2l;2k ~Pfkl
Z t=a

0

ds����������������tÿ s�sp
W cl;1c2l;2k ~Pfkl p� arctan

2ÿ a
a

� �
:

Therefore I2 de¢nes a bounded operator on Wl�E� whose norm can be made arbi-
trarily small uniformly on t by taking a large enough.

To study I1 we shall use the following:

�A� B; eÿsD�P � 0 for all sX 0: �8�
This equation holds because it is obvious for s � 0 and moreover

d
ds
��A� B; eÿsD�P� � ÿ�A� B; eÿsDD�P

� ÿ�A� B; eÿsD�DPÿ eÿsD�A� B;D�P;
which vanishes since DP�0 and by (7). Now (8) yields

I1 � �A� B; eÿ�tÿt=a�D� ~PeÿtD=a

� �A� B; eÿ�tÿt=a�D��eÿtD=a ÿP�:
Furthermore, by Lemma 2.4 and property (i) for k � l, �A� B; eÿ�tÿt=a�D� de¢nes a
bounded operator on Wl�E� whose norm is uniformly bounded on t. Therefore,
by property (iv) for k � l, I1 strongly converges to zero in Wl�E� as t!1 for
any a > 1, and �t;f� 7! I1f extends to a continuous map �0;1�� Wl�E� !
Wl�E� vanishing on f1g �Wl�E�. &

Proof of property (iv) for k � l � 1. Consider the following bounded com-
positions:

Wl�1�E� ÿ!e
ÿtD

Wl�1�E� ,!Wl�E�; �9�

Wl�1�E� ÿ!e
ÿtD

Wl�1�E� ÿ!D Wl�E�; �10�

Wl�1�E� ÿ!e
ÿtD

Wl�1�E� ÿ!A�B Wl�E�: �11�
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By (5), it is enough to prove that the compositions (9), (10) and (11) are strongly
convergent as t!1 and to prove the continuous extension to �0;1� �Wl�1�E�
of the maps �0;1� �Wl�1�E� !Wl�E� de¢ned by these time dependent operators.
This holds for (9) and (10) by property (iv) for k � l since these operators are respect-
ively equal to the compositions

Wl�1�E� ,!Wl�E� ÿ!e
ÿtD

Wl�E�;
Wl�1�E� ÿ!D Wl�E� ÿ!e

ÿtD
Wl�E�:

On the other hand, (11) is the sum of the bounded compositions

Wl�1�E� ,!Wl�E� ÿÿÿÿ!�A�B;eÿtD�
Wl�E�; �12�

Wl�1�E� ÿ!A�B Wl�E� ÿ!e
ÿtD

Wl�E�: �13�
Now Lemma 2.6 and property (iv) for k � l respectively imply the strong conver-
gence of (12) and (13) as t!1, as well as the continuous extension to
�0;1� �Wl�1�E� of the maps �0;1� �Wl�1�E� !Wl�E� de¢ned by both of these
time dependent operators. &

COROLLARY 2.7. P de¢nes a bounded operator on Wl�1�E�.

Proof. This result is a direct consequence of properties (i) and (iv) for
k � l � 1öobserve that, for each f 2Wl�1�E�, the limit of eÿtDf in Wl�1�E� as
t!1 can only be Pf since it is so in L2�E�. &

COROLLARY 2.8. �A� B;P� � 0 : Wl�1�E� !Wl�E�.

Proof. By Lemma 2.6, [A�B, eÿtD] strongly converges to zero onWl�E� as t!1.
Hence the result follows because, as t!1 and for each f 2Wl�1�E�, �A� B�eÿtDf
and eÿtD�A� B�f converge in Wl�E� to �A� B�Pf and P�A� B�f, respectively, by
property (iv) for k � l � 1; l. &

Proof of property (v) for k � l � 1. By Corollary 2.7 and property (v) for k � l,P
de¢nes a projection of Wl�1�E� onto the kernel of D in Wl�1�E�.

Now, for t > 0 and s 2 R let

ft�s� � �1ÿ eÿts
2 �=s2 if s 6� 0;

t if s � 0:

�
It is easy to check that ft is in the algebra A of Proposition 2.1. Thus ft�D� de¢nes a
bounded operator on Wl�1�E� satisfying

idÿ eÿtD � Dft�D�:
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So property (iv) for k � l � 1 yields that, for any f 2Wl�1�E�, ~Pf is the limit of
Dft�D�f in Wl�1�E� as t!1. Hence

~P�Wl�1�E�� � cll�1�im D�:
This is really an equality because the reverse inclusion can be easily proved as
follows:

cll�1�im D� �Wl�1�e� \ cl0�im D�
�Wl�1�E� \ ~P�L2�E��
� ~P�Wl�1�E��:

Here we have used property (v) for k�0 and the fact that ~P is a projection. Therefore
we have proved the ¢rst direct sum decomposition in property (v) for k � l � 1.

The second direct sum decomposition follows similarly by using the functions
given by

gt�s� � �1ÿ eÿts
2�=s s 6� 0;

t s � 0

�
instead of the ft . &

Proof of property (vi) for k � l � 1. Take any f 2 C1�E�. Lemma 2.2, property
(vi) for k � l and (6) yield

kdfkl�1 � kdfkl�1 W
1
e00l;1
�kdkl � kdfkl � kDdfkl � kDdfkl �

� k�Aÿ B1�dfkl � k�Aÿ B1�dfkl�
W

1
e00l;1
�kdfkl � kdfkl � VdDfkl � kdDfkl �

� kd��A� B2�fjl � kd��A� B2�fkl�
W

cl;4
e00l;1
�kDfkl � kDfkl � kD��A� B2�fkl�

W
cl;4
e0l;1
�kDfkl � kDfkl � k�Aÿ B1�Dfkl�

W
cl;4e00l;2
e00l;1
kDfkl�1: &

Remark 1. If A is symmetric in Theorem A, then one of the two equations in (1)
can be removed in its statement because both of them are equivalent by taking
adjoints on M.

Remark 2. The following more general condition can be used instead of (1) in
Theorem A to get the same long time behavior of leafwise heat £ow with a similar
proof: There is some ¢rst order transversely elliptic differential operator A and zero
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order operators K1; . . . ;K16 such that the operators

F1 � Ad � dAÿ K1d ÿ dK2 ÿ K3dÿ dK4;

F2 � Ad� dAÿ K5dÿ dK6 ÿ K7d ÿ dK8

satisfy

F1d� dF 1 � F2d � dF2

� dK9d � dK10d � dK11d� dK12d� ddK13 � ddK14 � K15dd� K16dd:

Nevertheless, so far we did not ¢nd any non-Riemannian foliation with a
(non-elliptic) leafwise elliptic differential complex satisfying such a more general
condition.

Corollary 2.8 yields �A;P� � ÿ�B;P� on each Wk�E�, obtaining the following
consequence that will be used later.

COROLLARY 2.9. �A;P� de¢nes a bounded operator on each Wk�E�, and thus a
continuous operator on C1�E�.

3. Case of the Leafwise de Rham Complex for Riemannian Foliations

With the notation introduced in section 1, the objective of this section is to prove the
following result, which implies Theorem B by using Theorem A and Remark 1.

PROPOSITION 3.1. If F is a Riemannian foliation and M is endowed with a
bundle-like metric, there is a zero order differential operator K on O such that

D?d0;ÿ1 � d0;ÿ1D? � Kd0;ÿ1 � d0;ÿ1K :

To prove Proposition 3.1, choose any open subset U�M of triviality for F . Let
n � dimM, p � dimF and q � codim F . Fix tangential and transverse orientations
for F in U, obtaining the Hodge star operators �F and �? on the restrictions ofV

TF� and VTF?� to U, respectively. Moreover we get an induced orientation
of U so that �?�1� ^ �F �1� is a positive volume form. The following lemma can
be easily proved (the statement of Lemma 4.8 in [6] is similar).

LEMMA 3.2. Over U, the Hodge star operator on
V

TM� � VTF?� 
VTF� is
given by

� � �ÿ1��qÿu�v �? 
�F :
û

TF?� 

v̂

TF� !
q̂ÿu

TF?� 

p̂ÿv

TF�:

Let X�FU� � X�U� be the Lie subalgebra of vector ¢elds which are tangent to the
leaves of FU � FjU , and let X�U;FU � � X�U� be its normalizeröthe Lie algebra
of in¢nitesimal transformations ofFU . Let alsoO�U=FU � � O�;0�U� denote the basic
complex of FU , and C1�U=FU � � O0�U=FU �. For X 2 X�U� let LX denote the cor-
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responding Lie derivative on O(U) and yX its bihomogeneous �0; 0�-component,
which is easily seen to be also a derivation. By comparing bidegrees on Cartan's
formula we get that, if X is orthogonal to F , then

yX � ixd1;0 on O0;��U�

yielding

yfX � f yX on O0;��U� for all f 2 C1�U� �14�

and

d1;0b �
Xq
i�1

ai ^ yXib for all b 2 O0;��U� �15�

where X1; . . . ;Xq is any frame of TF? on U with dual coframe a1; . . . ; aq in O1;0�U�.
Furthermore, if X 2 X�U;FU � is orthogonal to the leaves and Y 2 X�FU �, then

iYLX � LX iY ÿ i�X ;Y � � 0 on O�;0�U�

yielding that the �ÿ1; 1�-bihomogeneous component of LX vanishes on O�;0, and thus
on O(U). Therefore

yXd0;1 � d0;1yX on O�U� for all X 2 X�U;FU � �16�

by comparing bidegrees on the formula LXd � dLX .
As was pointed out in section 1, the restriction of d0;ÿ1 to O0;� � O�F� is de¢ned by

the de Rham coderivative on the leaves. This holds whenever the transverse
Riemannian volume element is holonomy invariant, and in particular when the met-
ric is bundle-like: On U , o � �?�1� satis¢es do � 0, and thus, by Lemma 3.2, for
b 2 O0;v�U� we have

d0;ÿ1b � �ÿ1�nv�n�1 � d0;1 � b
� �ÿ1�pv�n�1 � d0;1�o ^ �Fb�
� �ÿ1�pv�p�1 � �o ^ d0;1 �F b�
� �ÿ1�pv�p�1 �F d0;1 �F b: �17�

LEMMA 3.3. If X 2 X�U;FU � is orthogonal to the leaves, then there is a zero order
differential operator RU;X on O0;��U�, depending C1�M=FU �-linearly on X, such that

�yX ; d0;ÿ1� � �RU ;X ; d0;ÿ1� on O0;�:

Moreover the assignment �U;X � 7!RU ;X can be chosen so that the restriction of RU ;X

to any open subset U 0 � U of triviality for F is equal to RU 0;X 0 , where X 0 � X jU 0 .
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Proof. By using (16) and (17), and since �2F � �ÿ1��pÿv�v id, on O0;v�U� we get

�yX ; d0;ÿ1� � �ÿ1�pv�p�1�yX ; �Fd0;1�F �
� �ÿ1�pv�p�1��yX ; �F �d01 �F � �F d0;1�yX ; �F ��
� �ÿ1��pÿv�1��vÿ1��yX ; �F � �F d0;ÿ1�
� �ÿ1��pÿv�vd0;ÿ1 �F �yX ; �F �:

Hence

RU ;X � �ÿ1��pÿv�v�yX ; �F � �F on O0;v

satis¢es the equality in the statement of this result because

0 � �yX ; �2F � � �yX ; �F � �F � �F �yX ; �F �:
Observe that RU;X is of order zero since yX is a derivation on O0;� and RU ;X is
C1�M=FU �-linear on X by (14). Finally, the restriction of RU ;X to U 0 � U is clearly
equal to RU 0;X 0 as in the statement of this result. &

Obviously, d0;1 and d0;ÿ1 are C1�U=FU �-linear on O(U). Indeed we have the
following.

LEMMA 3.4. We have

d0;1 � �ÿ1�u id
 d0;1; d0;ÿ1 � �ÿ1�u id
 d0;ÿ1

with respect to the canonical decomposition

Ou;��U� � Ou�U=FU � 
 O0;��U�

as tensor product of C1�U=FU �-modules.
Proof. The ¢rst identity is clear because d0;1 vanishes on basic forms. The second

identity holds because the metric is bundle-like on U: This is equivalent to

�?�O�U=FU �� � O�U=FU �
and thus, by Lemma 3.2, for a 2 Ou�U=FU �, b 2 O0;v�U� and r � u� v we have

d0;ÿ1�a ^ b� � �ÿ1�nr�n�1 � d0;1 � �a ^ b�
� �ÿ1�nr�n�1��qÿu�v � d0;1��?a ^ �Fb�
� �ÿ1�nr�n�1��qÿu��v�1� � ��?a ^ d0;1 �F b�
� �ÿ1�ua ^ d0;ÿ1b: &

The proof of Proposition 3.1 can be completed as follows. Let
X1; . . . ;Xq 2 X�U;FU � be a frame of TF? on U, and let a1; . . . ; aq 2 O1�U=FU �
be the dual coframe. Take any a 2 Ou�U=FU � and any b 2 O0;��U�. Then Lemmas
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3.3 and 3.4, and (15) yield

�d1;0d0;ÿ1 � d0;ÿ1d1;0��a ^ b� � �ÿ1�ud1;0a ^ d0;ÿ1b� a ^ d1;0d0;ÿ1b �
� �ÿ1�u�1d1;0a ^ zd0;ÿ1b� a ^ d0;ÿ1d1;0b

�
Xq
i�1

a ^ ai ^ �yXi ; d0;ÿ1�b

�
Xq
i�1

a ^ ai ^ �RU;Xi ; d0;ÿ1�b

� �KUd0;ÿ1 � d0;ÿ1KU ��a ^ b�;
where

KU �a ^ b� � �ÿ1�u
Xq
i�1

a ^ ai ^ RU ;Xib

for a and b as above. By the properties of the RU;Xi , it is clear that KU is independent
of the choices of the Xi , and moreover the restriction of KU to any open subset
U 0 � U of triviality for F is equal to KU 0 . Thus the KU de¢nes a global operator
K on O satisfying

d1;0d0;ÿ1 � d0;ÿ1d1;0 � Kd0;ÿ1 � d0;ÿ1K

which ¢nishes the proof of Proposition 3.1 since (see e.g. [2])

d1;0d0;1 � d0;1d1;0 � 0:

Remark 3. Proposition 3.1 is slightly stronger than (1) in Theorem A. In this case
K � L, and thus

D?D0 �D0D? � B1D0 �D0B2

with

B1 � K�P � KQ; B2 � QK� � PK

in Lemma 2.2. In particular B2 � B�1. Observe that, if K is symmetric, then D? ÿ K
commutes with D0 and thus with eÿtD0 . Therefore the proof of Theorem B would
follow with a much simpler induction argument. Of course K is not symmetric
in general.

Remark 4. The above proof of Proposition 3.1 gives explicit local descriptions of
K and L. But an alternative proof can be made by using Molino's description of
Riemannian foliations: It allows to reduce the proof to the case of transversely
parallelizable foliations, where our local arguments can be made globally.

Remark 5. In the setting of this section, Corollary 2.9 states that �D?;P� de¢nes a
bounded operator on each WkO.
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4. Case of Leafwise Di¡erential Forms with Appropriate Coe¤cients

Corollary C is proved in this section. Let thus F , M and V be as in the statement of
that result. Since any metric on the leaves, smooth on M, can be extended to a
bundle-like metric on M, then Corollary C follows directly from Theorem B when
V is any trivial Riemannian vector bundle with the trivial F -partial connection.

In the general case we follow Molino's idea to describe Riemannian foliations [24,
25]. Let p : F !M be the principal O(k)-bundle of orthonormal frames of V, where
k is the rank of V; observe that such an F is a closed manifold. The metric F -partial
connection on V can be understood as an O(k)-invariant vector subbundle
H � TF so that p� : Hf ! Tp�f �F is an isomorphism for every frame f 2 F . More-
over the £atness of the connection means that H de¢nes a completely integrable
distribution, and let thus F̂ be the corresponding foliation on F. It is clear that
F̂ is also a Riemannian foliation, p*V has a canonical trivialization as Riemannian
vector bundle, the pull-back of the partial connection on V is the trivial F̂ -partial
connection on p*V, and p* de¢nes an injection O�F ;V � ,!O�F̂ ; p�V �. Moreover
it is easy to check that, for the lift of any given metric on the leaves of F to the
leaves of F̂ , DF is the restriction of DF̂ by the above injection. Therefore Corollary
C for F and V follows from the case of F̂ and p*V.

5. The Space of Bundle-like Metrics

We prove Corollary D in this section. First we recall some technicalities from [9]. For
a given foliation F on a manifold M, let n � TM=TF , Q � S2�n��, and Q� � Q the
subbundle given by the positive de¢nite elements in Q. Hence C1�Q�� is the space
of metrics on the normal bundle n. Such metrics are the key point to prove Corollary
D because any metric g onM is uniquely determined by ¢xing three objects: A metric
gF on TF , a subbundleN � TM which is complementary of TF , and a metric �g on n.
In fact, �g determines a metric gN on N by the canonical isomorphism N � n, and g is
determined as the orthogonal sum of gF and gN . Conversely, g determines
gF � gjTF , N � TF? and �g as the only metric that corresponds to gjN by the above
isomorphism. According to this notation, the metric g is bundle-like if and only
if the corresponding metric �g is parallel with respect to the F -partial Bott connection
on S2�n��; i.e. dF ��g� � 0. Thus, by modifying only �g for each metric g, it is clear that
Corollary D follows from the following result by using Corollary C with V � Q.

LEMMA 5.1. Suppose F is Riemannian and M is closed with a ¢xed bundle-like
metric. Then the corresponding leafwise heat operator eÿtDF on O�F ;Q� preserves
C1�Q�� for each t 2 �0;1�.

Proof. Consider the metric �g on n determined as above by the bundle-like metric
on M. Let n1 be the sphere bundle over M given by the normal vectors of �g-norm
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one. Then the result follows by checking that, for any g 2 C1�Q��, we have

min
v2n1
�eÿtDF �g��v; v�X min

v2n1
�g�v; v� for all t 2 �0;1�:

This in turn follows by checking that, for any given T 2 �0;1�, if the map
v 2 n1 7! �eÿTDF �g��v; v� 2 R reaches the minimum at some vm 2 n1x for some
x 2M, then

@�eÿtDF �g�
@t

�vm; vm�
����
t�T

X 0:

This property can be proved as follows. Extend vm to a local ¢eldV of normal vectors
of �g-norm one satisfying dFV � 0; this is always possible on some open subset
U �M of triviality for F since dF �g � 0. Then, if P is the plaque in U containing
x, the restriction ft of �eÿtDF �g��V ;V � to P satis¢es the parabolic equation
@ft=@t� DPft � 0 and fT reaches the minimum at x; here DP is the Laplacian on
P. Hence

@ft
@t
�x�
����
t�T

X 0

by the maximum principle and the proof is completed. &

6. Dimension of the Space of Leafwise Harmonic Forms

Corollary E is proved in this section. With the notation of that corollary, let f be a
nontrivial integrable harmonic r-form on some leaf L with coef¢cients on V. Such
f determines a continuous linear functional ~f on Opÿr(F , V*), p � dimF , given by

~f�c� �
Z
L
f ^ cjL

Thus ~f is a singular element in WkOr(F , V) for some negative k 2 Z. Take any
sequence fi in Or(F , V) converging to f in WkOr(F , V). By Corollary C, Pfi

is a sequence in Or�F ;V � \ kerDF converging to the singular ~f � P ~f in
WkOr�F ;V �, and so the Pfi generate a space of in¢nite dimension.

7. Application to the Second Term of the Spectral Sequence of Riemannian
Foliations

The objective of this section is to prove Theorem F. Consider thus the notation and
conditions introduced to state this result.

LEMMA 7.1. D1 and ~D1 are essentially self-adjoint in L2H1 and L2 ~H, respectively
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Proof. By Theorem 2.2 in [10],D? is essentially self-adjoint in L2O. Then, by using
e.g. Lemma XII.1.6-(c) in [13], so is PD?P because P is a bounded self-adjoint
operator on L2O. But PD?P is equal to D1 in L2H1 and vanishes in its orthogonal
complement. Hence D1 is essentially self-adjoint.

The proof that ~D1 is essentially self-adjoint is similar. &

LEMMA 7.2. We have the following properties:

(i) DPÿPD?P de¢nes a bounded operator on L2O.
(ii) For each v 2 Z, D ~P�;v ÿ ~P�;vD ~P�;v de¢nes a bounded operator on L2O.

Proof. Property (i) can be proved as follows. Because D0P � 0, we get

DPÿPDP � �idÿP�D?P� �d2;ÿ1 � dÿ2;1�P:

which is bounded on L2O by Remark 5 and the formula

�idÿP�D?P � �D?;P�P:

The proof of property (ii) is slightly more complicated. If f � f1 � f2 2 ~H�;v1 with

f1 2 d0;1�O�;vÿ1� and f2 2 d0;ÿ1�O�;v�;

then

d0;1f1 � d0;ÿ1f2 � 0; d0;ÿ1f1; d0;1f2 2 ~H�;v1
yielding

�D0 ~P�;v ÿ ~P�;vD0 ~P�;v�f � 0:

Hence, since d2;ÿ1 � dÿ2;1 is of order zero, it is enough to prove that

D? ~P�;v ÿ ~P�;vD? ~P�;v

de¢nes a bounded operator on L2O. But this operator is clearly equal to

PD? ~P�;v � ~P�;vÿ1D? ~P�;v � ~P�;v�1D? ~P�;v: �18�

Moreover

PD? ~P�;v � �P;D?� ~P�;v
which is bounded on L2O by Remark 5. Therefore the result follows once we have
proved that the last two terms of (18) de¢ne bounded operators on L2O. In fact,
by taking adjoints, it is enough to prove that one of them de¢nes a bounded operator
for arbitrary v.
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Let f � f1 � f2 as above. Then obviously ~P�;vÿ1D?f1 � 0. On the other hand, f2

is the C1 limit of d0;ÿ1ci for some sequence ci in O�;v. So

D?f2 � lim
i
�ÿd0;ÿ1D? � Kd0;ÿ1 � d0;ÿ1K�ci

by Proposition 3.1, yielding

~P�;vÿ1D?f � ~P�;vÿ1Kf

because ~P�;vÿ1d0;ÿ1O�;v � 0 and ~P�;vÿ1 is continuous on O. Thus ~P�;vÿ1D? ~P�;v is
bounded on L2O. &

De¢ne the norms k � kD1;k on H1 and k � k ~D1;k
on ~H1 by setting

kfkD1;k � k�id�D1�kfk0; kck ~D1;k
� k�id� ~D1�kck0;

and let WkH1 and Wk ~H1 be the corresponding completions of H and ~H1. Then the
following result follows directly from Lemma 7.2.

COROLLARY 7.3. The restrictions of the kth Sobolev norm k � kk to H1 and ~H1 are
respectively equivalent to the norms k � kD1;k and k � k ~D1;k

. Thus WkH1 and Wk ~H1 are
the closures of H1 and ~H1 in WkO, respectively.

The inclusions Wk�1H1 ,!WkH1 and Wk�1 ~H1 ,!Wk ~H1 are compact operators
by Corollary 7.3. Then, by Proposition 2.44 in [6] and Lemma 7.1, the Hilbert spaces
L2H1 and L2 ~H1 have complete orthonormal systems, ffi : i � 1; 2; . . .g � H1 and
f ~fi : i � 1; 2; . . .g � ~H1, consisting of eigenvectors of D1 and ~D1, respectively, so that
the corresponding eigenvalues satisfy 0W l1 W l2 W . . ., 0W ~l1 W ~l2 W . . ., with
li " 1 if dimH1 � 1 and ~li " 1 if dim ~H1 � 1. Thus it only remains to check
that ~l1 > 0 to complete the proof of Theorem F; i.e. to check that ker ~D1 � 0

For each v 2 Z let

Zv �
M
w<v

O�;w � ker�d0;1 : O�;v ! O�;v�1�;

Bv �
M
w<v

O�;w � d0;1�O�;vÿ1�:

The bigrading of O is used to de¢ne these spaces only for the sake of simplicity,
indeed they depend only on F [1, 30]. The de Rham derivative preserves the above
spaces, and the quotient topological complex Bv=Bv is canonically isomorphic to
( �01; d1). Moreover we have the following known result whose proof is easy and does
not require that F be Riemannian and M closed.

LEMMA 7.4 (V. Sergiescu [30]; see also [1]). The cohomology of the quotient
complex Bv=Zvÿ1 is trivial.

150 J. A. ÄLVAREZ LÖPEZ AND Y. A. KORDYUKOV

https://doi.org/10.1023/A:1002492700960 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002492700960


On the other hand, the decomposition (2) in Theorem B implies that the inclusion
~H�;v1 ,!Bn induces an isomorphism ~H�;v1 � Bv=Zvÿ1 of topological vector spaces
whose inverse is induced by ~P �;v. Moreover ~d1 corresponds to differential map
of the quotient complex Bv=Zvÿ1. Hence ~d

2
1 � 0, and

ker ~D1 � H ~H1; ~d1

� �
� H Bv=Zvÿ1

ÿ �
as topological vector spaces. Furthermore

H Bv=Zvÿ1
ÿ � � H Bv=Bv

ÿ � � H �0
�;v
1 ; d1

� �
� 0

as vector spaces by Lemma 7.4, and

H�Bv=Bv� � H �0
�;v
1 ; d1

� �
� 0

by Theorem G. This completes the proof of Theorem F.

Remark 6. Observe that the duality stated in TheoremG can be realized as follows.
When M is oriented, the corresponding Hodge star operator commutes with P and
D1, and thus induces duality in kerD1.

Remark 7. Let E(l) and ~E�~l� be the eigenspaces corresponding to eigenvalues l of
D1 and ~l of ~D1. This eigenspaces have bigradings induced by the bigradings ofH1 and
~H1. Then, if M is oriented, the Hodge star operator also induces duality
E�l�u;v � E�l�qÿu;pÿv, and skew duality ~E�~l�u;v � ~E�~l�qÿuÿ1;pÿv�1.

Remark 8. If we use appropriate zero order modi¢cations of D? , then we get the
Hodge theoretic version of the results of [12], which have important implications
about tenseness.
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and Geometry in Foliated Manifolds, Proc. VII Internat. Colloq. Differential Geometry,
Santiago de Compostela, 26^30 July 1994, World Scienti¢c, Singapore, 1995, pp. 113^136.

21. Ledrappier, F.: Harmonic 1-forms on the stable foliation, Bol. Soc. Brasil.Mat. 25 (1994),
121^138.

22. March, P., Min-Oo, M. and Ruh, E. A.: Mean curvature of Riemannian foliations,
Canad. Math. Bull 39 (1996), 95^105.

23. Masa, X.: Duality and minimality in Riemannian foliations, Comment. Math. Helv. 67
(1992), 17^27.
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