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Decoherence in quantum walks – a review
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The development of quantum walks in the context of quantum computation, as

generalisations of random walk techniques, has led rapidly to several new quantum

algorithms. These all follow a unitary quantum evolution, apart from the final measurement.

Since logical qubits in a quantum computer must be protected from decoherence by error

correction, there is no need to consider decoherence at the level of algorithms. Nonetheless,

enlarging the range of quantum dynamics to include non-unitary evolution provides a wider

range of possibilities for tuning the properties of quantum walks. For example, small

amounts of decoherence in a quantum walk on the line can produce more uniform

spreading (a top-hat distribution), without losing the quantum speed up. This paper reviews

the work on decoherence, and more generally on non-unitary evolution, in quantum walks

and suggests what future questions might prove interesting to pursue in this area.
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1. Introduction

The study of quantum versions of random walks is easily motivated. They have provided

the engine for several new quantum algorithms, they are of mathematical interest in their

own right, and in physical systems they form a simple example of coherent quantum

control over single atoms or photons. They have also found applications from the early

days of quantum computation as the clock mechanism in a Feynman computer (Feynman

1986). The role of decoherence requires more explanation. In physical systems we must, of

course, consider the effects of decoherence when designing our experiments, but this alone

does not qualify it as a subject for more general study. Decoherence plays a fundamental

role in moving from the quantum to the classical regime. Quantum walks are simple

systems in which the intricacies of decoherence can be studied both analytically and

numerically, making connections with fields such as quantum chaos. Taking a broad view

of decoherence as any process that tends to reduce quantum coherence, we find that

it provides a method for tuning quantum random walks to improve their algorithmic

properties. Instead of restricting ourselves to pure quantum dynamics, we can include

non-unitary operations in our quantum random walk algorithms, thereby enlarging the

toolbox for controlling their behaviour.

The origins of quantum walks can be traced back to the dynamics of quantum diffusion,

which has been well studied in the physics literature, see for example, Feynman et al. (1964),

mostly as models for physical particles moving on regular lattices. Studies of quantum

dynamics using a discrete time step, described as ‘quantum random walks’, appeared from

the late 1980s, including Gudder (1988), Grossing and Zeilinger (1988) and Aharonov

et al. (1992), the last with quantum optical applications in mind. Meyer (1996b) studied

similar systems with the aim of defining quantum cellular automata (Meyer 1996a).

The current surge of interest in the context of quantum information started with Farhi

and Gutmann (1998) for continuous-time quantum walks, and continued with Aharonov

et al. (2001), Ambainis et al. (2001) and Nayak and Vishwanath (2000) for discrete-time

quantum walks, all with the goal of applying them to quantum algorithms. As with

classical random walks, there are a wide range of possible dynamics that fit within

https://doi.org/10.1017/S0960129507006354 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006354


Decoherence in quantum walks 1171

the general concept: for example, Gottlieb (2004) and Gottlieb et al. (2005) defined a

discrete-time walk with a continuous space and a coin with a continuous set of states.

In this review we will start with a short overview of purely quantum versions of random

walks as studied by the quantum information community in their quest for new quantum

algorithms, then in later sections we will consider the added effects of decoherence. We will

cover discrete-time, coined quantum walks in Section 2, then continuous-time quantum

walks in Section 3. We mention algorithmic applications in Section 4, briefly describing

two well-known algorithms using quantum walks. In Sections 5 and 6 we consider the

effects of decoherence in quantum walks, focusing mainly on its use as a tool for enhancing

computational speed up. There are several proposals for implementing a quantum walk

directly in a physical system, and most of these studies also contribute an analysis of the

decoherence relevant to the physical system in question: we provide a short summary of

these studies in Section 7. In general, we deal only with quantum walks on undirected

graphs, with a brief summary of what is known about the largely unexplored realm of

directed graphs in Section 8.

This review will assume a basic familiarity with quantum mechanics and quantum

information theory. Those wishing to get up to speed on these areas in the context of

quantum walks are referred to the excellent and comprehensive introductory review in

Kempe (2003a), which just assumes a basic knowledge of quantum mechanics. Those

desiring a gentle overview of quantum walks in the context of quantum computing

should see Kendon (2006b). A brief but accessible review of quantum walk algorithms

from a computer science perspective (with no mention of decoherence) may be found in

Ambainis (2003).

The mathematical results and proofs for quantum walks without decoherence have

been presented in great detail and elegance in the original literature: this review sum-

marises what is known without presenting formal proofs but with ample references for

those interested in pursuing them further. Fewer analytic results have been derived for

decoherence effects: those that exist are presented in more detail, along with summaries of

many related ideas, highlighting the myriad of open avenues that remain to be explored.

2. Coined (discrete-time) quantum walks

In this section we describe quantum walks taking place in a discrete space of positions,

with an evolution using discrete time steps. Just as there are many ways to express the

dynamics of classical random walks, and many variations on the basic ‘drunkard’s walk’,

the plethora of different studies of quantum walks have proliferated an equally varied set

of notations. For this review, we have chosen one of the more commonly used approaches,

and try to maintain a consistent notation, with mention of alternative methods where

appropriate. To keep the notation simple, we have taken the liberty of using the same

symbols for common quantities throughout, with the precise definition implied by the

context. For example, P (x, t) is a probability distribution over a set of positions denoted

by x at a time t during the evolution. In the section on the quantum walk on the line,

P (x, t) is for the walk on the line, in the section for the walk on a cycle P (x, t) is for the
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walk on a cycle, and so on. Additional independent variables may appear where needed:

for example, P (x, a, t) is a probability distribution with the coin state a also specified.

We begin with a brief description of one of the simplest examples, the quantum walk on

the line. This will serve both to set up our notation and to indicate the methods of solution.

It will also illustrate the first key difference between quantum and classical random walks,

the enhanced rate of spreading. This is followed by a discussion of quantum walks on

cycles, illustrating several more key differences between classical and quantum random

walks. We will conclude this section with a brief review of coined quantum walks in

higher dimensions, on general graphs and regular lattices.

2.1. Coined quantum walk on an infinite line

In much the same way as we now know almost everything about the properties and

possible states of two qubits – though quantum computers will clearly need far more than

two qubits to be useful – the simple quantum walk on a line has now been thoroughly

studied (see, for example, Ambainis et al. (2001), Bach et al. (2004), Yamasaki et al.

(2002), Kendon and Tregenna (2003), Brun et al. (2003a; 2003c), Konno et al. (2004),

Konno (2002) and Carteret et al. (2003)), though there is no suggestion that it will lead

to useful quantum walk algorithms by itself.

First, recall the classical random walk dynamics for which we are seeking a quantum

counterpart. The walker starts at the origin of an infinite line of discrete points (labelled

. . .−2,−1, 0, 1, 2 . . . ) and tosses an unbiased, two-sided coin. If the coin lands ‘heads’

the walker makes one step in the positive direction; if it lands ‘tails’ the walker steps

in the negative direction. This process is repeated T times, and the position of the

walker is noted: −T � x � T . If the random walk is repeated many times, the probability

distribution P (x, T ) obtained is binomial, as is well known and easily shown. The standard

deviation of P (x, T ) is
√
T , that is, the walker is found on average

√
T steps from the

origin after T steps of the random walk.

One obvious approach to creating a quantum counterpart of a classical random walk is

to have the quantum walker follow all possible classical random walks in superposition.

This is not feasible in the discrete-time quantum walk, as was shown in Meyer (1996b),

because it is not reversible, and therefore not unitary (which all pure quantum dynamics is

required to be). We thus take a different approach to making the quantum walk dynamics

as similar as possible to the classical random walk by using a quantum coin. Historically,

the role of the quantum coin has caused much confusion, and an equivalent formulation

presented in Watrous (2001) using directed graphs seems to be preferred by some computer

scientists. For brevity and clarity, in this review we will stick to the formulation using

a quantum coin, with brief mention of the Watrous variant in Section 8. The quantum

walker on the line starts at the origin and tosses a two-state quantum system (a qubit).

The qubit coin – also called ‘chirality’ with the two states labelled ‘left’ and ‘right’ in many

papers – can be in a superposition of both states, say

|ψ(t = 0)〉 = α|0,−1〉 + βeiφ|0,+1〉, (1)

where the ‘ket’ |·〉 is a standard quantum notation to indicate the complex vector of a
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pure quantum state. On the right-hand side the kets are basis states: the first entry is the

position on the line (x = 0 in this case), and the second is the state of the quantum coin,

where we choose to label the two states |±1〉. There is an arbitrary phase 0 � φ < 2π,

while α and β are real numbers, with normalisation α2 + β2 = 1. The quantum walker

then steps in both directions according to the state of the quantum coin, giving

|ψ(t = 1)〉 = α|−1,−1〉 + βeiφ|1,+1〉. (2)

Keeping to a pure quantum (that is, unitary) evolution for the moment, the coin toss and

step can be written as unitary operators C and S. A single step of the quantum random

walk is thus

|ψ(t+ 1)〉 = SC|ψ(t)〉, (3)

where |ψ(t)〉 can be expanded as a superposition of basis states,

|ψ(t)〉 =
∑
x,c

ax,c(t)|x, c〉, (4)

with complex coefficients ax,c(t) satisfying
∑

x,c |ax,c(t)|2 = 1. After T steps we have

|ψ(T )〉 = (SC)T |ψ(0)〉. (5)

The shift operator S has already been specified implicitly by equations (1) and (2): it

can be defined by its operation on a basis state |x, c〉,

S|x, c〉 = |x+ c, c〉. (6)

We still need to specify the coin toss C, which can in principle be any unitary operator

on the space of a qubit. The equivalence up to a bias (probability η, 0 � η � 1, to move

in the positive direction, (1 − η) in the negative direction) of all coin operators in the

walk on a line has been noted by several authors (Ambainis et al. 2001; Bach et al. 2004;

Yamasaki et al. 2002). Expressing the unitary operator as a matrix we have

C2 =

( √
η

√
1 − η√

1 − η −√
η

)
, (7)

which is thus the only possible type of coin for the quantum walk on a line. For η = 1/2

(unbiased), C(H)
2 is commonly known as a Hadamard operator,

C(H)
2 =

1√
2

(
1 1

1 −1

)
, (8)

thus the simple quantum walk on a line is also known as a Hadamard walk. Trivial

cases η = 0,1 give oscillatory motion and uniform motion, respectively. The full range of

behaviour is obtained by choosing different initial coin states, that is, varying α, β, φ in

equation (1).

The quantum walk on the line can be solved analytically in many ways. Straightforward

generalisations of methods that work well for classical random walks, such as path

counting, and Fourier transformation were both used in Ambainis et al. (2001). We

will give examples using these methods in Section 5. Path counting (path integrals) was

further refined in Carteret et al. (2003), and a third method using the algebra of the matrix
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Fig. 1. Comparison of a classical (dots) random walk and a quantum (crosses) walk with initial

coin state |−1〉 and a Hadamard coin operator on a line after 100 steps. Only even points are

shown since odd points are unoccupied at even time steps (and vice versa).

operators was presented in Konno (2002; 2005a). A solution using the tools of classical

(wave) optics can be found in Knight et al. (2003; 2004). Romanelli et al. (2003) analysed

the walk on the line by separating the dynamics into Markovian and interference terms,

allowing an alternative method of solution for the long-time limits, which they relate to

the dynamics of a kicked rotor. They also show that in the continuum limit one obtains

the diffusion equation with added interference terms.

The best way to appreciate the most interesting properties of the solution is in a graph,

shown in Figure 1, of the probability distribution of the position of the walker,

P (x, T ) =

+1∑
c=−1

|〈c|ψ(T )〉|2, (9)

which is obtained in the standard way by tracing out the coin and taking the square

modulus of the wavefunction. The quantum walk looks nothing like the classical random

walk, it spreads out much faster in a spiky distribution that is a discrete form of an Airey

function (Carteret et al. 2003). It is also asymmetric, with the asymmetry determined by

the initial coin state. A symmetric distribution can be obtained by choosing the initial

coin state as either (|−1〉 ± i|+1〉)/
√

2, or cos(π/8)|−1〉 − sin(π/8)|+1〉, see Konno et al.

(2004) and Tregenna et al. (2003). The moments have been calculated in Ambainis et al.

(2001): for asymptotically large times T for a walk starting at the origin,

σ2(T ) = 〈x2〉 = (1 − 1/
√

2)T 2, (10)

independent of initial coin state, and

〈x〉a = a(1 − 1/
√

2)T , (11)

where a ∈ {1,−1} is the initial coin state. The standard deviation (from the origin) σ(T )

is thus linear in T , in contrast to
√
T for the classical walk. Moreover, unlike the classical

random walk, the quantum walk evolution depends on the initial state at all subsequent

times.
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2.2. Coined quantum walk on an N-cycle: mixing times

The N-cycle is the Cayley graph of the cyclic group of size N. It is also a line segment

with periodic boundary conditions applied, so there is little extra work to do to apply the

solution of the quantum walk on the line to the quantum walk on the cycle. In general,

when a quantum walk occurs on the Cayley graph of some group, it is greatly simplified

by considering the Fourier space of the particle (Aharonov et al. 2001). On cycles, we

are not interested in how far the walker strays from its starting point, but in the mixing

properties of the distribution on the cycle. Classical random walks on a cycle mix to a

uniform distribution in a time O(N2). That is, after O(N2) time steps, the walk has all but

forgotten its starting state and is equally likely to be found on any site around the cycle.

More formally, we can choose any small ε and find the mixing time M(ε) such that

M(ε) = min {T | ∀ t > T : ||P (x, t) − Pu||tv < ε} (12)

where Pu is the limiting distribution over the cycle, and the total variational distance is

defined as

||P (x, T ) − Pu||tv ≡
∑
x

|P (x, T ) − Pu|. (13)

In general, any reasonable distance function will do the job here, but we will stick with

one commonly used in the literature so that we can make quantitative comparisons. For

a classical random walk on a cycle, M(ε) ∼ O(N2 log(1/ε)).

In the quantum walk on the cycle, the first observation is discouraging: quantum

random walks are deterministic, they oscillate forever, and, in general, do not mix even

instantaneously. But by defining a time-averaged distribution,

P (x, T ) =
1

T

T∑
t=1

P (x, t), (14)

quantum walks on cycles do mix. Operationally, this just means randomly choosing a value

of t between 1 and T , then measuring the position of the quantum walker after t steps.

However, unlike the classical random walk, the limiting distribution lim{T → ∞}(P (x, T ))

for a quantum walk is not, in general, the uniform distribution. This is in stark contrast

with a classical random walk, which always mixes to the uniform distribution (on a

regular undirected graph).

Exactly as for M(ε) above, we can then define the mixing time for P (x, T ), which we

will denote M(ε),

M(ε) = min
{
T | ∀ t > T : ||P (x, t) − Pu||tv < ε

}
. (15)

Aharonov et al. (2001) proved that the coined quantum walk on a cycle with an odd

number of nodes does mix to the uniform distribution, and has M(ε) bounded above by

O(ε−3N logN), which is almost quadratically faster (in N) than a classical random walk.

They also proved a lower bound on the time-averaged mixing times for quantum walks

on general graphs of bounded degree, suggesting a quadratic improvement over classical

random walks is the best that can be achieved.
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Note that there is a price to be paid for the time-averaging: the scaling of the mixing

time M(ε) depends on 1/ε, compared to log(1/ε) for a classical random walk (where

no time-averaging of P (x, T ) is needed). Aharonov et al. (2001) showed that this can

be avoided by including an amplification step. The quantum walk is run several times,

each time starting from the final state of the previous walk. Applied in the optimal

way, their bound on the quantum mixing time reduces to O(N logN log(1/ε)). Recent

work by Richter improves this result to O(N log(1/ε)) (Richter 2007a; 2007b). Since the

intermediate measurements render the overall quantum walk dynamics non-unitary, we

will postpone more detailed discussion to Section 5.5.

This speed up in the rate of mixing of quantum walks is a second key difference

between quantum and classical random walks. We can also say a little more about their

non-classical limiting distributions. For example, Hadamard walks on cycles with an odd

number of nodes converge to the uniform distribution (as was proved in Aharonov et al.

(2001)), but those with an even number converge to a non-uniform distribution unless an

extra phase δ is added to the Hadamard coin operator

C2 =

( √
η eiδ

√
1 − η

e−iδ√
1 − η −√

η

)
, (16)

as Tregenna et al. (2003) and Bednarska et al. (2003) show. By an appropriate choice of

coin operator, a walk on any size cycle can be made to converge to either a uniform

or non-uniform probability distribution. In classical random walks, the properties of the

limiting distribution depend solely on the form of the graph.

2.3. Periodicity in coined quantum walks on cycles

A further curious property of quantum walks on cycles is that for a few special choices

of cycle size N, a perfectly periodic walk arises where the quantum walk returns exactly

to its starting state after a fixed number of steps Ω, and then repeats the sequence over

again, returning at 2Ω, and so on. The classical random walk has no such behaviour

and returns to its initial state only after an irregular numbers of steps. This periodicity is

not connected with whether the limiting distribution is uniform or not, since here we are

concerned with exact return to the initial state, rather than the time-averaged quantity in

equation (14). Some of these periodic walks also mix instantaneously, if we allow a walk

on an even cycle to be considered mixed on just the odd or just the even-numbered

sites (the same issue arises when considering classical random walks on even-sized

cycles).

Using a Hadamard coin, the ‘cycle’ of size N = 2 is trivially periodic, returning to its

original state after two steps. A cycle of size N = 4 has a period of eight steps. This

was first noted in Travaglione and Milburn (2002). Tregenna et al. (2003) continued this

investigation, and found the cycle with N = 8 has a period of 24 steps, but N = 16 is

chaotic, and does not return to its initial state exactly, even after many thousands of

steps. These periodic cycles also exhibit instantaneous mixing half way through on their

way to returning to the initial state, but instantaneous mixing has not been systematically

studied in discrete walks on the cycle. If the coin is allowed to be biased, a few more
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periodic examples can be found, N = 6 with period 12, and N = 10 with period 60. With

judicious choice of phases in the coin operator, N = 3 has a period of 12, and N = 5

has a period of 60, which is clearly related to N = 6 and N = 10, respectively, but these

were the only periodic odd-N cycles found. It is not known whether all periodic quantum

walks on a cycle have been identified, but Tregenna et al. (2003) conjectures that there

are only a finite number of such solutions and that this is nearly all if not all of them.

Neither periodicity nor instantaneous mixing has been explored on more general graphs

beyond the trivial extensions of the above to the torus and twisted torus in Tregenna et al.

(2003).

2.4. Coined quantum walks on higher dimensional graphs

Classical random walks are not limited to one-dimensional structures, and neither are

quantum walks. All that is required for the discrete-time quantum walk is a coin that is

large enough to handle the number of choices at each vertex the quantum walker might

land on.

Consider a general graph G, with N vertices in a set V , connected by edges from the set

E. How one proceeds depends on what prior knowledge one has about V and E. Since

we are just discussing undirected graphs, if vertices x, y ∈ V are connected by an edge

exy ∈ E, then eyx ∈ E also, and one is allowed to travel both from x to y and from y to x.

The usual way to represent the structure of the graph is in an adjacency matrix A, which

has unit entries for each Axy for which exy ∈ E, and zeros everywhere else. Since Axy = Ayx
for an undirected graph, A is symmetric. This representation of the graph assumes that

exy is unique, that is, there is at most one edge between any two vertices in G. Classically,

one can subsume multiple edges between the same vertices into a set of ‘edge weights’.

However, a quantum walker might traverse both edges at once but with different phases,

which would, in general, have a different outcome to one weighted edge.

Given no further information about G, there could be as many as N(N − 1)/2 edges,

corresponding to the complete graph, for which every vertex has N−1 edges leading from

it. In this case the coined quantum walk needs to use a coin of at least this size (N − 1),

the details of how to implement this quantum walk may be found in Kendon (2006a).

If we know the maximum degree of the graph, d, we only need a coin of size d. The

details of how to implement this quantum walk, originally from Watrous (2001), are more

accessibly described in Ambainis (2004) and Kendon and Sanders (2004). A different

approach, using self-loops to make the degree of the graph constant, is mentioned in

Kempe (2003a).

Here we summarise the approach given in Kendon and Sanders (2004). First we define

our Hilbert space, Hvc, for the quantum walk. This contains the N-dimensional Hilbert

space

Hv = span{|x〉v : x ∈ �N, v〈x|x′〉v = δxx′ } ⊂ Hvc (17)

of vertex states, and, for the coin, a d-dimensional Hilbert space

Hc = span{|c〉c : c ∈ �d, c〈c|c′〉c = δcc′ } (18)
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where d is the degree of the graph. The basis states of Hvc are given by

Bvc = {|x, c〉 ≡ |x〉v|c〉c; x ∈ �N, c ∈ �d} (19)

with cardinality Nd. For a basis state |x, c〉, the index x identifies the vertex number and

c the cth state of the coin. For an edge exx′ , we associate the coin state c with the edge at

vx, and the coin state c′ with the other end of the edge at vx′ . The values of c and c′ are

arbitrary, but fixed throughout the quantum walk to ensure the quantum walker traverses

the the graph in a consistent manner. We define the mapping

ζ : �N × �d → �N × �d : (x, c) 
→ ζ(x, c) = (x′, c′), (20)

where (x, c) and (x′, c′) label each end of exx′ .

The unitary quantum walk evolves by repetition of two steps: a coin toss and a

conditional swap. The coin operator

C : Hvc → Hvc : |x, c〉 
→
∑
c̃∈�d

Cx
cc̃|x, c̃〉c (21)

is a block diagonal matrix with each block labelled by x. The x-dependence of the

coin matrix allows sufficient freedom in the quantum walk dynamics for the quantum

coherence properties of the coin to vary between vertices, for vertices to act as origins

and endpoints, and for vertices to have different degrees from each other. If vx has degree

dx < d, we require Cx
cc̃ = 0 for all c̃ values not used to label an edge at vx. This restricts

the coin operator so that it only produces states that have a valid mapping under ζ. If

Cx
cc̃ = Cx′

cc̃∀x, x′, (22)

we have the special case of a fixed degree graph where the coin operator is identical for

all vertices, as in the walk on a line or cycle described in the previous sections.

The unitary conditional swap operator is given by

S : Hvc → Hvc : |x, c〉 
→ |x′, c′〉, (23)

which updates the position of the walker and the coin state according to the mapping ζ

in equation (20), that is, it moves the walker and coin to the vertex vx′ along edge exx′ .

We note that by our stipulation that c and c′ label opposite ends of exx′ , it follows that

S = S−1, and is thus unitary, as required for quantum evolution. The sequence of a coin

flip and a conditional swap is a transition over the unit time step, which we denote by

unitary U = SC. The quantum walk can then be written

|ψ(t)〉 = Ut|ψ(0)〉, (24)

where |ψ(t)〉 and |ψ(0)〉 can be expressed in basis states as per equation (4).

2.5. Coined quantum walks on regular lattices

Generally, we can only find analytical solutions of equation (24) for special graphs of fixed

degree and high symmetry (see, for example, Grimmett et al. (2004)). The scattering theory

methods of Feldman and Hillery (2004) are worth noting as a possible exception, though
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few applications have been presented. Numerical studies are less constrained, due to the

simplicity of the step-by-step evolution of quantum walks. Examples of quantum walks on

various graphs of degree larger than two can be found in Mackay et al. (2002), Tregenna

et al. (2003) and Carneiro et al. (2005), and in the quantum walk search algorithm in

Shenvi et al. (2003) – see Section 4.1. Many of the basic results for quantum walks on the

line and cycle, such as faster spreading, carry over to higher dimensional graphs. This was

shown numerically for regular lattices of degree three and four in Mackay et al. (2002).

However, higher dimensional coins have a much wider set of possible types of coin

operators, and further numerical study (Tregenna et al. 2003) shows that the quantum

speed up is not automatic for all possible choices.

The role of lattice symmetry combined with the symmetry in the dynamics of the

quantum walk in determining the spreading has been further studied and clarified in

Krovi and Brun (2006a; 2006b). Most of the examples studied to date have a high degree

of symmetry, and it makes sense to choose a quantum coin operator that reflects the

symmetry in the problem. Two examples are worth noting. First, the DFT (discrete Fourier

transform) coin operator is unbiased, but asymmetric in that you cannot interchange

the labels on the directions without changing the coin operator. First used in Mackay

et al. (2002), for d = 3 it looks like

C(D)
3 =

1√
3

⎛
⎝ 1 1 1

1 eiω e−iω

1 e−iω eiω

⎞
⎠ , (25)

where eiω and e−iω are the complex cube roots of unity, For d = 2, the DFT coin reduces

to the Hadamard coin, equation (8), though this is not the only way to generalise the

Hadamard coin to higher dimensions (see, for example, Tregenna et al. (2003) and Tadej

and Życzkowski (2006)). Quantum walks using the DFT coin operator have interesting

non-classical properties, which have been studied in Mackay et al. (2002), Tregenna

et al. (2003), Carneiro et al. (2005) and Krovi and Brun (2006a), but none of them have

yet provided any quantum algorithms.

The second commonly used coin operator is a highly symmetric coin based on Grover’s

diffusion operator (Grover 1996) with elements 2/d− δij , which in matrix form for d = 3

is

C(G)
3 =

1

3

⎛
⎝ −1 2 2

2 −1 2

2 2 −1

⎞
⎠ . (26)

The Grover coin is biased but symmetric, it is the symmetric unitary operator furthest

from the identity. It was first used in quantum walks in Watrous (2001), and is the

key ingredient in the quantum walk searching algorithm in Shenvi et al. (2003) – see

Section 4.1. Inui et al. (2004) studied the localisation properties related to searching on a

two-dimensional lattice. Szegedy (2004a; 2004b) introduced a generalisation of the Grover

coin that quantises an arbitrary Markov chain: essentially this allows for edge weights on

the graph, and works for graphs of variable degree as well as regular graphs.
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2.6. Coined quantum walk on the hypercube: hitting times

In one of the few analytical studies of coined quantum walks in higher dimensions,

Moore and Russell (2002) used a Grover coin for the hypercube, which has 2n vertices

each of dimension d = n. The n-dimensional hypercube is the Cayley graph of �n
2, so the

solution follows the same general method as for the line and the N-cycle, using Fourier

transformation of the position space. Moore and Russell (Moore and Russell 2002)

determined from this solution that the discrete-time quantum walk on the hypercube of

size n has approximate instantaneous mixing times:

Minst(ε) = {t : ||P (x, t) − Pu||tv < ε} (27)

for t = nkπ/4 for all odd k > 0 and ε = O(n−7/6). This is an improvement over a classical

random walk, which mixes in time O(n log n), but requires measurement of the quantum

walk at exactly the right time (otherwise the walk ‘unmixes’ again as it proceeds). They

also consider P (x, t), and find, using the methods of Aharonov et al. (2001), that M(ε) is

exponentially large, O(2n).

These results for mixing times are discouraging, but there is another useful property one

can test on a hypercube: hitting times. Kempe (2003b; 2005) proved that a quantum walk

can travel from one corner of a hypercube to the opposite corner exponentially faster

than a classical random walk. Kempe defines two different hitting times: instantaneous,

where one measures the destination corner at the optimal time; and concurrent, where one

checks the destination after each step to see if the walker has arrived yet. This gives us our

first taste of non-unitary evolution in a quantum walk, since measuring the destination

node at each step destroys some of the coherences in the quantum state. Recent work in

Krovi and Brun (2006a) expands on these ideas, and we will describe them in more detail

in Section 5.6. There are other classical algorithms that can cross a hypercube efficiently,

so it does not provide a quantum algorithm with a true advantage over classical ones.

3. Continuous-time quantum walks

Continuous-time quantum walks on a discrete lattice have their origins as far back as

Feynman et al. (1964). Their use for quantum algorithms was first suggested in Farhi

and Gutmann (1998), which showed numerically that they can reach the ends of certain

network configurations more efficiently than classical random walks. A proven exponential

speed up in a quantum algorithm using a continuous-time quantum walk came a few

years later in Childs et al. (2003), which we will briefly describe in Section 4.2. In this

section we will first describe the continuous-time quantum walk dynamics on a general

graph, then compare it (numerically) with the discrete-time walk on the line. We will then

give two further examples, on cycles and hypercubes, that we will need later.

3.1. Continuous-time quantum walks on general graphs

The continuous-time quantum walk naturally works on any undirected graph. Farhi and

Gutmann (1998) simply used the adjacency matrix A, which is symmetric for an undirected
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graph and therefore Hermitian, to form the Hamiltonian for the evolution of the quantum

state:

i
d

dt
〈x|ψ(t)〉 =

∑
y

〈x|H|y〉〈y|ψ(t)〉. (28)

Here H = γA, where γ is the hopping rate per edge per unit time, and |ψ(t)〉 is now a

vector in the Hilbert space of position (vertices in the graph) only (no coin). Continuous-

time quantum walks achieve what was impossible without a coin in a discrete-time

quantum walk: the traversing of all possible paths in superposition. The formal solution

of equation (28) is

|ψ(t)〉 = e−iγAt|ψ(0)〉. (29)

On the same graph, a continuous-time classical random walk evolves as

d

dt
P (x, t) = γ

∑
y

{AxyP (y, t) − AyxP (x, t)} . (30)

Comparing equation (28) with equation (30) shows that in the quantum walk, the second

term, which is necessary for the conservation of probability, is missing. We only need

a Hermitian operator for quantum evolution, and since Axy = Ayx guarantees this, we

are free to examine this dynamics as well as that obtained in more direct analogy to

equation (30) by using the Laplacian,

i
d

dt
〈x|ψ(t)〉 = γ

∑
y

{〈x|A|y〉〈y|ψ(t)〉 − 〈y|A|x〉〈x|ψ(t)〉} . (31)

For graphs where all the vertices are of the same degree d, the Hamiltonian in

equation (31) becomes H = γ(A − d11), and the solution to this can be written

|ψ(t)〉 = e−iγ(A−d11)t|ψ(0)〉. (32)

Since A commutes with the identity, the two terms in the exponential can be factored,

giving

|ψ(t)〉 = e−iγAteiγd11t|ψ(0)〉. (33)

The factor eiγd11t is only an irrelevant global phase, which makes no difference to observable

quantities if omitted (Ahmadi et al. 2003), thus equation (33) is equivalent to equation (29)

for graphs of fixed degree. For graphs of general degree, however, the dynamics with the

second term included will have a different evolution, as Childs and Goldstone (2004a)

pointed out. So far, only graphs of fixed degree have been studied in any detail in the

literature, so the differences between the two versions have not been explored.

Equation (29) looks remarkably similar to the discrete case, equation (24): both can be

written in the form

|ψ(t)〉 = Ut|ψ(0)〉, (34)

with unitary operator U = SC for the discrete-time walk and U = e−iγA for the continuous-

time walk. But, unlike the classical case, where the limit of the discrete-time walk as the

time step goes to zero can be taken in a way that gives the continuous-time walk, in

the quantum case the similarity is deceptive. The discrete and continuous walks have
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Fig. 2. Comparison of continuous-time (dots) and discrete-time (crosses) quantum walks on a line

starting at the origin after 40 and 55 steps, respectively. The discrete-time walk has initial coin

state (| − 1〉 + i|1〉)/
√

2, and only even points are shown since odd points are unoccupied at even

time steps (and vice versa). All points are shown for the continuous-time walk, which has hopping

rate γ = 0.5.

Hilbert spaces of different sizes, since the continuous-time quantum walk has no coin:

the continuous-time walk therefore cannot be the limit of the discrete-time walk unless it

can be restricted to a subspace that excludes the coin. Strauch (2006b; 2006a) show how

to do this for the walk on the line: it turns out that the appropriate limit of the discrete

time quantum walk produces two copies of the continuous-time quantum walk, one for

each of the two coin degrees of freedom. Alternatively, if one adds a coin space to the

continuous-time quantum walk, a quantum dynamics is obtained that is more obviously

the continuum limit of the discrete-time coined quantum walk, see Szegedy (2004b)

and Childs and Goldstone (2004b). The quantised Markov chain formalism introduced in

Szegedy (2004a) is yet another convenient way of constructing quantum walks in a parallel

manner to classical random walks – see, for example, Weiss (1994). The stochastic matrix

governing the Markov chain corresponds to the adjacency matrix in the graph-based

description above.

3.2. Continuous-time quantum walk on the line

A comparison of the simple case of the walk on the line will show us the main similarities

and differences between discrete-time and continuous-time quantum walks. Equation (28)

has a straightforward solution in terms of Bessel functions,

|ψ(t)〉 =

+∞∑
x=−∞

(−i)xJx(t)|x〉, (35)

where Jx(t) is the Bessel function of order x. Using a hopping rate of γ = 0.5 so that the

total hopping probability per unit time is one, after 40 units of time we get the probability

distribution shown in Figure 2. The discrete-time quantum walk evolved for 55 time

steps is also shown for comparison. We can see that the shapes of the distribution are

comparable, the difference in the height of the peaks is due largely to the continuous-time
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walk having support on both odd and even sites, while the discrete-time walk is restricted

to sites with the same parity as the time step. Nonetheless, the continuous-time walk has a

very oscillatory nature, especially in the central region. The two types of walks propagate

at somewhat different speeds, as evidenced by the different time instants at which they

have the same width. Both spread linearly, but with different constant prefactors, so

both show a quadratic speed up in their spreading compared to classical random walks.

For the continuous-time quantum walk starting at the origin, for asymptotically large

times T ,

σ2(T ) = 〈x2〉 = T 2/γ. (36)

The continuous-time quantum walk on the line is always symmetric if the hopping rate is

the same for both directions, this is the main difference compared with the discrete-time

walk, where the coin generally skews the walk unless special choices are made for the

initial state.

3.3. Continuous-time quantum walk on an N-cycle and other circulant graphs

The continuous time quantum walk on an N-cycle is straightforward to analyse. The

adjacency matrix A of the N-vertex cycle graph is a circulant matrix, it has eigenvalues

λx = 2 cos(2πx/N) with corresponding eigenvectors |bx〉, where

〈y|bx〉 =
1√
N

exp(−2πixy/N)

for x = 0, 1, . . . , N − 1. Taking the initial state of the quantum walk to be |ψ(0)〉 = |0〉, we

can solve |ψ(t)〉 = e−itH|0〉 by decomposing |0〉 in terms of the eigenvectors |bx〉, giving

|ψ(t)〉 =
1√
N

N−1∑
x=0

e−itλx |bx〉. (37)

One can apply the same notions of mixing times to a continuous-time quantum walk as

for the discrete-time walk. Like the discrete-time quantum walk on a cycle, the probability

distribution P (x, t) of the continuous-time walk does not mix asymptotically, and is

known to have exact instantaneous mixing for only a few special cases, N = 3 and N = 4

(Ahmadi et al. 2003), that is, even fewer cases than are known for the discrete-time walk

on the cycle as mentioned in Section 2.3. We can define the continuous-time version of

equation (14), to give the average probability

P (x, T ) =
1

T

∫ T

0

dt P (x, t) (38)

where P (x, t) = |〈x|ψ(t)〉|2. While this does mix asymptotically, in general, like the discrete-

time walk, the limiting distribution is not uniform: it retains one or more peaks reflecting

the initial state. Note that the properties of continuous-time walks on cycles are not

dependent on whether the cycle has an odd or even number of nodes, unlike the discrete-

time quantum walk.

Adamczak et al. (2003) and Adamczak et al. (2007) showed that continuous-time walks

on cycles are nearly uniform mixing, that is, if one relaxes the condition on how well they
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approach the uniform distribution from an arbitrarily small ε, they satisfy

M(1/4N) = min

{
T | ∀ t > T : ||P (x, t) − 1/N||tv �

1

4N

}
∼ O(N). (39)

Adamczak et al. extended their analysis of mixing in continuous-time quantum walks to

a wider variety of circulant graphs, this was continued in Lo et al. (2006): mixing to

non-uniform distributions turns out to be the norm for these types of graphs. Carlson

et al. (2006) identifies graphs where, with the use of edge weights, any distribution on the

graph can be obtained (universal mixing). Carlson et al. also identified another class of

graphs that are instantaneous uniform mixing – the claw or star graphs.

3.4. Continuous-time quantum walk on the hypercube

Our next example of a continuous-time quantum walk is on an n-dimensional hypercube.

Moore and Russell (2002) gave an analytical solution for the continuous-time quantum

walks on the hypercube as well as for the discrete-time walk (see Section 2.4). The analysis

for the continuous-time walk makes use of the hypercube’s product graph structure. We

label the vertices with n-bit strings, with edges connecting those pairs of vertices that

differ in exactly one bit. Then, using the Pauli matrix, σx, which is the bit flip operator,

σx =

(
0 1

1 0

)
, (40)

the adjacency matrix can be decomposed into the sum

A =

n∑
j=1

11 ⊗ · · · ⊗ σx ⊗ · · · ⊗ 11, (41)

where the jth term in the sum has σx as the jth factor in the tensor product. Each

term thus flips the bit in the vertex label, which corresponds to traversing the edge to the

appropriately labelled neighbouring vertex. Using H = γA for the quantum walk, we have†

Ut = e−iHt

=

n∏
j=1

11 ⊗ · · · ⊗ e−iγtσx ⊗ · · · ⊗ 11

=
[
e−iγtσx

]⊗n

=

(
cos(γt) −i sin(γt)

−i sin(γt) cos(γt)

)⊗n

. (42)

Applying Ut to the initial state |ψ(0)〉 = |0〉⊗n, we have

Ut|ψ(0)〉 =
[
cos(γt)|0〉 − i sin(γt)|1〉

]⊗n
, (43)

which corresponds to a uniform state exactly when γt is an odd multiple of π
4
. The choice

† Moore and Russell (2002) used U = eiH , which is just the complex conjugate and makes no difference to

observable quantities.
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of γ is thus pivotal for making a fair comparison of the instantaneous mixing time. Moore

and Russell (2002) chose γ = 1/n so that the total probability of making a hop to any

neighbouring site per unit time is unity. With this choice, the continuous-time quantum

walk mixes exactly instantaneously in time O(n), which is a logarithmic improvement over

O(n log n) for the mixing time of a classical random walk. They also showed that for the

time-averaged mixing time given by equation (15), the continuous-time walk never mixes.

These results can be compared with the discrete-time walk on the hypercube, which has

approximate instantaneous mixing (instead of exact), and M(ε) mixing in exponential time.

The continuous-time quantum walk on the hypercube also hits the opposite corner

in linear time, which is exponentially faster than a classical random walk: we will

obtain this result in Section 6.3 as a special case of the calculation of the effects of

decoherence. As with the coined quantum walk, this exponentially fast hitting time is

highly dependent on the symmetry. Keating et al. (2006) applied results from localisation

theory (Anderson 1958) to argue that this behaviour is exceptional, and the norm on less

regular graphs is a quantum walk that tends to stay near its starting state.

4. Algorithms using quantum walks

Starting with Shor’s algorithm for factoring large numbers (Shor 1997), many of the

quantum algorithms found so far belong to the same family, and are based on the

use of Fourier transforms to identify a hidden subgroup (Lomont (2004) provides a

recent review). This works well (that is, can be exponentially better than known classical

methods) for Abelian groups, but extending the method to non-Abelian groups, where

some of the notorious hard problems, such as graph isomorphism, lie, is proving tricky.

An obvious place to look for new ideas is where classical algorithms are having the most

success to see if a quantum version could be even faster. Randomised algorithms are

one such arena, providing the best known algorithms for approximating the permanent

of a matrix (Jerrum et al. 2001), finding satisfying assignments to Boolean expressions

(kSAT with k > 2) (Schöning 1999), estimating the volume of a convex body (Dyer

et al. 1991), and graph connectivity (Motwani and Raghavan 1995). Classical random

walks also underpin many standard methods in computational physics, such as Monte

Carlo simulations. Expanding the repertoire of methods for quantum algorithms was

the motivation behind the recent upsurge of interest in quantum walks. The first proper

algorithms using quantum walks appeared in Childs et al. (2003) and Shenvi et al. (2003),

and more have followed since: for a short survey, see Ambainis (2003). We will briefly

describe the first two quantum walk algorithms, since they are of two distinct generic

types, and later algorithms are mostly variants of the quantum walk search outlined in

the next section.

4.1. Quantum walk searching

Quadratically faster spreading, as described in Section 2.1, is not a quantum algorithm, but

quantum searching of an unsorted database (for example, finding the name corresponding

to a given number by searching a telephone directory) is the reverse process: start in a
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Entrance

Fig. 3. ‘Glued trees’ graph used in the algorithm of Childs et al. (2003). The example shown is for

N = 4, with 2N + 2 = 10 columns labelled at the bottom of the figure, and 2(2(N+1) − 1) = 62

nodes. The task is to travel from the entrance to the exit without getting lost in the randomly

joined middle section of the graph. The gap between columns 4 and 5 is for clarity in the figure

and is not significant in the algorithm.

uniform superposition over the whole database and home in on the marked item. The

first quantum algorithm for this problem was given in Grover (1996), using a method

of amplitude amplification, from which a quadratic speed up over classical searching is

obtained. It can be shown that a quadratic speed up is the best possible improvement for

this problem (Bennett et al. 1997). A classical search of an unsorted database potentially

has to check all N entries in the database, and on average has to check at least half.

A quantum search only needs to make O(
√
N) queries, though the queries ask for many

answers in superposition. Shenvi et al. (2003) showed that a quantum walk can also

search an unsorted database with a quadratic speed up. They represent the database by

the vertices of a graph with a regular structure (lattice, hypercube...) and start with the

quantum walker in a superposition of all positions on the vertices. The quantum walk

proceeds using a Grover coin operator of appropriate dimension at every vertex except

the marked item. For the marked item, almost any other coin operator can be used, this

is enough to break the symmetry of the quantum walk and cause the walker to converge

on the marked vertex in ∼ π/2
√
N/2 steps.

Since then, several variations on quantum searching for a single item have been analysed,

all essentially searching for a set of marked items of some sort (Magniez et al. 2005; Childs

and Eisenberg 2005; Ambainis 2004). Spatial searching, where moving from one item in

the database to the next is also counted as a cost, is also faster with a quantum algorithm,

and, curiously, the continuous-time walk finds this a little harder than the discrete-time

walk: in low dimensions it needs a coin too (Childs and Goldstone (2004a; 2004b).

4.2. ‘Glued trees’ algorithm

Childs et al. (2003) proved that a continuous-time quantum walk could produce a result

exponentially faster than any classical algorithm when finding a route across a particular

sort of network: see Figure 3. This is a rather artificial problem, but proves in principle
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that quantum walks are a powerful tool. The task is to find your way from the entrance

node to the exit node, treating the rest of the network like a maze where you cannot see

the other nodes from where you stand, only the choice of paths. It is easy to tell which

way is forward until you reach the random joins in the centre. After this, any classical

attempt to pick out the correct path to the exit gets lost in the central region and takes

exponentially long, on average, to find the way out. A quantum walk, on the other hand,

travels through all the paths in superposition, and the quantum interference between

different paths allows the quantum walker to figure out which way is forward right up

to the exit, which it finds in time proportional to the width of the network. The proof is

quite technical, involving oracles and consistent colourings of the network, and requires

the simulation of a continuous-time quantum walk on a discrete quantum computer. We

refer the reader to the original paper (Childs et al. 2003) for the details, since we do not

need them here for our discussion of decoherence.

Discrete and continuous-time quantum walks are generally expected to have the same

computational power. They give broadly similar results for algorithmic properties such as

mixing times and hitting times in those cases where both forms have been applied to the

same problem, with the possible exception of spatial search (Childs and Goldstone 2004a),

which, as noted above, requires a coin for maximum efficiency even in the continuous-

time walk in low dimensions (Childs and Goldstone 2004b). For a discussion of how both

discrete and continuous-time quantum walk implementations would use roughly the same

computational resources for the ‘glued trees’ problem, see Kendon (2006a).

5. Decoherence in coined quantum walks

As we have seen, while there are many similarities between discrete and continuous-time

quantum walks, there are also some distinctly different behaviours, and this turns out to

be true also under the influence of decoherence. We will thus devote a separate section

to each type, starting here with coined quantum walks and following in Section 6 with

continuous-time quantum walks. We are going to take a very broad view of decoherence

in this review as any dynamics that tends to remove the quantum coherences in some way,

be it unwanted (as in environmental decoherence in an experimental system), intentional

(to tune the properties of the quantum walk), or a byproduct of some other operation,

such as measurement. One of the earliest uses of non-unitary quantum walks, in Aharonov

et al. (1992), was measurement-based.

Quantum walks are a very broad class of quantum dynamics, with overlap into related

areas such as quantum graphs (Kottos and Smilansky 1997). One way to justify a

particular quantum dynamics as being a ‘quantum walk’ is to see if it turns into a classical

random walk when decohered. Since classical random walks are also a very broad class of

dynamics, this gets reasonably close to a workable definition of a quantum walk, at least

for the discrete-time case. Many early studies of quantum walks took the trouble to show

numerically that, for specific cases, their quantum walks decohered into classical random

walks (see, for example, Mackay et al. (2002), where the coin is dephased in the study of

a quantum walk on the line). A more systematic treatment of the quantum to classical

transition in a general quantum walk appears in Kendon and Sanders (2004), which

emphasises the importance of (a) demonstrating that quantum walks exhibit both wave
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(pure quantum) and particle (decohered) dynamics, and (b), for a non-unitary quantum

walk, being able to interpolate between these two modes of behaviour by turning the

decoherence up or down. Košı́k et al. (2006) explicitly calculated the cases of Grover and

DFT coins on a Cartesian lattice (�d), with random phase shifts applied to the coin to

induce decoherence rather than measurements. They show that the resulting distributions

match the expected classical random walks (which may be biased if the initial state or

coin operator is biased, cf. Section 2.1).

Decoherence is usually modelled as a non-unitary evolution of the quantum walk, so we

will need some extra formalism for mixed states using density matrix operators. Following

the notation in Section 2.4, the (time-dependent) density operator

ρ =
∑
x,c

∑
x′ ,c′

ρxc,x′c′ |x, c〉〈x′, c′|, (44)

is a positive (ρ = ρ† with positive real spectrum), unit-trace, bounded linear operator on

Hvc, in the basis Bvc – see equation (19). In the decomposition of ρ into the computational

basis, the rows and columns of ρ are indexed by xc and x′c′, which run over the position

states and coin states of the Hilbert space. The state is pure if and only if ρ2 = ρ. A

typical initial condition is ρ(t = 0) = |0, 0〉〈0, 0|, corresponding to the walker starting at

vertex v0 carrying a coin in the state labelled zero. In general, the density operator is

mapped to a new density operator via a completely positive (CP) map

U : ρ 
→ Uρ. (45)

The CP map U performs both the coin flip and the conditional swap over one time step.

More explicitly, we can write

Uρ =
∑
i∈Θ

�†
jρ�j

∑
i∈Θ

�†
j�j = 11, (46)

with j an index of non-unitary evolutionary ‘instances’ and �j the corresponding Kraus

operator. These instances may be discerned by a measurement record, with j the record

index. The cardinality of Θ can be finite, countably infinite, or even uncountable. In the

case of unitary evolution, Θ has a cardinality of one, so there is a single, unitary U for

which ρ 
→ Uρ = UρU †. Unitary quantum walk evolution can be expressed as

ρ(t) = Utρ(0), U ≡ SC, SCρ ≡ SCρC†S†, (47)

where, for the discrete-time walk, we assume t ∈ �. Thus, for the unitary walk, a single

step is given by U = SC , while for the non-unitary walk we can either add an extra

non-unitary operation (measurement) {�j},

U : ρ 
→
∑
i∈Θ

�jSCρC†S†�†
j , (48)

or, replace the coin and/or the shift operators by non-unitary operators, depending on

what sort of decoherence or measurements we are considering.

Most of this section consists of unpacking equation (48) into specific cases and analysing

the effects. One may ask, for example, how quickly does the quantum walk become

classical as the decoherence is increased: are quantum walks sensitive to small amounts
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of decoherence, or are the quantum effects robust under environmental disturbance. The

first studies of decoherence, beyond merely verifying that the classical limit is a classical

random walk, were analyses of the likely errors in proposed experimental implementations

in Travaglione and Milburn (2002), Sanders et al. (2003) and Dür et al. (2002). These,

too, were focused on the properties of the pure quantum walk, and we will provide a

short summary in Section 7. The first consideration of the algorithmic properties of partly

decohered quantum walks was in Kendon and Tregenna (2003), which used numerical

simulation on a variety of discrete coined quantum walks. We will briefly review their

results for the walk on the line to provide an overview of the typical effects of decoherence,

then examine some of the analytical calculations that confirm and expand these initial

observations. An alternative approach is to model the entire system of quantum walker

plus environment, and we include examples of this in Section 5.4, where the different

methods of decohering the coin are compared.

5.1. Effects in the walk on the line

We will begin by unpacking the superoperator notation of equation (48) into the specific

case of decoherence events or measurements occurring independently at each time step,

ρ(t+ 1) = (1 − p)SCρ(t)C†S† + p
∑
j

�jSCρ(t)C†S†�†
j . (49)

Here �j is a projection that represents the action of the decoherence and p is the

probability of a decoherence event happening per time step, or, completely equivalently

mathematically, to a weak coupling between the quantum walk system and some

Markovian environment with coupling strength p. Equation (49) readily lends itself

to numerical simulation since ρ, S and C can be manipulated as complex matrices,

while the �j generally remove some or all of the off-diagonal entries in ρ. Kendon and

Tregenna (2003) took equation (49) and evolved it numerically for various choices of

�j: projection onto the position space; projection into the coin space in the preferred

basis | ± 1〉; and projection of both coin and position. Motivated by the likely form of

experimental errors, they also modelled an imperfect Hadamard by applying a Gaussian

spread of standard deviation
√
pπ/4 about the perfect value of π/2 implicit in equation (8):

cf. Mackay et al. (2002). Shapira et al. (2003) later modelled, again numerically, imperfect

quantum walk operations such as this in more detail and drew the same conclusions, while

Konno (2005b) treated the general case of a randomised coin, showing analytically that

the classical random walk is obtained. An imperfect shift by the walker has been studied

in Dür et al. (2002), see Section 7, and also (in the form of broken links) in Romanelli

et al. (2004), see Section 5.3.

To quantify the change in behaviour in the walk on the line, we can calculate the

standard deviation, equation (10), which is now also a function of the decoherence rate.

In each of these cases, Kendon and Tregenna (2003) found the same general form for the

decay of σ(T , p) from the quantum to the classical value, with small differences in the

rates, as shown in Figure 4. The slope of σ(T , p) is finite as p → 0 and zero at p = 1.

The decay of the spreading rate (as quantified by σ(T , p)), is much as one might have
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Fig. 4. Standard deviation σ(T , p) of the position on a line for different models of decoherence,

for T = 100 time steps.

(Reprinted with permission from Kendon and Tregenna, Phys. Rev. A, 67, 042315 (2003).

Copyright 2003 by the American Physical Society.)
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Fig. 5. A quantum walk on a line of 100 steps is progressively decohered by random measurements

with probability p per time step as given in the key. For p = 0.03, an approximately ‘top-hat’

distribution is obtained.

expected given that quantum states are generally fragile in the face of environmental

disturbance. The interesting feature is seen in the shape of the distribution of the position

as decoherence begins to take effect. The changing shape as decoherence is increased

is shown in Figure 5. Note the good approximation to a top-hat distribution between

±T/
√

2 that appears for p = 0.03. For computational physicists who use random walks

to sample distributions, this is a very desirable feature, since it provides uniform sampling

over a specific range. Moreover, this result is only obtained when decohering the position:

compare the three examples in Figure 6. The optimal decoherence rate pu can be obtained

by calculating the total variational distance, equation (13), between the actual distribution

and an ideal top-hat distribution, The optimum decoherence rate depends on the number
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Fig. 6. Distribution of the position for a quantum walk on a line after T = 200 time steps. Pure

quantum (dotted), fully classical (dashed), and decoherence at the rate shown on part of the

system indicated by the key (solid). The uniform distribution between −T/
√

2 � x � T/
√

2

(crosses) is also shown.

(Reprinted with permission from Kendon and Tregenna, Phys. Rev. A, 67, 042315 (2003).

Copyright 2003 by the American Physical Society.)

of steps in the walk: puT � 2.6 for decoherence on both coin and position and puT � 5 for

decoherence on the position only (obtained numerically in Kendon and Tregenna (2003)).

Intriguingly, recent work by Maloyer and Kendon shows that the optimal top-hat occurs

for the decoherence rate that just removes all the quantum correlations by the end of the

quantum walk (Maloyer and Kendon 2007).

Decoherence on the coin only does not produce a top-hat distribution, instead the

distribution develops a cusp as it passes from quantum to classical. Lopéz and Paz (2003)

provides some insight into why decoherence on the coin and on the position produce

qualitatively different results. Lopéz and Paz present an elegant analysis of decoherence in

the quantum walk using a discrete Wigner function to bring out the pattern of correlations

and their decay when the coin is subject to decoherence. Their decoherence model follows

much the same approach as that in Brun et al. (2003a), which will be described in

Section 5.2. In their study, Lopéz and Paz restrict the dynamics to cycles. However, most

of their results are for small numbers of time steps such that the walk has not joined up

round the cycle, and the results are identical to the walk on the line. Wigner functions

represent quantum dynamics in a quantum phase space, thus showing the behaviour of

both position and momentum degrees of freedom in the same picture. This brings out

beautifully the fact that while decohering the coin state is sufficient to reduce a quantum

walk on a cycle to a classical walk, if the walker started in a superposition of two position

states, this remains untouched by the decoherence. Such a walker with a decohered coin

performs a superposition of two classical random walks, each starting at a different

position. The converse does not apply, because the position is conditioned on the state of

the coin, equation (2), thus decohering the position decohers the coin with it.
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Our first example of decoherence has given us a good guide to what to expect in

general: besides the rapid degradation of quantum behaviour, there are interesting effects

in particular ranges of low decoherence. These effects are not algorithmically significant,

that is, they do not alter the scaling of quantum processing, but, nevertheless, may be

useful in practice, and represent intriguing and complex behaviours worthy of study

in their own right. For practical purposes (assuming that one day we have a quantum

computer available), the improved top-hat profile might still be a useful optimisation to

get the most out of the computational resources.

5.2. Dephasing the coin in the walk on the line

In the next two sections we will consider the analytical treatment of decoherence in the

walk on the line in some detail. First we consider decoherence of the coin only. This

will also provide an example of how to use Fourier transforms to simplify the dynamics

and obtain the solution. We follow the method of Brun et al. (2003a 2003b) to solve

equation (48) for the coined quantum walk on a line with dephasing applied to the coin.

We thus have S given by equation (6),

S|x, c〉 = |x+ c, c〉,

where |x〉 and |c〉 are basis states, and C by equation (8)

C(H)
2 =

1√
2

(
1 1

1 −1

)
.

Transforming from the position basis |x〉 to the Fourier basis |k〉 such that

|k, c〉 =
∑
x

eikx|x, c〉, (50)

we find that

Uk|k, c〉 = Ck|k, c〉 (51)

where Ck acts only on the coin degrees of freedom,

Ck =
1√
2

(
eik eik

e−ik −e−ik

)
. (52)

We now move to density matrix formulation. For a walk starting at the origin in coin

state |ψ0〉 (not necessarily a basis state),

ρ0 = |0, ψ0〉〈0, ψ0| =

∫
dk

2π

∫
dk′

2π
|k〉〈k′| ⊗ |ψ0〉〈ψ0|, (53)

where |k, ψ0〉 is the tensor product |k〉⊗|ψ0〉. Using equation (48) to introduce a decoherence

operator, we can thus write

ρ(t) =

∫
dk

2π

∫
dk′

2π
|k〉〈k′| ⊗ Pt

kk′ |ψ0〉〈ψ0|, (54)

where

Pkk′ |ψ0〉〈ψ0| =
∑
j

�jCk|ψ0〉〈ψ0|C†
k′�

†
j , (55)
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and the set of projectors {�j} is the decoherence acting on the coin, which we will need

to specify in order to carry out an explicit evaluation of equation (54).

While it will in general be difficult to evaluate ρ(t) explicitly, the second moment

will give us the main information we need to determine how fast the walk spreads.

Calculating the moments allows considerable simplification even before specifying the

form of decoherence:

〈xm〉 =
∑
x

xmP (x, t) =
∑
x

xm
∫
dk

2π

∫
dk′

2π
〈x|k〉〈k′|x〉Trc

[
Pt
kk′ |ψ0〉〈ψ0|

]
, (56)

where Trc[.] traces over the coin degrees of freedom to aggregate the probability over the

different coin states. From equation (50), 〈x|k〉 = eikx, and we may carry out the sum over

x, giving

〈xm〉 =
(−1)m

2π

∫
dk

∫
dk′δ(m)(k − k′)Trc

[
Pt
kk′ |ψ0〉〈ψ0|

]
, (57)

where δ(m)(k − k′) is the mth derivative of the delta function. This can then be integrated

by parts.

Brun et al. (2003b) chose pure dephasing for the form of the decoherence on the coin,

so the coin projectors in equation (55) are

�±1 =
1√
2

(
e±iθ 0

0 e∓iθ

)
. (58)

This can be solved explicitly, giving in the large t limit

〈x2〉 − 〈x〉2 � t(cot2 2θ + csc2 2θ) + O(1), (59)

where θ measures the strength of the dephasing, with θ = π/4 being complete dephasing

(classical walk) and θ = 0 being a pure quantum walk (the approximation above is not

valid for exactly θ = 0). This shows that even a small amount of decoherence renders the

quantum walk classical in the sense that the standard deviation of the position scales as√
t, but with a larger prefactor the smaller the dephasing: cot2 2θ ∼ 1/θ2 for small θ.

We will return to decohering the coin in Section 5.4, where a variety of other ways to

decohere the coin will be considered and compared. We will now go on to complete the

picture for decohering a walk on the line with a calculation of the effects of decoherence

in the position.

5.3. Decohering the position in the walk on the line

When decoherence acts on the position degrees of freedom, the simplification offered

by the factorisation of the dynamics in Fourier space no longer helps: we would have

to apply the Fourier transform to the decoherence superoperator as well. The following

calculations of the asymptotic behaviour for small p � 1 illustrate how real space (path

counting) methods may be used instead. Following Kendon and Tregenna (2002), we

calculate σ(T , p) analytically for pT � 1 and T � 1 for the case where the {�j} are the

projectors onto the preferred basis {|a, x〉}, that is, decoherence affecting both walker and

coin simultaneously. Since, as already explained, decohering the position also decoheres
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the coin, it makes only a small difference whether or not we also decohere the coin

explicitly.

The probability distribution for finding the walker in the state |a, x〉 in the presence of

decoherence can be written

P (x, a, T , p) = (1 − p)TP (x, a, T ) + p(1 − p)T−1P (1)(x, a, T ) + . . . , (60)

where P (x, a, T ) is the distribution obtained for a perfect walk and P (i)(x, a, T ) is the sum

of all the ways to have exactly i noise events. For example, we can write

P (1)(x, a, T ) =

T∑
t=1

∑
y

∑
b

P (y, b, t)Pyb(x, a, T − t), (61)

where Pyb(x, a, T − t) is the distribution obtained from a perfect walk starting in state

|y, b〉 for T − t steps. For the ideal walk, σ2(T ) ≡
∑

x

∑
a x

2P (x, a, T ), and for the walk

with decoherence,

σ2(T , p) ≡
∑
x

∑
a

x2P (x, a, T , p). (62)

Taking equation (60) to first order in p and substituting along with equation (61) into

equation (62) gives to first order in pT

σ2(T , p) �
∑
x,a

x2

⎧⎨
⎩(1 − pT )P (x, a, T ) + p

T∑
t=1

∑
y,b

P (y, b, t)Pyb(x, a, T − t)

⎫⎬
⎭ . (63)

The first term on the right-hand side is (by definition) (1 − pT )σ2(T ). Noting that

Pyb(x, a, T − t) is a translation of a walk starting at the origin, Pyb(x, a, T − t) = P0b(x −
y, a, T − t), and relabelling the summed variable x to (x+ y) then enables the sums over

x and a to be performed in the second term,

p

T∑
t=1

∑
y

∑
b

P (y, b, t)
∑
x

∑
a

(x+ y)2P0b(x, a, T − t)

= p

T∑
t=1

∑
y

∑
b

P (y, b, t)
{
σ2

0b(T − t) + 2y〈x〉(T−t)
0b + y2

}
. (64)

From equation (10), σ2
0b(T − t) does not depend on b, so the summation over y and b

may be performed trivially. The remaining summation over y and b applied to y2 gives

σ2(t) by definition. This just leaves the evaluation of

2p

T∑
t=1

∑
y,b

P (y, b, t)y〈x〉(T−t)
0b = 2p(1 − 1/

√
2)

T∑
t=1

(T − t)
∑
y,b

yb P (y, b, t), (65)

where we have used equation (11) for 〈x〉. We note that this term does not depend on

whether the initial coin state is plus or minus one, so we may include both these possibilities

equally. Also, by the symmetry of the walk, it is possible to rewrite a probability function

for travelling from state |0, c〉 to |y, b〉 in the reverse order, that is, as a probability for

moving from |y, b〉 to |0, c〉. Care must be taken to ensure that the signs of each term due
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to the coefficient yb in the summation are maintained. We obtain

2p
∑
t,y,b

P (y, b, t)y〈x〉(T−t)
0b

= p(1 − 1/
√

2)

T∑
t=1

(T − t)
∑
y,b,c

(1 − 2δb,c)yb Pyb(0, c, t)

= p(1 − 1/
√

2)

T∑
t=1

(T − t)

⎡
⎣∑
y,b,c

yb Py,b(0, c, t) − 2
∑
y,b

yb Pyb(0, b, t)]

⎤
⎦ , (66)

treating the two parts with and without a delta function independently. Expanding the

summations over b and translating the position basis by −y gives

p

T∑
t=1

∑
y,b

P (y, b, t)y〈x〉(T−t)
0b

= p(1 − 1/
√

2)

T∑
t=1

(T − t)

[∑
y,c

yP0,−1(y, c, t) − 4
∑
y

y Py,+1(y,+1, t)

]
. (67)

The final summation over y may be bounded above by noting that

P0−1(y,−1, t) = |〈y,−1|Ut|0,−1〉|2

=
1

2
|〈y + 1, 1|Ut−1|0,−1〉 − 〈y + 1,−1|Ut−1|0,−1〉|2

�
1

2

∑
c

P0,−1(y + 1, c, t− 1). (68)

Using this in equation (67) gives,

2p
∑
t,y,b

P (y, b, t)y〈x〉(T−t)
0b � p(1 − 1/

√
2)

T∑
t=1

(T − t)
[
〈y〉t0,−1 − 2〈y〉(t−1)

0,−1 + 2
]

� p(1 − 1/
√

2)

T∑
t=1

(T − t)
[
(1 − 1/

√
2)t+

√
2
]
, (69)

where equation (11) has been used for the average values. Note that equation (11) is exact

only for asymptotically large times, so the second step in equation (69) introduces further

approximations from the contributions to the sum at small times t. Combining these

results in the full expression for σ2(T , p), using equations (63) and (64), and performing

the summations over t using
∑
t = T (T + 1)/2 and

∑
t2 = T 3/3 + T 2/2 + T/6 gives

σ2(T , p) � σ2
0(T )

[
1 −

√
2

6
pT + p(

√
2 − 1) + . . .

]
. (70)

Taking the square root gives as an upper bound on the standard deviation,

σ(T , p) � σ(T )

[
1 − pT

6
√

2
+

p√
2

(1 − 1/
√

2) + O(p2, 1/T )

]
. (71)

Equation (71) compares well with simulation data in Kendon and Tregenna (2003), once

a second-order correction for σ(T ) = (1 − 1/
√

2)1/2(T − 1/T ) is taken into account.
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The bounding procedure applied here is reasonably accurate – numerical studies give

the coefficient of p in the above expansion as 0.09566, compared with the bound of

0.20711. The first-order dependence is thus proportional to pT , the number of decoherence

events during the whole quantum walk. For a given decoherence rate p, the standard

deviation initially decreases linearly in T . This calculation first appeared in Kendon and

Tregenna (2002).

A similar expansion at the classical end of the full sum in equation (60) gives

P (x, a, T , q) = (1 − q)TP (T )(x, a, T ) + q(1 − q)T−1P (T−1)(x, a, T ) + . . . , (72)

where we have defined q ≡ (1 − p) as the small parameter. We know that P (T )(x, a, T ) is

the classical walk, so

σ2
C (T ) = T =

∑
x

∑
a

x2P (T )(x, a, T ), (73)

and we can write

σ2(T , q) =
∑
x

∑
a

x2P (x, a, T , q)

= (1 − q)Tσ2
c (T ) + q(1 − q)T−1

∑
x

∑
a

x2P (T−1)(x, a, T ) + . . . . (74)

However, to see a difference between the classical and quantum walks, we need to have

four consecutive steps of the quantum walk, since the position distributions are identical

for the first three steps. The first term that differs from classical is thus derived from part

of P (T−4)(x, a, T ) given by

P (4cq)(x, a, T ) =

T−4∑
t=1

∑
y,z

∑
b,c

P (T )(y, b, t)P (0)
(y,b)(z, c, 4)P (T )

y+z,c(x, a, T − 4 − t), (75)

that is, t classical steps, 4 quantum steps, T − 4 − t classical steps. (P (T−4)(x, a, T ) also

includes combinations with the 4 quantum steps not adjacent to each other.) Since classical

segments of the walk are not influenced by the initial state, we may estimate the variance

of the total contribution of P (4cq)(x, a, T ) by summing the variances of the segments:

σ2
(4cq)(T ) =

T−4∑
t=1

[
σ2
C (t) + σ2(4) + σ2

C (T − t− 4)
]

= (T − 4)[T − 4 + σ2(4)]. (76)

Explicit calculation (P (x, a, 4) has sixteen terms) gives σ2(4) = 5. From the continued

expansion of equation (72), the prefactor is q4(1 − q)T−4, so for small q and large T , we

have σ2(T , q) � T (1 + q4), and for the standard deviation

σ(T , q) �
√
T

(
1 +

q4

2

)
(77)

to lowest order in q ≡ 1 − p.

A simpler model of decoherence in both position and coin space by applying meas-

urements at regular intervals and projecting the coin into the σy basis to preserve the

symmetry of the walk was solved in Romanelli et al. (2004). They obtain a spreading rate

that is basically classical, with a prefactor controlled by the rate of the measurements.
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The average squared distance from the start, measured by the variance, grows as a series

of arcs at the quantum rate (quadratic), with regular resetting due to the measurements,

pulling the overall rate back to linear (classical). They also generalise to random intervals

between measurements, drawing on an analogy with Brownian motion.

Romanelli et al. (2004) also presents a unitary decoherence model affecting the position

by analysing a quantum walk in which links between the positions on the line are broken

with probability p. The transition that should have taken place is turned into a self loop

for that step of the walk. The unitary operator for each step is modified to take account

of the links that happen to be broken at that time step. For low rates of link-breaking,

the quantum behaviour persists, while for high rates the walk makes less progress than

even an unimpeded classical random walk.

5.4. Multiple coins in the walk on the line

Another analytically tractable approach to reducing coherences in the walk on a line

is to enlarge the size of the coin state space, and use parts of it in turn as the walk

progresses. This has the advantage of the dynamics remaining purely unitary, rendering

the calculations simpler. The first such study, Brun et al. (2003c), considered multiple

coins used in sequence, with the sequence repeating after all the coins had been used once.

This produces a quantum walk that still spreads linearly with the number of steps, but

with the rate of spreading reduced inversely by the number of coins. Only if a new coin

is used for every step of the walk does it become equivalent to the classical random walk.

This is in contrast with the behaviour obtained by decohering the coin (Brun et al. 2003a),

which always results in classical limiting behaviour, as pointed out in Brun et al. (2003b).

Classical behaviour is thus associated with an environment so large that one never comes

close to the Poincaré recurrence time over the timescales considered.

Related studies that observe or exploit the behaviour when the coin space is limited

include Flitney et al. (2004), which uses multiple coins to create a Parrondo game by

having the amplitude of the coin flip depend on several previous coins rather than just

one. Ermann et al. (2006) uses an enlarged coin space to show explicitly that the behaviour

changes from classical back to quantum once the size of the environment space is used

up. They use the coins in a random order rather than sequentially as in Brun et al.

(2003a). Ribeiro et al. (2004) studied quasi-periodic sequences of coin operators using

numerical simulation, and again found different spreading rates, but still an overall linear

dependence on the number of steps. More realistic models of a finite-sized environment

would have the environment degrees of freedom interacting with each other, but this has

not yet been studied in the context of quantum walks.

5.5. Effects in the walk on the N-cycle

Recall from Section 2.2 that pure discrete-time quantum walks on cycles do not mix

(except instantaneously for the few small special cases mentioned in Section 2.3), unless

the time-averaged probability distribution, equation (13), is considered. In that case,

mixing to the uniform distribution M(ε), equation (15), does occur for some choices of
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Fig. 7. Numerical data for Mε(p) on cycles of size N = 48, N = 49, N = 50 and N = 51 for coin

(dotted), position (dashed) and both (solid) subject to decoherence, using ε = 0.002. Both the axes

are logarithmic.

coin operator, but this comes at the cost of requiring a number of steps linear in the

inverse accuracy 1/ε instead of logarithmic, unless a number of repetitions are combined

in an amplification procedure. Kendon and Tregenna carried out numerical studies of

decoherence in cycles (Kendon and Tregenna 2003). They evaluated M(ε, p) (the mixing

time for P (x, T , p), c.f. equation (15)) for walks on cycles of sizes up to N � 80, both for

pure states and in the presence of the types of decoherence described in Section 5.2 for

the walk on a line. They did not include any amplification procedure. For odd-N cycles

with no decoherence, they reported that M(ε) ∼ N/ε as compared to the upper bound of

M(ε) ∼ N logN/ε3 given in Aharonov et al. (2001). Richter has recently confirmed this

analytically (Richter 2007b).

With a small amount of decoherence, the mixing time becomes shorter for all cases:

typical results are shown in Figure 7. If the coin operator is chosen such that the even-N

cycles do not mix to the uniform distribution in the pure quantum walk, the addition of

decoherence causes them to mix to the uniform distribution. Although for N divisible by

4, the coin-decohered mixing time shows a minimum below the classical value at p � 2/N,

this mixing time is � N2/32ε, that is, it is still quadratic in N. Thus, although noise on

the coin causes the even-N cycle to mix to the uniform distribution, it does not produce

a significant speed up over the classical random walk. Decoherence on the position

produces a minimum mixing time Mmin(ε, p) = O(N/ε), thus the even-N cycle mixes to

uniform in linear time for a suitable choice of decoherence rate pmin ∼ 16/N2, independent

of ε.

For all types of decoherence, the odd-N cycle shows a minimum mixing time at a

decoherence rate somewhat earlier than the even-N cycle, roughly p = 2/N2, but because

of the oscillatory nature of P (x, T , p), the exact behaviour is not a smooth function of p

or ε. (Kendon and Tregenna (2003, Figure 4) illustrates this, and we will show a similar
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Fig. 8. Numerical data for Mε(p) on cycles of size N = 48 to N = 51 for decoherence applied to

coin only (dotted), position only (dashed) and both (solid), using ε = 0.002. Both the axes are

logarithmic.

example later.) As decoherence on the position (or both coin and position) increases,

the oscillations in P (x, T , p) are damped out. At p � 16/N2, the mixing time passes

smoothly through an inflexion, and from then on behaves in a quantitatively similar

manner to the adjacent-sized even-N cycles, including scaling as Mmin(ε, p) = O(N/ε) at

the inflexion. Thus for 0 < p � 16/N2 there is a region where the mixing time stays linear

in N.

However, one can do better than this: decoherence causes the quantum walk to mix to

the uniform distribution without any averaging of P (x, T , p), thus retaining the logarithmic

scaling with ε for the mixing times. It is obvious that decoherence must do this, since

high decoherence rates reproduce the classical random walk, which has this property.

The only question is whether it does so effectively enough to be useful, and the answer

is that it does for decoherence on the position (Kendon and Maloyer 2007; Richter

2007b). Figure 8 shows the mixing time M(ε, p) corresponding to P (x, T , p) as a function

of p for cycles of size 48 to 51. Since even-sized cycles only have support on half the

positions at any one time, we have defined the uniform distribution only on the sites

where it has support (we can easily fix this if necessary by averaging over two consecutive

time steps). It thus behaves like an odd-sized cycle of half the size. Other than this

technicality, the behaviour is the same, oscillating peaks end abruptly at the minimum

mixing time, followed by a smooth rise to the classical value as the decoherence rate

is turned up. The decoherence rate at the minimum mixing time is approximately π/N

(odd-sized) or 2π/N (even-sized), and the mixing time itself scales as O(N log(1/ε)). This

thus provides a quadratic improvement over the classical mixing time, which scales as

O(N2 log(1/ε)).

If we take a look at the behaviour of ||P (x, t, p) − Pu||tv, which is shown in Figure 9

for N = 49, we can see this too is fluctuating at the quantum end, with the period of
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expressed as the total variational distance, equation (13), for N = 49 for the case with decoherence

on both coin and position. Both the axes are logarithmic. The value of ε used in Figures 7 and 8 is

shown as a horizontal line.

fluctuation lengthening as it reaches the minimum. On the classical side of the minimum

it increases smoothly to the classical value. The time at which the curves last cross the

horizontal line at ε = 0.002 is the mixing time as plotted in Figure 8. In the quantum

regime, a different choice of ε thus causes a jump in the value of M(ε, p) if it happens to

touch the next peak in ||P (x, t, p) − Pu||tv. This transition from underdamped (oscillating)

to overdamped (smooth) has been observed in a number of decoherence studies, such as

the hypercube (Kendon and Tregenna 2003), which is described in the next section, and

the studies of decoherence in continuous-time quantum walks described in Section 6. The

critical damping point also seems to be associated with the point at which all quantum

correlations are destroyed by the decoherence (Maloyer and Kendon 2007), just as this

marks the optimal top-hat distribution in the walk on the line.

Richter (2007b) actually proves not only that the optimal mixing time is O(N log(1/ε)),

but also that three different strategies for optimising the mixing time are equally effective.

The ‘warm start’ from Aharonov et al. (2001) can be viewed as running the quantum

walk for several segments of random length separated by measurements. The decoherence

applied with probability p is a quantum walk of length T interrupted by pT measurements

at random times. Simply running the quantum walk for several segments of equal length

with measurements applied at the end of each is also effective: the random outcomes

from the measurements are sufficient to optimise the mixing. This shows that the effects

of decoherence are quite robust, being insensitive to the precise way in which it is applied.

The overall conclusion is thus the same as for the walk on a line: there is a useful

window within which decoherence enhances rather than degrades the quantum features

of the walk. Moreover, it is actually necessary to ensure that the scaling with precision

ε is efficient. Additionally, decoherence ensures the quantum walk mixes to a uniform

distribution, regardless of the initial conditions or choice of coin operator.
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5.6. Effects in the walk on the hypercube

Kempe (2003b; 2005) picked up from where Moore and Russell (2002) left off, and

analysed hitting times in discrete-time quantum walks on the hypercube. By the hitting

time, we mean the time it takes for the quantum walk to reach the opposite corner

from where it started. Kempe considered two types of hitting times, one-shot, where a

measurement is made after a predetermined number of steps, and concurrent, where the

desired location is monitored continuously to see if the walker has arrived. While the

one-shot hitting time is a pure quantum dynamics, the continuous monitoring of the con-

current hitting time measurement removes part of the quantum coherences, thus it

constitutes a type of decoherence. More recently, Krovi and Brun (2006a) defined a

hitting time in closer analogy with the usual classical hitting time: the average time of

first arrival at the target location.

Following Kempe, the one-shot hitting time Hone-shot(r0) between |x0〉 and |xf〉 is

Hone-shot(r0) =
{
T : |〈xf |UT |x0〉|2 � r0

}
, (78)

where r0 is a threshold probability of being at the target state, U is the evolution of one

step of the walk, |x0〉 is the starting state and |xf〉 is the location being hit.

To define the remaining two hitting times, we need to define a measured quantum walk

– Kempe, and Krovi and Brun give essentially equivalent definitions. For hitting a single

final location, we need a measurement with two outcomes (this is easily generalised), say

�f and �f = 11 − �f , where �f = |xf〉〈xf | ⊗ 11c, that is, the projector onto the state |xf〉
for any coin state. If the walker is found at |xf〉, the walk is assumed to have ended, it

acts as an absorbing boundary. If the walk does not reach |xf〉 after t steps, the state of

the walk can be written

ρ(t) =
Ut
Qρ

Tr[Ut
Qρ]

(79)

where UQρ = �fUρU†�†
f . This differs from equation (48) in that we keep only one

outcome from the measurement and renormalise the density matrix. Since we know the

measurement outcome, we know whether the walk has arrived or not, so we only need to

keep the part that has not yet arrived at |xf〉. The first arrival (which is also called the

first crossing) probability after t steps can thus be written

r(t) = Tr
[
UPUt−1

Q ρ
]
. (80)

Kempe defines the concurrent hitting time as

Hconcurrent(r0) = min {T | ∃ t < T : r(t) > r0}. (81)

The hitting time defined by Krovi and Brun is

Haverage =

t=∞∑
t=0

t r(t), (82)

which is the average arrival time. Krovi and Brun compare the concurrent hitting time

with their average hitting time and find they both scale in a similar polynomial manner,

compared with the exponentially long hitting time of a classical random walk, provided
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Fig. 10. Hitting probability on a 9–dimensional hypercube for one-shot (left) and concurrent
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(Reprinted with permission from Kendon and Tregenna, Phys. Rev. A, 67, 042315 (2003).

Copyright 2003 by the American Physical Society.)

they use a Grover coin for the quantum walk, and consider |x0〉 = |0 . . . 0〉 and |xf〉 =

|1 . . . 1〉. Their numerical results suggest the bound of Hconcurrent(Ω(1)) � O(n2 log n2)

obtained by Kempe (2003b; 2005) is not tight, the actual hitting time seems to be better

than this in the large-n limit.

Krovi and Brun also investigated the effects of breaking the symmetry of the Grover

coin by using a DFT coin and by distorting the hypercube lattice. The DFT coin has the

property that, for certain configurations, the hitting time becomes infinite, while a Grover

coin with a small distortion of the hypercube lattice increases the hitting time somewhat,

though it is still less than the classical random walk hitting time. Analogous results for

coined quantum walks on the ‘glued trees’ graph were noted in Tregenna et al. (2003).

Further work by Krovi and Brun on the question of whether and under what conditions

quantum walks show dramatically different properties (speed up or slow down) compared

with classical random walks suggests that it is highly dependent on the symmetry of the

graph (Krovi and Brun 2006b). For the Grover coin, this is exemplified by the quantum

walk search algorithm of Shenvi et al. (2003) (which is described in Section 4.1), where

any disturbance of the symmetry causes the walker to converge on the marked state.

Kendon and Tregenna (2003) investigated the effects of adding extra decoherence to

the quantum walk on a hypercube over and above that implied by the measurements of

the target location. For both one-shot and concurrent hitting times (this work predates

Krovi and Brun (2006a)), the key parameter is the probability r(t) of finding the walker

at the chosen location. Their numerical calculations show that all forms of decoherence

have a similar effect on r(t), see Figure 10, reducing the peaks and smoothing out the

troughs. This is useful for the one-shot hitting time, raising r(t) in the trough to well

above the classical value, so it is no longer necessary to know exactly when to measure.
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For p � 1/n, the height of the first peak scales as rp(t) = r(t)(0) exp{−(n + α)p}, where

0 � α � 2, depending on whether the coin, the position or both are subject to decoherence.

An exponential decrease in the presence of decoherence sounds about as bad as it could

reasonably be, and for long times, of course, decoherence reduces the walk to classical

behaviour. However, the hitting times are short, only ∼ nπ/2 steps, so p � 1/n only lowers

r(t) by a factor of 1/e. This is insignificant for algorithmic purposes, as it is only a factor

of order unity and thus still exponentially better than classical. Note also that the size

of the graph (measured in number of nodes) is 2n, so the decoherence only has a linear

effect measured in terms of the size of the graph.

The concurrent hitting time already includes a portion of decoherence (no extra features

are produced by the addition of unselective decoherence), but there is still a range of

0 < p � 1/n within which the quantum speed up is preserved. Note that in both the

one-shot and concurrent cases, p � 1/n is a critical damping rate, smoothing out the

second peak (shown at around 40 (≡ 3nπ/2) steps in Figure 10).

Decoherence in discrete-time walks has thus provided us with a number of notable

common features, such as smoother spreading, enhanced mixing, and a transition from

under-damped (quantum) to over-damped (classical) behaviour, which is analogous to

classical damping in a harmonic oscillator. We will see in the next section that these

features also appear for the continuous-time quantum walk under decoherence.

6. Decoherence in continuous-time walks

Less work has been done on decoherence in continuous-time quantum walks, probably

in part because the numerical simulations require more resources (to integrate rather

than iterate the dynamics). Analytical calculations for the continuous-time walk are often

simpler than for the discrete-time walk due to the lack of a coin, but in the case of

decoherence this removes the simple case of decoherence on the coin only that has been

so successfully studied in the discrete-time walk. Nonetheless, there have been two notable

recent analytical results. Fedichkin et al. (2006) gives the scaling for mixing times for the

walk on the cycle for both small and large decoherence rates. They augment this with

numerical studies showing a minimum mixing time for intermediate decoherence rates.

Alagić and Russell (2005) gives a solution for the decoherent walk on the hypercube for

all rates of decoherence. These results will be discussed in separate sections below, but

we will first set up a general model for decoherence in continuous-time quantum walks

analogous to the basic model used for discrete-time walks. Then we will briefly examine

the effects of decoherence in the continuous-time quantum walk on the line, obtained

numerically, to illustrate the key features we can expect to see.

The pure state evolution of the continuous-time quantum walk given by equation (28)

can be expressed in density matrix form as

dρ(t)

dt
= −iγ [A, ρ] , (83)

where [a, b] ≡ ab − ba denotes the commutator. We can add a non-unitary decoherence

to this in exact analogy to the discrete-time method by writing

ρ(t+ δt) = (1 − pδt) (ρ(t) − iγδt [A, ρ]) + pδtPρ, (84)
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Fig. 11. Probability distribution for a continuous-time quantum walk on the line with γ = 0.5, at

time t = 40, for various decoherence rates p give in the key.

where P represents the action of the noise: for example, a set of projectors {�j}, such

that Pρ =
∑

j �jρ�†
j . For uncorrelated noise, taking δt → 0, this yields

dρ(t)

dt
= −iγ[A, ρ] − pρ + pPρ. (85)

The effect of the extra two terms is to reduce some or all of the off-diagonal elements of

ρ(t) at a rate p per unit time.

6.1. Effects in the walk on the line

In contrast to the extensive studies of the discrete-time walk on the line, there are no

published analytical treatments of decoherence in a continuous-time quantum walk on

the line. We can easily investigate this numerically: for uncorrelated noise events at a rate

p per unit time, we can unpack equation (85) into

d

dt
ρx,y(t) = i

[
ρx,y+1 − ρx+1,y − ρx−1,y + ρx,y−1

4

]
− p

(
1 − δx,y

)
ρx,y, (86)

where x, y ∈ �. (Fedichkin et al. (2006) credits this model as having been developed

by Gurvitz (1997) and Gurvitz et al. (2003).) Figure 11 shows the results of evolving

a continuous-time quantum walk on the line with hopping rate γ = 0.5 until t = 40

for various decoherence rates. This is to be compared with Figure 5, which shows the

same type of study for a discrete-time quantum walk. The continuous-time walk does

not produce quite such a nice top-hat as the discrete-time walk, partly due to having

support on all sites rather than alternate sites, though it would probably be equally useful

in practice. There is, however, a striking new effect: unlike with the discrete-time walk,

where decoherence rates larger than one have no useful interpretation, there is no reason

why p in equations (85) and (86) cannot be made arbitrarily large. In Figure 11, p = 8000

is shown: the walk hardly manages to leave the starting point. High values of p can be
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interpreted as continuous monitoring, which projects the walk into the initial state with

high probability. In other words, the walk suffers a quantum Zeno effect (Misra and

Sudarshan 1977), a phenomenon that does not appear in coined quantum walks. One

consequence of this is that quantities such as the concurrent hitting time are infinite, since

the continuous monitoring will ensure the continuous-time quantum walk never arrives.

6.2. Effects in the walk on the N-cycle

The time-dependent non-unitary evolution of ρ(t) on a cycle is also given by equation

(86), but with x, y ∈ �N for a cycle of size N. Fedichkin et al. (2006) showed how to solve

this for small and large values of decoherence. We will now outline their method. The

substitution

Rx,y = iy−xρx,y (87)

converts the differential equations into a set with real coefficients:

d

dt
Rx,y =

1

4

(
Rx,y+1 + Rx+1,y − Rx−1,y − Rx,y−1

)
− p

(
1 − δx,y

)
Rx,y. (88)

Note that this leaves the diagonal elements of ρ identical to the diagonal elements of

R. As a side note, Fedichkin et al. observed from these equations that if p = 0, there

is an exact mapping of the quantum walk on a cycle onto a classical random walk on

a two-dimensional torus, and if p �= 0, there is still an exact mapping of the quantum

walk on a cycle onto some classical dynamics on a directed toric graph. Similar mappings

(one-dimensional quantum to two-dimensional classical) also occur in quantum phase

transitions in spin chains (see, for example, Sachdev (1999)), and can prove a useful

technique for analysing quantum systems, though we will not need to use it explicitly here.

Equation (88) can be expressed as the linear operator equation

d

dt
R(t) = (� + p�) R(t). (89)

One can think of � and � as N2 × N2 matrices and R(t) as a vector of size N2 (instead

of a matrix of size N ×N). The indices of R(t) as a vector become xN + y where x, y are

the pair of indices of R(t) as a matrix, but we will write xy for such indices to reduce the

complexity of the notation. The formal solution of (89) can be written R(t) = et(�+p�)R(0).

The explicit solution for arbitrary decoherence rates has not been obtained, but one can

examine the behaviour of the mixing time under the action of small and large decoherence

using standard perturbation theory methods. When the decoherence rate p is small such

that pN � 1, p� is treated as a perturbation of �. The unperturbed linear operator �
(which evolves the pure state quantum walk in density matrix formalism) has eigenvalues

λmn = i sin

(
π(m+ n)

N

)
cos

(
π(m− n)

N

)
(90)

with corresponding eigenvectors

Vµν,mn =
1

N
exp

(
2πi

N
(mµ+ nν)

)
. (91)
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Here µν, mn are indices 0 � µ, ν, m, n < N combined like x, y above. With due consideration

of the degeneracies in the eigenvalues λmn of � (see Fedichkin et al. (2006) for details),

the eigenvalue perturbation λ̃mn turns out to be

λ̃mn = −p (N − 2)

N
. (92)

Thus, the solution is of the form

Rxy(t) =
δxy

N
+

1

N2

∑
mn

(1 − δ[m+n](mod N),0) et(λmn+λ̃mn) exp

[
2πi

N
(mx+ ny)

]
. (93)

The probability distribution of the continuous-time quantum walk is given by the diagonal

terms (considering R(t) as an N ×N matrix again) P (x, t, p) = Rx,x(t), that is

P (x, t, p)

=
1

N

+
1

N2

∑
(m,n)

(1 − δ[m+n](mod N),0) ×
[
δm,ne

−p N−1
N
t + (1 − δm,n)e

−p N−2
N
t
]

× exp

[
it sin

(
π(m+ n)

N

)
cos

(
π(m− n)

N

)]
exp

[
2πi

N
(m+ n)x

]
. (94)

Fedichkin et al. then calculate an upper bound on the mixing time M(ε). Defining

Mx(t) =
1

N

N−1∑
m=0

eit sin(2πm/N)ωmx
N , (95)

where ωN = exp(2πi/N), and noting that

M2
x(t/2) =

1

N2

N−1∑
m,n=0

eitλ(m,n)ω
(m+n)x
N

(96)

M2x(t) =
1

N

N−1∑
m=0

eitλ(m,m)ω2mx
N ,

and that |Mx(t)| � 1, we can simplify equation (94) as follows,∣∣∣∣P (x, t, p) − 1

N

∣∣∣∣ � e−p N−2
N
t

∣∣∣∣M2
x(t/2) +

e−tp/N − 1

N

[
M2x(t) − 2 − (N mod 2)

N

]∣∣∣∣
� e−p N−2

N
t

∣∣∣∣1 +
e−tp/N − 1

N
(1 − 2/N)

∣∣∣∣ . (97)

Adding a now-trivial summation over x gives us the total variational distance required to

obtain the mixing time:

N−1∑
x=0

∣∣∣∣P (x, t, p) − 1

N

∣∣∣∣ � e−p N−2
N
t (N + e−tp/N − 1). (98)
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Since e−tp/N � 1, the above equation shows that the mixing condition is Ne−p N−2
N
t � ε.

This gives the mixing time bound of

M(ε) <
1

p
log

(
N

ε

)[
1 +

2

N − 2

]
. (99)

Some comments on this result are in order. First, this is the mixing time for the

instantaneous probability distribution, so it should be compared with the discrete-time

results in Figure 8. Just as with the discrete-time walk, the first key effect of decoherence

is to cause the continuous-time quantum walk to mix. On the face of it, M(ε) appears to

scale as log(N), which would imply an exponential speed up over classical mixing times

of O(N2). However, this formula is only valid for pN � 1, so the 1/p scaling ensures

that M(ε) � N for the range of validity of the result. What this result tells us is that

decoherence causes the continuous-time quantum walk to mix, with the dominant effect

a scaling of 1/p, and only weak (logarithmic) dependence on N and ε. It does not tell

us anything about the optimal decoherence rate that might give a minimum mixing time,

nor what value that minimum mixing time might take.

We can calculate the time-averaged mixing time from the results for P (x, t, p) above,

and compare it with the discrete-time and classical values. Again, we will obtain a result

that is only valid in restricted ranges of parameters. Working with equation (97), and

assuming N � 1 for simplicity, we obtain

∣∣∣∣P (x, T , p) − 1

N

∣∣∣∣ �

∣∣∣∣ 1

T

∫ T

0

(
e−pt +

1

N

)
dt− 1

N

∣∣∣∣ �

∣∣∣∣ 1

pT
(1 − e−pT )

∣∣∣∣ . (100)

Summing over x to obtain the total variational distance trivially multiplies by N.

Comparing this to ε as before gives

N

pT
(1 − e−pT ) � ε. (101)

Assuming pT � 1 (which is consistent with our other assumptions, N � 1 and pN � 1,

it requires T � N) gives

M(ε) �
N

pε
, (102)

which is similar to the scaling found numerically for the discrete-time quantum walk.

In particular, the scaling with N and ε is no longer logarithmic, as a consequence of

the time-averaging. The scaling with p is still inverse, indicating that, in general, pure

continuous-time quantum walks on cycles do not mix to within ε of uniform, even when

time-averaged distributions are considered, as already noted in Section 3.3.

We now turn to the analogous calculation for large decoherence rates. When the

decoherence rate p is large, that is, when p � 1, the quantum walk experiences a quantum

Zeno effect that suppresses most of the transitions. We can therefore neglect all but the

first off-diagonal terms in the matrix R(t) from equation (88). Retaining only matrix

elements that are of order 1/p produces a truncated set of differential equations for the
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elements along the major and the two adjacent minor diagonals:

R′
x,x =

1

4

(
Rx,x+1 + Rx+1,x − Rx−1,x − Rx,x−1

)
(103)

R′
x,x+1 =

1

4

(
Rx+1,x+1 − Rx,x

)
− pRx,x+1 (104)

R′
x,x−1 =

1

4

(
Rx,x − Rx−1,x−1

)
− pRx,x−1. (105)

To facilitate our subsequent analysis, we define

ax = Rx,x
(106)

dx = Rx,x+1 + Rx+1,x.

Then, we observe that

a′
x =

(dx − dx−1)

4 (107)

d′
x =

(ax+1 − ax)

2
− pdx.

The solution of the differential equation at large p has the form

ax =
1

N

N−1∑
y=0

exp

(
−

sin2 πy
N

2p
t

)
ωxy. (108)

Based on the above analysis, the full solution for R(t) is given by

Rx,y(t) =

⎧⎨
⎩
ax if x = y

dx/2 if |x− y| = 1

0 otherwise.

(109)

The total variation distance between the uniform distribution and the probability

distribution of the decoherent quantum walk is given by

N−1∑
x=0

∣∣∣∣ax(t) − 1

N

∣∣∣∣ =

N−1∑
x=0

∣∣∣∣∣∣
1

N

N−1∑
y=0

exp

(
−

sin2 πy
N

2p
t

)
exp

(
2πixy

N

)
− 1

N

∣∣∣∣∣∣ , (110)

which simplifies to

N−1∑
x=0

∣∣∣∣ax(t) − 1

N

∣∣∣∣ =
1

N

N−1∑
x=0

∣∣∣∣∣∣
N−1∑
y=1

exp

(
−

sin2 πy
N

2p
t

)
cos

(
2πyx

N

)∣∣∣∣∣∣ . (111)

A lower bound on the mixing time for large decoherence rate p can be derived as

follows. Note that

N−1∑
x=0

∣∣∣∣ax(t) − 1

N

∣∣∣∣ �

∣∣∣∣a0(t) − 1

N

∣∣∣∣ =
1

N

N−1∑
y=1

exp

(
−

sin2 πy
N

2p
t

)
(112)

�
2

N
exp

(
−

sin2 π
N

2p
t

)
, (113)
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Fig. 12. The quantum to classical transition of mixing time in a continuous-time decoherent

quantum walk on CN for N = 5, 10, 15, 20, 25, 30, 35.

(From Fedichkin et al. (2006); reproduced with permission of Rinton Press.)

where the first inequality uses the term x = 0 only and the second inequality uses the

terms y = 1, N − 1. This expression is monotone in t, and is a lower bound on the total

variation distance. It reaches ε at time Tlower , when

Tlower =
2p

sin2 π
N

ln

(
2

Nε

)
� 2pN2

π2
ln

(
2

Nε

)
(114)

for large N � 1.

An upper bound on the mixing time for large decoherence rate p can also be derived

(see Fedichkin et al. (2006) for details)

Tupper =
pN2

2
ln

(
2 + ε

ε

)
. (115)

For large decoherence rates p � 1, the mixing times are bounded as

pN2

π2
ln

(
2

Nε

)
< M(ε) <

pN2

2
ln

(
2 + ε

ε

)
. (116)

These bounds show that M(ε) is linearly proportional to the decoherence rate p, but is

quadratically dependent on N, and logarithmically dependent on ε.

The change in the form of the scaling with p from reciprocal for small p to linear for

large p suggests there is a minimum mixing time at some intermediate decoherence rate.

Fedichkin et al. (2006) confirmed this numerically: see Figure 12.
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The effects of decoherence on continuous-time quantum walks on cycles is thus similar

to the effects on discrete-time walks on cycles, as described in Section 5.5. In fact,

the proofs in Richter (2007b) are sufficiently general that they apply equally to the

continuous-time walk as to the discrete-time walk. This fills the gap between small

and large decoherence rates, and proves that continuous-time walks, with O(log(1/ε))

decoherence or measurement events, mix in time O(N log(1/ε)) on the cycle (and the

d-dimensional torus).

6.3. Effects in the walk on the hypercube

The hypercube is an attractive subject for analytical calculations of quantum walks

because, under certain conditions, it offers two routes to simplify the analysis. If the

walk has the appropriate symmetry, it is constrained to a subspace that maps to a walk

on a line segment with positions corresponding to the Hamming weight of the node

labels (with position dependent transition rates). Alternatively, the continuous-time walk

can be factored in Fourier space into independent walks on each qubit of the labels

of the locations, as explained in Section 3.4. Furthermore, both mixing properties for

spreading over the whole graph, and hitting properties for traversing to opposite corners

are non-trivial on the hypercube. We thus have a large number of comparisons to make

between discrete and continuous-time quantum walks, and classical random walks. Alagić

and Russell (2005) provides a complete solution to the dynamics of the continuous-time

quantum walk on the hypercube subject to decoherence. We will sketch their method of

solution, then discuss their results.

Alagić and Russell give their quantum walk an energy k – this is equivalent to an

arbitrary hopping rate γ = k/n instead of the choice of γ = 1/n for a graph with

vertices of degree n. We consider the continuous quantum walk on the n-dimensional

hypercube with energy k and decoherence rate p, starting from the initial wave function

Ψ0 = |0〉⊗n, corresponding to the corner with Hamming weight zero. The decoherence

operators in equation (85) project the walker onto one of the vertices of the hypercube

chosen uniformly at random. It is useful to write these projectors explicitly in terms of

single qubit projectors Π0 and Π1 onto |0〉 and |1〉, respectively. We have

� =
1

n

∑
1�j�n

[Πj
0 ⊗ Πj

0 + Πj
1 ⊗ Πj

1] (117)

where Πj
0 = 11 ⊗ · · · ⊗ 11 ⊗ Π0 ⊗ 11 ⊗ · · · ⊗ 11 with the non-identity projector appearing in

the jth place, and similarly for Πj
1.

We now show that with the model of decoherence described above each dimension still

behaves independently. Recall equation (41) showing that the adjacency matrix for the

hypercube decomposes into a sum of tensor products, with each acting only on a single

qubit. Since the noise operators �j also have this structure, provided ρ(0) starts off in a

state that is also decomposable (such as the all-zero vertex), the subsequent evolution will

maintain this structure and will remain decomposable as a system of n non-interacting

qubits. Since the qubits are now in mixed states ρj , the superoperator acting on them is
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equivalent to a 4 × 4 matrix:

J =
t

n
[(11 ⊗ inσx) − (inσx ⊗ 11) − p(11 ⊗ 11) + p(Π1 ⊗ Π1) + p(Π0 ⊗ Π0)]

=
t

n

⎛
⎜⎜⎝

0 ik −ik 0

ik −p 0 −ik
−ik 0 −p ik

0 −ik ik 0

⎞
⎟⎟⎠ . (118)

Note that for p = 0, we have
[
eJ]⊗n

=
[
e−itσx ⊗ eitσx

]⊗n
, which is exactly the superoperator

formulation of the dynamics of the non-decohering walk. So far we have shown that the

walk with decoherence is still equivalent to n non-interacting single-qubit systems. We now

analyse the behaviour of a single-qubit system under the superoperator eJ. The structure

of this single particle walk will then allow us to draw immediate conclusions about the

entire system.

The eigenvalues of J are 0, − pt
n

, −pt−iβt
2n

and −pt+iβt
2n

. Here β =
√

16k2 − p2 is a complex

constant that will later turn out to be important in determining the behaviour of the

system as a function of the rate of decoherence p and the energy k. The matrix exponential

of J in this spectral basis can be computed by inspection. To see how our superoperator

acts on a density matrix ρ0, we may change ρ0 to the spectral basis, apply the diagonal

superoperator to yield ρ(t), and finally change ρ(t) back to the computational basis. At

that point we can apply the usual projectors Π0 and Π1 to determine the probabilities

of measuring 0 or 1 as a function of time. The result (see Alagić and Russell (2005) for

details) is

P [0] =
1

2
+

1

2
e−pt/2n

[
cos

(
βt

2n

)
+
p

β
sin

(
βt

2n

)]

P [1] =
1

2
− 1

2
e−pt/2n

[
cos

(
βt

2n

)
+
p

β
sin

(
βt

2n

)]
. (119)

All the properties of the decohering walk can be deduced from these equations. Just as

we observed in the mixing behaviour of cycles, the decoherence exhibits three distinctive

regimes analogous to underdamping, critical damping and overdamping in a damped

oscillator. We will now describe the properties of these regimes.

The underdamping regime occurs for p < 4k. To determine the mixing times, we solve

P [0] = P [1] = 1
2
, giving exact instantaneous mixing times at

Minst =
n(2πc− arccos(p2/8k2 − 1))√

16k2 − p2
(120)

for all c ∈ �, c > 0. At these times, the total variational distance between the walk

distribution and the uniform distribution is zero, but the walk ‘unmixes’ again as time

progresses. This corresponds to the result in Moore and Russell (2002) for pure state

quantum walks, and extends it to regions with small decoherence rates. These mixing

times scaling linearly with n represent a quantum improvement over the classical random

walk mixing time of Θ(n log n), with the caveat that the classical mixing time is not

instantaneous, so, strictly speaking, we are not comparing like with like, since in the
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quantum case one must sample at exactly the right moment in time. Note that these

periodic mixing times decay with p and disappear altogether when p � 4k, so the

quantum advantage tails off before the critical damping point is reached. Richter (2007b)

offers a weak bound of O(n3/2 log(1/ε)) for the mixing time at around the critical damping

point, which is slower than classical.

By examining the local maxima of P [1], we can determine that the walk has approximate

instantaneous hitting times to the opposite corner (1, . . . , 1) at times

Hone-shot(r) =
2πn(2c+ 1)√

16k2 − p2
(121)

for all c ∈ �, c � 0. However, the probability r(p, c) of measuring an exact hit decays

exponentially:

r(p, c) =

[
1

2
+

1

2
exp (−pπ(2c+ 1)/

√
16k2 − p2)

]n
. (122)

When no decoherence is present, the walk hits at

Hone-shot(1) =
nπ(2c+ 1)

2k
,

and it does so exactly, that is, r(c) = 1. This corresponds to the result for the discrete-time

quantum walk given in Kempe (2003b; 2005), see Section 5.6, so both discrete-time and

continuous-time quantum walks on the hypercube exhibit exponentially faster hitting

times than classical random walks. The difference is that the continuous-time quantum

walk hits exactly, while the discrete-time quantum walk hits with a probability that is less

than one: see Kempe (2003b; 2005) for details.

For a fixed p � 4k, Alagić and Russell (2005) shows that the walk behaves much like

the classical walk on the hypercube, the measurement distribution of the walk converges

to the uniform distribution in time M(ε) = Θ(n log n), just as in the classical case.

As p → ∞, the walk suffers from the quantum Zeno effect. Informally, we can say that

the rate of decoherence is so large that the walk is continuously being reset to the initial

wave function |0〉⊗n by measurement. By inspection of equations (119), it is clear that

P [0] → 1 and P [1] → 0 as p → ∞.

This concludes our overview of decoherence in continuous-time walks. We have observed

some of the same effects of enhanced mixing and smoother spreading, and also shown

that where the decoherence does not directly help, the quantum speed up is at least robust

under small amounts of decoherence.

7. Quantum walks in physical systems

As well as the potential for algorithmic applications that has been in the background of

most of our discussion of decoherence in quantum walks in this review, physical systems

can be made to perform a quantum walk, and this process is of interest in its own right

as an example of precise coherent control. Indeed, the first suggested application of a

quantum walk in a physical system was to test decoherence rates in a single trapped

ion. Travaglione and Milburn (2002) described how a coined quantum walk can be
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performed using the vibration modes of the trapped ion coupled to an internal state of

the ion as the quantum coin. They note that a cycle of size N = 4 performed in this

way should exhibit periodic behaviour, see Section 2.3. Sanders et al. (2003) suggested

a quantum walk using the phase of the electromagnetic field in a cavity as the position

(so the walk is again on a cycle) with the role of the coin played by an atom, also in

the cavity, which couples to the cavity field depending on its internal state. Since the

cavity field cannot be in a state localised at a point in phase space, the positions must

be approximated by small regions that do not overlap. Sanders et al. provided a detailed

analysis of the experimental parameters necessary to maintain distinct positions during

the quantum walk. Dür et al. (2002) proposed a quantum walk on the line using an

atom hopping between traps in an optical lattice. The role of the coin is again played

by the internal state of the atom. One of the potential sources of error in this system is

imperfect transitions between lattice sites, so, along with analysing errors due to imperfect

Hadamard operations, Dür et al. also considered the effects of imperfect shift operations.

Their work is numerical, but shows that imperfect shifts, or spontaneous tunnelling, smear

out the distribution without necessarily reducing the quantum features. This analysis is

typical of the extra factors that need to be considered in experimental systems. Since

the quantum walk takes place in a subspace of the full quantum system, many of the

potential sources of decoherence take the system outside of the subspace of the quantum

walk, so the resulting decohered dynamics is not a classical random walk. All of these

proposals are within current experimental capabilities but, to date, none has been carried

out.

The examples given so far have all been discrete-time coined quantum walks. Solenov

and Fedichkin (2006a; 2006b) analysed a ring of quantum dots in which the electrons

in the dots perform a continuous-time quantum walk. They applied perturbation theory

techniques similar to those described in Section 6.2 to analyse the effects of decoherence.

There are a number of ways in which photons can be made to follow a quantum walk

dynamics, and while some have been implemented, all have used high light intensities that

admit a classical wave description. The earliest example, which predates the algorithmic

discussions of quantum walks, is in Bouwmeester et al. (1999), where the twin peaked

distribution of a quantum walk on the line was presented but without identifying it

as such. Knight et al. (2003) discusses this experiment, arguing that quantum walks on

the line are actually not quantum at all. Kendon and Sanders (2004) explained how

what Bouwmeester et al. did can be regarded as a quantum walk and suggested an

enhanced experiment, in which monitoring the individual photon ‘walkers’ reduces the

dynamics to a classical random walk, to distinguish a classical ‘wave walk’ from a quantum

walk.

A quantum walk experiment carried out by Ryan et al. used a 3 qubit NMR system

to perform a quantum walk on a cycle of size N = 4 (Ryan et al. 2005). This is

actually a quantum computation of a quantum walk, since the three qubits are used to

represent the binary number labelling the vertex (two qubits), and the qubit coin. This

is distinctly different from the physical systems described above, see Kendon (2006b) for

more discussion on this point. Ryan et al. also applied decoherence artificially to the

qubits to observe that the quantum walk degrades into the classical walk.
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8. Quantum walks on directed graphs

Providing a quantum walk dynamics on undirected graphs is straightforward since the

adjacency matrix of an undirected graph is symmetric, hence it can be turned into a unitary

(with added coin) or Hermitian operator for any such graph. In contrast, determining

whether a directed graph allows a unitary dynamics that respects the graph structure is

a hard problem, to which a general answer is not known. Aharonov et al. (2001) gave a

useful definition of how a quantum walk dynamics should respect the structure of a graph,

though other approaches are possible, see, for example, Montanaro (2007). Severini (2003;

2006) provide some necessary conditions, by studying the pattern of a unitary matrix,

defined as U(P )
ij = 1 if Uij �= 0 and U(P )

ij = 0 if Uij = 0. If A = U(P ) for some U, a quantum

walk can naturally be applied to the graph with adjacency matrix A. The situation is

simpler for some restricted types of graphs, such as line graphs. A line graph L(G) is

obtained from graph G by making each edge in G a vertex in L(G), and edges for each

pair of edges in G that are adjacent. If x, y, z are vertices in G connected by directed

edges (xy) and (yz) that can be traversed only from x to y to z, then the vertices in L(G)

correspond to all (xy) ∈ G, and the edges in L(G) correspond to all ((xy)(yz)) where (xy)

and (yz) are edges in G. This definition can be applied recursively to generate a family of

line graphs from a single initial graph G, and Pakoński et al. (2003) provides conditions

under which line graphs can be quantised.

Starting with an undirected graph, a corresponding directed graph can be constructed

by a mapping due to Watrous (2001), which is similar to the line graph definition above,

except that each undirected edge is treated as a pair of directed edges. The resulting

directed graph is always the pattern of a unitary matrix. The corresponding dynamics,

using an associated unitary matrix as the step operator, corresponds exactly to the coined

quantum walk dynamics (with a Grover coin) on the original undirected graph (Watrous

2002).

Directed graphs that do not have the pattern of a unitary matrix may still admit a

quantum walk dynamics. Montanaro (2007) defines ‘reversibility’ for a directed graph,

and proves this allows for a unitary quantum walk in which the coin selects between

different sets of cycles in the graph, rather than different paths from each vertex.

For irreversible graphs, Montanaro suggests splitting the graph into subgraphs that

are reversible, on which the quantum walk dynamics can be unitary, combined with a

non-unitary step (a partial measurement) to switch between subgraphs in an irreversible

way that, nonetheless, preserves coherence within each reversible subgraph. If one is

willing to allow some transitions that are between vertices not connected by edges,

the method of Szegedy (2004a) also provides a quantum Markov process on directed

graphs.

This brief section has only touched on the range of problems in the realm of

directed graphs, reflecting the limited work done in this area. For example, no study

of decoherence in quantum walks on directed graphs has been done, nor consideration

of the class of graphs that might be the pattern of a CP map (rather than of a unitary

matrix).
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9. Summary and outlook

We have seen in our broad-ranging review of decoherence in quantum walks that the

effects are both non-trivial and have potential algorithmic applications. As the decoherence

rate is increased, for moderate timescales the quantum features persist, usually to a point

of ‘critical damping’, after which the behaviour resembles that of a classical system. In

the quantum region before the critical damping point, the useful algorithmic properties,

such as spreading and mixing, are often better than the pure quantum dynamics. Indeed,

for cycles and tori, some element of non-unitary evolution is essential for efficient mixing

behaviour. Our tentative conclusion is thus that decoherence is a useful enhancement,

and non-unitary dynamics are a promising avenue of enquiry in the quest for practical

applications of quantum computing. The incomplete nature of our conclusions is in part

a reflection of our limited knowledge of the conditions under which a quantum speed up

can be obtained.

The idea that the addition of classical randomness can enhance a useful algorithmic

property also occurs in other settings, both quantum and classical. An example from the

field of quantum information may be found in Kraus et al. (2005) and Renner et al. (2005),

where the security of a quantum secret key is increased by adding a small amount of

randomness to the key during the privacy amplification stage of the protocol. This can be

understood in two ways. The goal is to reduce the amount of information available to an

eavesdropper to a trivial level. The added randomness reduces the final size of the secret

key, but it reduces even more the information that the eavesdropper has. This works for

both classical and quantum keys. From a quantum perspective, the randomness takes the

form of entanglement with an environment that the eavesdropper does not have access to.

Since the total amount of entanglement is limited, this reduces the entanglement of the key

with the eavesdropper, and thus reduces the information available to the eavesdropper.

The interpretation of this in the context of quantum walks is of course rather different,

but the common theme is that the decoherence or randomness induces a more uniform

distribution, in this case in the form of a smoother ‘top-hat’ distribution in the walk on the

line, and faster mixing times on finite graphs. Some further insight is provided in Kendon

and Maloyer (2006), where the entanglement between the coin and the position is used to

gauge the impact of the added randomness. The optimal decoherence rate turns out just

to remove all the quantum entanglement, and can be thought of as removing the ‘extra’

quantum correlations that would otherwise keep the distribution away from uniform.

As will have become clear by now, there are many gaps in the analysis of decoherence

in quantum walks, and, more importantly, many gaps in our understanding of what

might make a useful quantum walk algorithm. Some of these shortcomings will only be

accessible to serious study when (if) we have a larger (that is, larger than we can simulate

classically) quantum computer available to test the performance of actual algorithms.

In the meantime, there is still much useful progress that can be made, in particular,

in understanding the role of symmetry in the properties of quantum walks. Many of

the examples studied so far turn out on closer inspection to be exceptional cases, in

that a slight change in the symmetry of the dynamics or initial state can reverse the
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interesting quantum properties. The role of decoherence as a ‘memory eraser’ to eliminate

the dependence on the initial state, while still retaining the interesting quantum properties,

is thus one of its most appealing features. My hope in offering this review is that it will

be a useful summary of the current state of research in a field that has seen significant

recent activity and advances, and that it will facilitate and spur further efforts in this area.

Acknowledgements

I gratefully thank my colleagues for many useful and stimulating discussions of quantum

walks, especially Dorit Aharonov, Andris Ambainis, Todd Brun, Ivens Carneiro†, Hilary

Carteret, Andrew Childs, Richard Cleve, Jochen Endrejat, Ed Farhi, Will Flanagan,

Mathieu Girerd, Mark Hillery, Peter Høyer, Julia Kempe, Peter Knight, Norio Konno,

Barbara Kraus, Meng Loo, Rik Maile, Olivier Maloyer, Cris Moore, Peter Richter,

Eugenio Roldán, Alex Russell, Barry Sanders, Mario Szegedy, John Sipe, Tino Tamon,

Ben Tregenna, John Watrous, and Xibai Xu.

References

Adamczak, W., Andrew, K., Hernberg, P. and Tamon, C. (2003) A note on graphs resistant to

quantum uniform mixing. ArXiv: quant-ph/0308073.

Adamczak, W., Andrew, K., Bergen, L., Ethier, D., Hernberg, P., Lin, J. and Tamon, C. (2007)

Non-uniform mixing of quantum walk on cycles. Intl. J. Quantum Inf. (to appear). See also

ArXiv: 0708.2096.

Aharonov, D., Ambainis, A., Kempe, J. and Vazirani, U. (2001) Quantum walks on graphs. In:

Proc. 33rd Annual ACM STOC., ACM 50–59.

Aharonov, Y., Davidovich, L. and Zagury, N. (1992) Quantum random walks. Phys. Rev. A 48 (2)

1687–1690.

Ahmadi, A., Belk, R., Tamon, C. and Wendler, C. (2003) On mixing in continuous-time quantum

walks on some circulant graphs. Quantum Information and Computation 3 (6) 611–618.
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