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1. Introduction

In (8), R. L. Goodstein gave necessary and sufficient conditions for the
solvability of equations over distributive lattices with 0 and 1 together with an
algorithm for computing a solution whenever one exists. In addition, the same
problem was considered for a special class of equations over distributive lattices
with pseudocomplementation. The validity of several of Goodstein’s results
for distributive lattices without 0 and 1 was pointed out by Rudeanu in (15)
and (16).

The purpose of this paper is to show that many of the above-mentioned
results can be extended to a much larger class of functions and equations over
various equational classes of distributive lattices with pseudocomplementation.
At the same time we generalise some results of Grétzer (9) and (10) concerning
functions on distributive lattices and Boolean algebras satisfying the congruence
substitution property.

Finally, a solution of the word problem for the class of distributive lattices
with pseudocomplementation is given.

2. Preliminaries

Throughout, the reader is assumed to be familiar with the results in (8) and
is referred to (11) for the basic lattice theory. We denote the categories of
distributive lattices with 0 and 1, distributive lattices with pseudocomplementa-
tion, Stone algebras, Heyting algebras (pseudo-Boolean algebras) and Boolean
algebras by 9, ,, %8,,, 8., , and B, respectively. The algebra in £, obtained
from the 2"-element Boolean algebra by adjoining a new unit will be denoted by
%,. The n-element chain {0, 1, ..., n—1} will be denoted by n.

3. Functions with the congruence substitution property

If o is a class of similar algebras and 4 € o/ then a function f: 4™ 4 is
said to be algebraic if there exists a sequence of m-ary functions f,, f, ..., f,,
where f, = fand each f; (i = 1, ..., r) is either a constant function

a(xla (AR xm) =4a

(where a is a fixed element of A4), an identity function [,(x,, ..., x,,) = x, or is
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obtained from preceding functions in the sequence by applying one of the
basic operations of the algebra A.

A function f: A™— A4 is said to have the congruence substitution property if
the implication:

i =p0(i=1,2, ..., m)=f(xy, ..., X)) =S (Y15 05 Ym)(O)

holds for every congruence relation 8 on A.

Clearly, every algebraic function has the congruence substitution property.
Gratzer (9) has shown that the congruence substitution property characterises
the algebraic functions on a Boolean algebra. The same is also true for Post
algebras (see (4)). However, it is not true that every function on any distributive
lattice with 0 and 1 which has the congruence substitution property is algebraic
(see (10)) nor is it true for p-rings (see (12)). We give an example, at the end of
this section, of a function on a distributive lattice with pseudocomplementation
which has the congruence substitution property but is not algebraic.

The following theorems generalise some results of Goodstein (8).

Theorem 3.1. If Le B, and f: L™>L has the congruence substitution
property then f = 0 identically if and only if \/ f(iy, ..., i) = 0, where the join
2"‘

\/ is taken over all ordered m-tuplets (iy, ..., i,,) € 2™,
2m

Proof. It is well-known that if L € 4, then the mapping x—»x = x** is a
homomorphism (in fact, a retraction) from L on to the Boolean algebra
S(L) = {x*: xeL}. Therefore, since f has the congruence substitution
property, we can define a function f: $™(L)—S(L) by

f(fl, sers ')_Cm) =f(x1’ e xm)'

Besides being well-defined, f also has the congruence substitution property;
because if 8 is any congruence on S(L) (regarded as a member of 4,) then
there exists a congruence 0 on L such that ¢ = b(0) if and only if @ = b(D).
Of course, any congruence on S(L), regarded as a member of 4, is a congruence
on S(L) regarded as a member of &, and visa versa. Therefore, by Gratzer’s
afore-mentioned theorem, f is an algebraic function on the Boolean algebra
S(L). Now, f(a,, ..., a,) = 0 if and only if f(@,, ..., ,) = 0 so that x; = a
(i =1,2, ..., m)is a solution of the equation f(xy, ..., x,,) = 0in L if and only
ifz; = a;(i = 1,2, ..., m) is a solution of the equation f(z,, ..., z,) = 0in S(L).
Finally, f = 0 identically in S(L) if and only if \/ f(i,, ..., i,) = O which is
Im

equivalent to f(i, ..., i,) = 0, for all (&, ..., i,,) € 2", and therefore to

)4 Sy, -y im) =0.
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Theorem 3.2. IfL e &, andf: L™ L has the congruence subsitution property
then the equation f(x,, ..., x,,) = 0 has a solution if and only if

2/’>f(i1, ey By) = 0.
When this condition is satisfied, a solution is
X; = 24\_jf(x1, s Xjo15 0, Tjg 1y weny B
Proof. The equation f(x,, ..., x,,) = O over L has a solution if and only if
the auxiliary Boolean equation f(z,, ..., z,,) = 0 over S(L) has a solution. A

necessary and sufficient condition for the solvability of the auxiliary equation
is A\ f(i, ..., 1,,) = 0, which, since
zm

z/kf(il, wets lm) = 2/}f(ll’ sevs ’m) = 2/’§.i.(l-1’ s im)’

is equivalent to A f(iy, ..., i,) =0. However, when the auxiliary Boolean
zm

equation has a solution, a particular solution is
zj = 2/\ .f(zly sees Zj—l: 6: ij+1’ (33} im) (.]= 1’ res m)'
moj
It follows, since

fj = /\ f(xl, seey xj—-la 09 ij+1’ LR ] im)= /\ f(jc_l’ seey -ij—ly 6’ ij+1’ LERE} im)s
2m=j 2m=j

thatz; = X; (j = 1, ..., m) is a solution of the Boolean equation f(z, ..., z,) = 0
over S(L) and therefore x; (j = 1, ..., m) is, indeed, a solution of the equation
flxq, ...y x,,) = O over L.

Remarks. Theorems 3.1 and 3.2 hold for functions with the congruence
substitution property over pseudocomplemented semilattices, implicative semi-
lattices and Heyting algebras. All that is necessary is to point out that the
crucial mapping x— X is a homomorphism in any of these categories.

IfLe#,and f: L"—>L has the congruence substitution property then by the
general solution of the equation f(x,, ..., x,,) = 0 over L we mean a set of m
functions with the congruence substitution property,

Xe=Jles s €p) (k=1,...,m)

such that f(f}, ..., f,,) is identically zero and such that if x, = x$ (k = 1, ..., m)
is any particular solution of the equation then there are values ¢9, ..., ¢2 of the
parameters c,, ..., ¢, for which x% = £,(c?, ..., c2).

Theorem 3.3. If Le#,, f: L">L has the congruence substitution property
and the equation f(x,, ..., x,,) = 0 over L has a particular solution

xp=xf(k=1,..,m)
then the general solution is

xe={xiAf(cq, ..o, e} VI{eenS* (cys s )} k=1, ..., m).
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Proof. It is well known that the identities x* = (X)*, (x v))* = x* Ay*
and (x A y)* = x* v y* hold in any Stone algebra. Therefore,

X = {x_ltl\f(cl, cees cm)} v {Ck /\f*(Cl, vy Cm)}

= (X AF@rs oer )}V LG A FHGys ey B

where f is the auxiliary Boolean function over S(L). Since x} (k =1, ..., m)

is a particular solution of the equation f(x,, ..., x,,) =0 over L,
ze=xl k=1, .., m

is a particular solution of the auxiliary equation f(z,, ..., z,,) = 0 over S(L).
It follows from this and Theorem A of (8) thatz, = X, (k = 1, ..., m) is a solu-
tion of the Boolean equation f(zy, ..., z,) = O for all ¢y, ..., ¢, € L. Further-
more, if x, = x% (k = 1, ..., m) is any particular solution of the equation over L,
then x9 is given by the values ¢, = x% of the parameters ¢, (k = 1, ..., m).

Unlike the case for Boolean algebras, it is not true that every equation over
any algebra L € 4, can be written in the form f = 0. However, every equation is
equivalent to an inclusion f < g. Furthermore, since f < g* if and only if
fAg** = 0in any Stone algebra, Theorems 3.1-3.3 are effective in dealing with
solutions of any inequality of the form f < g*.

With these remarks in mind we prove the following:

Theorem 3.4. If Le B, has a smallest dense element dy and f, g: L"—>L
have the congruence substitution property then f = g identically if and only if
f(al’ LR ] am) = g(ala seesy am)
holds whenever a;€ {0, dy, 1} (i = 1, ..., m).

Proof. Suppose the functions fand g agree on the set {0, d,, 1} but
a =f(a1’ tees am) # g(ala cees am) = b

forsomea;eL(j=1,...,m). Now,ssince any L € 4, is a subdirect product of
copies of €, and ¥, either there exists a homomorphism ¢, from L on to %,
such that ¢o(a) # ¢o(b) or there exists a homomorphism ¢, from L on to 4,
such that ¢,(a) # ¢,(b). In this first case, since ¢o(0) and ¢4(1) are the only
elements of ¥,, we have f, = g, identically, where f, : €5—%, is defined by

Jo(bo(x1)s -os Do(Xm)) = do(f (X4, .05 X))

and g, : €5—%, is defined similarly. This, of course, is contrary to

bo(a@) # ¢o(b).

We deal with the second case by first showing that ¢,(d,) is the (unique) dense
element in the three-element chain ¢, distinct from the greatest element 1.
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If, to the contrary, ¢,(d,) = 1 then, since d, is the smallest dense element in L,
¢.(d) = 1 for all dense elements d in L. It follows, since x = x** A(x v x*)
and x v x* is dense for all x € L, that

$1(x) = ¢:(x**) A P (x v x*) = $,(x**) = {$,(x)}**
for all xe L. This yields, since ¢, is surjective, an obvious contradiction.

Finally, since ¢,(0), ¢,(d,) and ¢,(1) are the only elements in ¥,, we see that
/i1 = g, identically on ¥,, where f, : €7—%, is defined by

fl(¢l(xl)’ iie/ ¢l(xm)) = ¢1 (xl’ R ] xm))

and g, : 7%, is defined similarly. This, of course, contradicts ¢,(a) # ¢,(b)
and the proof is complete.

Corollary 3.5. If Be B, and f, g : B*—> B have the congruence substitution

property then f = g identically if and only if f(iy, ..., i) = g(iy, ..., i) JoOr all
(iyy vy E) € 2™,

Stone algebras are well known to form an equational class. The class of
Stone algebras having a smallest dense element may be regarded as an equational
class of algebras of the form & = (L; v, A; *; 0,1, d> where

Ly v, A5 % 0,15
is a Stone algebra, d* = 0 and dA(xvx*) = dforall xe L.

It follows as a special case of results proved in (6) that a Heyting algebra

belongs to the (equational) class 5, of all Heyting algebras satisfying the
3
identity \/ (xx;,,) = 1if and onlyif it is a subdirect product of copies of the

two and three element chains %,, ¥,. An immediate consequence is the follow-
ing:

Theorem 3.6. If H e # 5 has a smallest dense element dy, and f, g: H"—H
have the congruence substitution property then f = g identically if and only if
fand g agree on the set {0, d,, 1}.

The next result generalises some important properties of algebraic functions
on Heyting algebras first proved in (13).

Theorem 3.7. If He s and f: H">H has the congruence substitution
property then, fori =1, ..., m,

(D anf(xe, ooy Xm) = GAS(X1s oy Xim1s AAXG Xig gy oy Xim)

and (11) a*f(xl’ svrs xm) = a*f(xl’ cees Xj— 15 A¥Xyy Xjg 15 -ony xm)'

Proof. If a e H then the smallest congruence 8, ; on H for which aand 1
belong to the same congruence class can be described by x = y (8, ,) if and only
ifxana=yna. Now,a=1(0,,,) implies x; = anx; (0,,,) so that

Sy oo X)) SF(Xgy ooy Xim 1y AAXG Xig15 ens Xim) (00, 1)
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and therefore (i) holds. Next, a = 1 (0,,,) implies that asx; = 1*x; = x; (0,,,)
and so a/\f(xl’ sy xm) = aAf(xls seey Xj—1y OFXjy Xigqs oens Xm). It fOllOWS,
since the identity a*(a A x) = a*x holds in any Heyting algebra, that

axf (X1, coer Xp) = A% (Xygy ooy Xi_gs Q¥Xpy Xjgqy ooes Xpp)

Corollary 38. If He # and f: H->H has the congruence substitution
property then the following hold:

@) fxvyax=f(x)rx
(i) fevAGvy) =[f)Aax]vf(DAy]
@iii) fFxvAGEFV Y =) Ay* IV IS ) Ax*]
(iv) (xv ) (xAy) = [xf ] A Ly (x)]-
Proof. See (13).

Examples

We give an example of a function on a distributive lattice with pseudo-
complementation (in fact, on a Stone algebra) which has the congruence substi-
tution property but is not algebraic.

The three-element chain €, = {0, p, 1} (regarded as a member of 4%,) has
exactly three congruences, namely w,, 0, ;, ©, where w,, w, are the trivial
congruences and 0, , has congruence classes {1, p},{0}. The functionf: ¢, -%,
defined by f(0) = 1,f(p) = 1, f(1) = p has the congruence substitution property.
We show that fis not algebraic. First, we remark thatif Le &, and f: L—>L is
algebraic then, by induction on the structure of f, it can be shown that f(x) is
expressible in the form (@A x) v (b A x*) v (¢ Ax**). Therefore, if f is algebraic

then
(aap)ve=1(=f(p)) and ave=p(=f(1))

so that p = pAa(pve) =(ave)a(pve) = (aap)ve=1. Thus f is not
algebraic.
Some Stone algebras having a smallest dense element are:

(a) Finite Stone algebras.

(b) Well-ordered sets with greatest elements.

(¢) Any distributive lattice with a new zero adjoined.

(d) Equationally compact Stone algebras.

(e) Compact, Hausdorff, topological Stone algebras (see (5)).
(f) Injective Stone algebras (see (11)).

Of the algebras in the above list, examples (a), (d), (¢) and (f) are all Heyting
algebras.
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4. Pre-Post algebras and Post algebras

If De 9,,, and E is a finite chain with n > 2 elements then we write [ D],
for the free product D+E of D and E in the category of distributive lattices with
0 and 1 (and O, 1-preserving lattice homomorphisms) and call it the pre-Post
algebra of order n over D. If Be %, then [B], is the Post algebra of order n
over B (see e.g. (14)). From the papers of Balbes and Dwinger (1), (2) and

Rousecau (14) we have the following equational characterisation of pre-Post
algebras:

Theorem 4.1. In order that the algebra
{L; v, A; Dyy ooy Dy (5 €0y ees €41

with two binary (v, A), n—1 unary (D, ..., D,_) and n nullary (e, ..., ¢,_4)
operations should be a pre-Post algebra of order n, it is necessary and sufficient
that L € 9, and the following identities hold: (i = 1, ..., n—1)

D(x v y) = Dy(x)v Dy(y)
Di(x A y) = Di(x) ADy(y)
Dy(Dy(x)) = Dy(x)

] <
D) = {1’ sk =1, .. n-1

0, i>k
x=\/ D(x)re,.
Some properties of pre-Post algebras which we need are stated in the

following:

Lemma 4.2. In any pre-Post algebra L of order n the following are true:

(i) The set E = {ey, ..., e,—1} of nullary operations on L forms a chain
0=¢y<e;<...<e,_y = 1 and is a sublattice of L.

(ii) The mappings D, have a common image D, which is a sublattice of L, and
reduce to the identity on D.

(iiiy Dy(x) £ Dj(x) whenever j < i (i,j =1, ...,n-1).
(iv) x £ y=Dix) = D foralli=1, ...,n—1.
V) D,-1(x) £ x £ Di(x).
(vi) L = D+E (= [D],).
If [ D], is a pre-Post algebra of order n with chain of constants
E ={ey, ..., €,_1}
then a function f: [ D]y —[D], is said to be monotone on E if
fleays -5 €1,) = fleg, -5 €5,)
whenever the elements (o, ..., %,), (B, ..., B,) € H™ satisfy

(als ceey am) é (ﬂl’ sy ﬂm)'
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Using the preceding results we can generalise, to the class of pre-Post
algebras, some results of Gratzer (10) about functions on distributive lattices
with 0 and 1 which satisfy the congruence substitution property. The proofs are
slight variations of the proofs of related results given in (4) and are therefore
omitted.

Theorem 4.3. If [ D], is a pre-Post algebra of order n and f, g : [D]7—[D],
have the congruence substitution property then f = g identically if and only if
f and g agree on the chain of constants of [ D],.

Theorem 4.4. If[ D], is a pre-Post algebra of order n and f : [D];—[D], has
the congruence substitution property then f is algebraic if and only if it is monotone
on the chain of constants of [ D],.

The following canonical form for algebraic functions on pre-Post algebras is
a straight forward generalisation of the canonical form for algebraic functions
on distributive lattices with 0 and 1 obtained in (8).

Theorem 4.5. If[ D], is a pre-Post algebra of order n and . [D]7—[D], is
algebraic then

f(xla seey xm) = \éf(eap ceey eam)/\ k/—\l Dak(xk)’
where the join \/ is taken over all (a4, ..., a,) € n™

In (14) it was shown that an algebra
<L; V, A, *; Dla vecy Dn'—l; eO’ cevy en—l)
is a Post algebra of order n if and only if H = {L; v, A, *>€ 3 and the
identities listed in Theorem 4.1 together with the identity D,(x)v D¥(x) =1
hold. The common image of the mappings D; is a Boolean subalgebra of H
and L = B+E(= [B],)-
In any Post algebra [ B], it is known that the elements C,(x) € B defined by

CO(x) = DT(X), Cn—l(x) = Dn—l(x)

and C(x)=D(x)AD}(x)(i=1, ..., n—=2) form a partition of I in that

C()AC{x) =0 (i+#j) and \/ C(x)=1. Furthermore, every element

x € [B], has a partition representation x = \/ C{(x) A ¢;, which is unique in the
ien

sense that if x = \/ a;Ae; and the elements ao, ..., a,_; partition 1, then

a;=Cix)(i=0,..,n-1). In(4)it was shown that if f: [B]? —»[B], has the

congruence substitution property and g : [B]'—[B], is defined by

m

g(xh ccey xm) = \'{f(eap sty eam)/\ ké\l Cak(xk)

then f = g identically. It follows that an algebraic function on [B], may be
thought of as a function built up from the constant functions a(x;, ..., x,) = @
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and the identity functions I,(x,, ..., X,) = X, by a finite sequence of applications
of the operations v, A, Cy, ..., C,_;.

In (7) Epstein defines a Post function (of m-variables) to be a function
obtained from the constant functions E,(x,, ..., x,,) = ¢, (k = 0, ..., n—1) and
the identity functions by a finite sequence of the operations v, A, C,, ..., C,_;.
The next theorem gives a canonical form for algebraic functions on [B], which
contains the one obtained for Post functions in (7).

Theorem 4.6. If [B], is a Post algebra of order n and f:[B]7—[B], is

algebraic then
m

f(xb sy xm) = n\"/'f(eal’ A ea,,.)A /\ Cak(xk)

Proof. It follows verbatim from (7, Theorem 13) that the »™ fundaments

/A C.(x;) partition 1 and that the theorem is true for the (general) constant

functions, the identity functions and the functions f; vf,, f; Af, whenever
/1 and f, satisfy the theorem. If fsatisfies the theorem then, since

f( al’ . ea,-,.) - \/ ekACk(f(eal’ e eum))

and [B], is distributive, it follows that f(x,, ..., x,) = \/ e, A T, where

ken
To=\/ Cf (e, -5 ) A A, Cat (-

Utilising the distributivity of [B], and the partition property of elements and
fundaments, it is clear that the elements 7} (k = O, ..., n—1) partition 1. The
uniqueness of the partition representation of f(x;, ..., X,) implies that

= C(f(xy, ..., X)) and therefore the theorem is true for the function C,f.
The result follows by induction on the structure of f.

Corollary 4.7. If[B], is a Post algebra of order n and f, g : [B]y~[B], are
algebraic then f = g identically if and only if f and g agree on the chain of constants

of [B]'l'

Theorem 4.8. If [B], is a Post algebra of order n and f:[B]r—[B], is
algebraic then the equation f(x, ..., x,) = 0 has a solution if and only if

/}f(eal, v €y, ) =0

Proof. It follows, since f = 0 if and only if D,(f) = 0 and D, is a lattice
homomorphism which reduces to the identity of the underlying Boolean algebra
B, that the equation f(x,, ..., x,,) = 0 has a solution if and only if the equation

\/Dl( flegs .o e, DA k/\ C,.(x;) = 0 has a solution. The uniqueness of the

partmon representations for the elements x,, ..., x,, shows that this is equivalent
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to the simultaneous solvability of the system X of Boolean equations over B
given by

\éDl(f(eap secy eam)) Ak/-\l xk,ak = Oa
v xk,z = 1’

aEn

X aAXg,3=0, (k=1,...,m; a, Ben, a#p).

On writing W¥;(Xy, 05 ++vs X1, n=13 +=-3 Xm, 0s+++s Xm, n—1) fOT

k\'=m/1 {(a/e\n xl?, a) A (a,Xen (xk. a A xk, ﬁ)}a

where the join \/ is taken over all pairs (%, f) € n? with o # B and writing
{a,B>en

|ﬁ2(x1,0, ceey xl_,,_l; ey Xm, 09 oo x,,,,,,_l) for

\/ Dilf Curs s € DA A 5

the solvability of the system X over B is equivalent to the solvability of the
Boolean equation

lp(xl,o, AR ] xl,n—l; .o xm,o, coes xm,n—l)s
where y = y, vi,. This is equivalent, by Theorem B of (8), to
I = /\ l/’(il,o’ "oy il,n—l; cees im,O’ eeey im,n—l)

2mn

being 0 where the meet /\ is taken over all possible assignments from 2™,

hmn
In such an assignment we call the set {i; o, ..., i, ,~,} the kth block. Now, for
any assignment from 2™ in which i , = 4, 5 = 1 for some k = 1, ..., m and
o, B € nwith a # B, the value of ¢, and therefore of , is 1. Thus, we restrict
attention to those assignments from 2™ in which 1 appears at most once in each
block. Furthermore, we can restrict attention to those assignments in which 1
appears exactly once in each block; because if, for example, the kth block does
not contain 1 then the value of A xf,is 1 and therefore so is the value of .

xXEDR

Clearly there are exactly »™ such  basic ” assignments from 2™. For each
basic assignment, the value of ¥, is 0 so that the value of ¥ is equal to the value
of y,. Consequently, 7 is the meet of the values assumed by ¥, under the
n™ basic assignments. Now, for each basic assignment, the value of the term

t2d

Di(f(eas oos € DA /\ Xk, 0 Y3 is O, unless the m-tuplet (o, ..., &,) € A"

k=1
is such that 4, , = 1forall £ = 1, ..., m; in which case its value is

D (f(es,s ---5 €4,))-
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For any pre-assigned m-tuplet («,, ..., @,) € #™ it is clear that there is a basic
assignment from 2™ for which the value of ¥, is D,(f(e,,, -.., €,,)). Therefore,
I=AD(f(e,; ---» €5,)) so that the equation f(xy, ..., X,) = 0 is solvable if

and only if D, (/}f(e,l, s e,m)> = 0, or equivalently A‘f(eal, es €5,) = 0.
Remark. In any Post algebra of order n, x = y if and only if
i\e/n (C)+C(yre =0,
where C(x)+ C(») is the symmetric difference of C(x) and C;(¥) in the Boolean

algebra B. It follows, therefore, that every equation f = g over a Post algebra
can be reduced to one of the form f = 0.

5. The word problem for 22,

The word problem for the classes 2, , and %, have long been solved.
Balbes (3) has recently shown that the class of pseudocomplemented semi-
lattices has a solvable word problem.

It is known (see (11)) that the lattice of equational subclasses of &, is a
chain #_,cB,cB,<...cB, of type w-+1. Furthermore, an algebra
belongs to the class 4,(n <o) if and only if it is a subdirect product of copies of
the algebras ,, ..., €, while an algebra belongs to £, if and only if it is a sub-
direct product of copies of algebras obtained from arbitrary Boolean algebras
by adjoining a new unit. That the word problem for the class &, (n<w) is
solvable follows easily from its subdirect representation theorem.

The n-ary word algebra associated with the class %, will be denoted by
W,(8,). If fe W(4,) and L € 4, then we write f; for the polynomial over L
induced by f. If f, ge W, (4,) then by f =g we understand that f; = g,
identically in every L € 8,,. The order of fe W, (4., is the length O(f) of the
smallest sequence ), ..., f® = f where every word f (i = 1, ..., 1) is either
the zero word, and identity word or is obtained from preceding words by
applying one of the operation symbols v, A, *.

Theorem 5.1. If f, g € W(&,) then f = g if and only if f = g identically in
every algebra €, € B, withm £ 2"*0WN*0),

Proof. If f+# g then there exists an algebra (P; v, A; *>eZ, and
ay, ..., a, € P such that fi(ay, ..., a,) # gp@y, ..., a,). Let f{O, .. fOUD = £
and g{b, ..., g®®) = g, be sequences for fp and gp. Define

bi =fg)(a1! eeey an) (l = 1s vaey O(f)): cj =f§5i)(a1, LR a,,) (J = 1’ crey O(g))
and let L be the sublattice of P generated by the set

{ay, ..., a5, by, ...y bopys €15 oees Cog)-
EM.S.—19/2—0
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Then L has cardinality at most 2 to the power 2"*9U)*0() and is pseudo-
complemented. Furthermore, if x° denotes the pseudocomplement of x in L
then it is clear that if x € L and x* e L then x° = x*. From this it follows that
b;=fay,...,a,) (i=1,..,0() and ¢; =g¥ay, ..., a,) (j=1, ..., 0(9))
and therefore f;(a,, ..., a,) # g.(ay, ..., a,). Now, suppose that f = g identi-
cally in &, for all m < 2"*9U*0W byt £+ g. Then f; is not identically equal
to g, in some algebra L e %, having cardinality at most 2 to the power
n+0UN+0 1t follows from the subdirect product representation of L that
L is a subdirect product of a finite number of copies of some of the algebras
o, €15 €3, -vr $AY Crmys ovvs Gy Where |G, | S | L| £ 22740N*0W gnd s0
m; < 2"YoN*0W) (1 < i < 1), Therefore, since £}, is not identically equal to g,
in L, there exists an integer k(1 < k £ ¢) such that f'is not identically equal to g
in 4,,.. This, of course, is contrary to hypothesis.

REFERENCES

(1) R. BarLBes and PH. DWINGER, Coproducts of Boolean algebras and chains with
applications to Post algebras, Collog. Math. 24 (1971), 15-25.

(2) R. BarBes and PH. DwWINGER, Uniqueness of representations of a distributive
lattice as a free product of a Boolean algebra and a chain, Collog. Math. 24 (1971),
27-35.

(3) R. BALBES, On free pseudo-complemented and relatively pseudo-complemented
semi-lattices, Fund. Math. 78 (1973), 119-131.

(4) R. BEAZER, Some remarks on Post algebras, Collog. Math. 29 (1974), 167-178.

(5) R. BEAZzER, Intrinsic topologies on Brouwerian semilattices, Proc. London
Math. Soc. 28 (1974), 311-334.

(6) R. BeAZzER, Hierarchies of distributive lattices satisfying annihilator conditions,
J. London Math. Soc. (to appear).

(7) G. EpstEIN, The lattice theory of Post algebras, Trans. Amer. Math. Soc. 95
(1960), 300-317.

(8 R. L. GoopstEIN, The solution of equations in a lattice, Proc. Roy. Soc.
Edinburgh Section A 67 (1966/67), 231-242.

(9 G. GRATZER, On Boolean functions (Notes on lattice theory IIT), Rev. Roumaine
Math. Pures Appl. 7 (1962), 693-697.

(10) G. GrATZER, Boolean functions on distributive lattices, Acta. Math. Acad.
Sci. Hungar. 15 (1964), 195-201.

(11) G. GRATZER, Lattice Theory (Freeman, San Francisco, 1971).
(12) A. ISKANDER, Algebraic functions on p-rings, Collog. Math. 25 (1972), 37-41.

(13) J. C. C. McKinsey and A. TARrskI, On closed elements in closure algebras,
Ann. of Math. 47 (1946), 122-162.

https://doi.org/10.1017/50013091500010312 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500010312

DISTRIBUTIVE LATTICES WITH PSEUDOCOMPLEMENTATION 203

(14) G. RouseAu, Post algebras and pseudo-Post algebras, Fund. Math. 67 (1970),
133-145.

(15) S. RupeaNu, On functions and equations in distributive lattices, Proc.
Edinburgh Math. Soc. 16 (1968), 49-54.

(16) S. RubpeaNu, Correction to the paper “On functions and equations in distri-
butive lattices”, Proc. Edinburgh Math. Soc. 17 (1970), 105.

THE UNIVERSITY OF GLASGOW
Grascow G112 8QW

https://doi.org/10.1017/50013091500010312 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500010312

