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1. Introduction

In (8), R. L. Goodstein gave necessary and sufficient conditions for the
solvability of equations over distributive lattices with 0 and 1 together with an
algorithm for computing a solution whenever one exists. In addition, the same
problem was considered for a special class of equations over distributive lattices
with pseudocomplementation. The validity of several of Goodstein's results
for distributive lattices without 0 and 1 was pointed out by Rudeanu in (15)
and (16).

The purpose of this paper is to show that many of the above-mentioned
results can be extended to a much larger class of functions and equations over
various equational classes of distributive lattices with pseudocomplementation.
At the same time we generalise some results of Gratzer (9) and (10) concerning
functions on distributive lattices and Boolean algebras satisfying the congruence
substitution property.

Finally, a solution of the word problem for the class of distributive lattices
with pseudocomplementation is given.

2. Preliminaries
Throughout, the reader is assumed to be familiar with the results in (8) and

is referred to (11) for the basic lattice theory. We denote the categories of
distributive lattices with 0 and 1, distributive lattices with pseudocomplementa-
tion, Stone algebras, Heyting algebras (pseudo-Boolean algebras) and Boolean
algebras by 2>Ot u $&a, 38x,ye, and 380 respectively. The algebra in 38m obtained
from the 2"-element Boolean algebra by adjoining a new unit will be denoted by
<gn. The n-element chain {0, 15 . . . ,»-1} will be denoted by n.

3. Functions with the congruence substitution property
If s? is a class of similar algebras and A e sf then a function/": Am->A is

said to be algebraic if there exists a sequence of w-ary functions fl7 f2, ..., / r ,
where fT = / and each/; (i = 1, ..., r) is either a constant function

a(xu ...,xm) = a

(where a is a fixed element of A), an identity function Ik{xu ..., xm) = xk or is
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obtained from preceding functions in the sequence by applying one of the
basic operations of the algebra A.

A function/: Am-*A is said to have the congruence substitution property if
the implication:

x, = j>;(0)(i = 1, 2, ..., m)=>f(xlt ..., x j =f(yu ..., ym)(9)

holds for every congruence relation 9 on A.
Clearly, every algebraic function has the congruence substitution property.

Gratzer (9) has shown that the congruence substitution property characterises
the algebraic functions on a Boolean algebra. The same is also true for Post
algebras (see (4)). However, it is not true that every function on any distributive
lattice with 0 and 1 which has the congruence substitution property is algebraic
(see (10)) nor is it true for p-rings (see (12)). We give an example, at the end of
this section, of a function on a distributive lattice with pseudocomplementation
which has the congruence substitution property but is not algebraic.

The following theorems generalise some results of Goodstein (8).

Theorem 3.1. If Le 3ft m and f: Lm->L has the congruence substitution
property then f — 0 identically if and only if\Jf{ii, ..., im) = 0, where the join

2m

\f is taken over all ordered m-tuplets (iu ..., im)e 2m.

Proof. It is well-known that if L e 38 w then the mapping x-*x = x** is a
homomorphism (in fact, a retraction) from L on to the Boolean algebra
S(L) = {x*: xeL}. Therefore, since / has the congruence substitution
property, we can define a function/: Sm(L)-*S(L) by

/(*! , ..., xj =f(xu ..., xm).

Besides being well-defined, / also has the congruence substitution property;
because if B is any congruence on S(L) (regarded as a member of 3$w) then
there exists a congruence 9 on L such that a = b(9) if and only if a = 5(9).
Of course, any congruence on S(L), regarded as a member of 38a, is a congruence
on S(L) regarded as a member of 3S0 and visa versa. Therefore, by Gratzer's
afore-mentioned theorem, / is an algebraic function on the Boolean algebra
S(L). Now, f{au ..., am) = 0 if and only if/(a l 5 ..., am) = 0 so that xt = a
(i = 1, 2, ..., m) is a solution of the e q u a t i o n / ^ , ..., xm) = 0 in L if and only
if z,- = at (i = 1, 2, ..., m) is a solution of the equation/(zj, ..., zm) = 0 in S(L).
Finally, / = 0 identically in S(L) if and only if \//( ' i> •••» '»•) = 0 which is

equivalent to/(i l 5 ..., i j = 0, for all (iu ..., im) e 2m, and therefore to

V / ( ' i . - . ' • - ) = °-
2".
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Theorem 3.2. IfL e 38^ andf: Lm-+L has the congruence substitution property
then the equation f(xu ..., xm) = 0 has a solution if and only if

A/ ( ' i . •••> ' J = o.
2m

When this condition is satisfied, a solution is
Xj = / \ f(,X1, ..., Xj_!, 0 , lj+i, . . . , Jm).

2"»-j

Proof. The equation f{xu ..., xm) = 0 over L has a solution if and only if
the auxiliary Boolean equation J(zu ..., zm) = 0 over S(L) has a solution. A
necessary and sufficient condition for the solvability of the auxiliary equation
is A/0"i> •••' 'm) = 0> which, since

A / 0 ' i . •••' ' J = A / ( » i . •••>'«) = A / ( ' i . •••' O,
2m 2m 2m

is equivalent to A / ( ' i > •••» lm) = 0- However, when the auxiliary Boolean

equation has a solution, a particular solution is
ZJ - A / ( Z l> • " ' ZJ-1> 0» 0 + 1 ' •••' fm) C/ = 1. •••» W).

2m-y

It follows, since

*/ = A / ( x i > •••> XJ-I> °» «j+i» •••' 'm) = A
2m-J 2™-j

= Xj(J = 1, ...,/M) is a solution of the Boolean equation/^!, ...,zm) = 0
over .S(L) and therefore x} (j = 1, ..., m) is, indeed, a solution of the equation
/(*, , ..., xj = Oover L.

Remarks. Theorems 3.1 and 3.2 hold for functions with the congruence
substitution property over pseudocomplemented semilattices, implicative semi-
lattices and Heyting algebras. All that is necessary is to point out that the
crucial mapping JC-»5C is a homomorphism in any of these categories.

If L e 3SY and/: Lm->L has the congruence substitution property then by the
general solution of the equation/(xj, ..., xm) = 0 over L we mean a set of m
functions with the congruence substitution property,

xk=fk(c1, ..., cm) (/c = l, ..., m)

such that/C/j, ...,/m) is identically zero and such that if xk = x°k (k = 1, ..., rri)
is any particular solution of the equation then there are values c\, ..., c° of the
parameters cu ..., cm for which x°k =fk(c°u ..., c°).

Theorem 3.3. If L e 3d\, f: LT^L has the congruence substitution property
and the equation f{xu ..., xm) = 0 over L has a particular solution

xk = xl(k = l, ..., m)
then the general solution is

1S ...,cm)}v{ckAf*(cu ..., c j} (fc = l, ..., m).
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Proof. It is well known that the identities x* = (x)*, (xvy)* = x* Ay*
and {x Ay)* = x*vy* hold in any Stone algebra. Therefore,

xk = {x1
kAf(cu ..., cm)}v{ckAf*(cu ..., cm)}

= W A M , •••, cm)}v{ckAj*(clt ..., cj}

where/is the auxiliary Boolean function over S(L). Since x\ (k = 1, ..., m)
is a particular solution of the equation f(xlt ..., xm) = 0 over L,

zk = x\(k = 1, ..., m)

is a particular solution of the auxiliary equation/(zj, ..., zm) = 0 over S(L).
It follows from this and Theorem A of (8) that zk = xk (k = 1, ..., m) is a solu-
tion of the Boolean equation f(zu ..., zm) = 0 for all cu ..., cmeL. Further-
more, if xk = x°k (k = 1,..., m) is any particular solution of the equation overZ,,
then x°k is given by the values ck = x°k of the parameters ck (k = 1, ..., m).

Unlike the case for Boolean algebras, it is not true that every equation over
any algebra Le^m can be written in the form/ = 0. However, every equation is
equivalent to an inclusion f^g. Furthermore, since / ^ g* if and only if
/ A # * * = 0 in any Stone algebra, Theorems 3.1-3.3 are effective in dealing with
solutions of any inequality of the form/ ^ g*.

With these remarks in mind we prove the following:

Theorem 3.4. If L e ^ has a smallest dense element d0 and f, g :Lm-+L
have the congruence substitution property thenf= g identically if and only if

/(<*i> •••. O = 0 ( a i , . . . , ccm)

holds whenever at e {0, d0, 1} (/ = 1, ..., m).

Proof. Suppose the functions/and g agree on the set {0, d0, 1} but

a =f{au ..., am) # g{au ..., am) = b

for some ay eL(j = 1, ..., m). Now, since any L e 3&x is a subdirect product of
copies of Wo and ^u either there exists a homomorphism <j>0 from L on to <<?0
such that <l>o(d) # <t>o(b) or there exists a homomorphism fy^ from L on to ^
such that <j>x{d) # $i(b). In this first case, since 4>o(0) and <£0(l) are the only
elements of ^0, we have / 0 = g0 identically, where / 0 : ̂ -^^g is defined by

and g0 : ^Q-^^O *S defined similarly. This, of course, is contrary to

We deal with the second case by first showing that </>i(d0) is the (unique) dense
element in the three-element chain (^1 distinct from the greatest element 1.
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If, to the contrary, ^(t/o) = 1 then, since d0 is the smallest dense element in L,
fy^d) — 1 for all dense elements d in L. It follows, since x = x** A(XVx*)
and xv x* is dense for all x e L, that

for all xeL. This yields, since $j is surjective, an obvious contradiction.
Finally, since (̂ i(O), <p!(d0) and ^i(l) are the only elements in <gu we see that
ft = gt identically on <&1, where/t : ^ I" -*^ is defined by

fi(<t>i(xi), ••-, <K(*J) = <t>i(f(xu ..., xj)

and gx :
 <S^-*<Sl is defined similarly. This, of course, contradicts 0i(a) # <j>Ab)

and the proof is complete.

Corollary 3.5. If Be(%0 and f, g : Bm-*B have the congruence substitution
property then f = g identically if and only iff(iit ..., i j = g(iu ..., i j / b r a//
( i l t . . . , / „ ) 6 2".

Stone algebras are well known to form an equational class. The class of
Stone algebras having a smallest dense element may be regarded as an equational
class of algebras of the form jSf = <L; v, A ; *; 0, 1, d} where

<L; v , A ; •; 0, 1>
is a Stone algebra, d* = 0 and dA(xv x*) = d for all xeL.

It follows as a special case of results proved in (6) that a Heyting algebra
belongs to the (equational) class JV3 of all Heyting algebras satisfying the

3

identity \J (xi*xi+1) = 1 if and only if it is a subdirect product of copies of the
i = 1

two and three element chains ̂ 0, Wy. An immediate consequence is the follow-
ing:

Theorem 3.6. If H e f̂3 has a smallest dense element d0 andf, g : Hm-*H
have the congruence substitution property then f' = g identically if and only if
f and g agree on the set {0, d0, 1}.

The next result generalises some important properties of algebraic functions
on Heyting algebras first proved in (13).

Theorem 3.7. If Hey? and f: Hm->H has the congruence substitution
property then, for i = 1, ..., m,

(i) aAf{xu .... xJ = aA/(x1, ..., X;_i, aAxhxi+u ..., xj

and (ii) a*f(xu ..., xm) = a*f(xu ..., x,-y, a*xit xi+1, ..., xj.

Proof. If a e H then the smallest congruence 0a> x on H for which a and 1
belong to the same congruence class can be described by x = y (9a t) if and only
if XAO = y A a. Now, a = 1 (0Oyl) implies xt = aAx{ (0O>1) so that
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and therefore (i) holds. Next, a = 1 (0a> x) implies that a*x{ = 1**, = x-t (0Oj t)
and so a/\f(xu ..., xm) = « A / ( X , , ..., xt_u a*xb xi+l, ..., xj. It follows,
since the identity a*(a AX) = a*x holds in any Heyting algebra, that

a*/(xx, ..., xm) = a*/(xx, ..., xt-lt a*xh xi+1, ..., x j .

Corollary 3.8. IfHeM' and f: H^H has the congruence substitution
property then the following hold:

(I)/(XV>>)AX=/(X)AX

(ii) f(x v y) A (x v y) = [/(x) A x] v [/(y) A y]

(iii) /(x v y) A (x* v y*) = [/(x) A y*] v [/(j) A X*]

(iv) (x v y)*f{x Ay) = [x*/(»] A [^*/(X)].

Proof. See (13).

Examples

We give an example of a function on a distributive lattice with pseudo-
complementation (in fact, on a Stone algebra) which has the congruence substi-
tution property but is not algebraic.

The three-element chain ^ = {0, p, 1} (regarded as a member of 3S^) has
exactly three congruences, namely w0, 0pl, mt where co0, cuj are the trivial
congruences and 6pA has congruence classes {l,p}, {0}. The function/: <^1->

<g'1
denned by/(0) = l,f(p) = 1,/(1) = P has the congruence substitution property.
We show that / i s not algebraic. First, we remark that if L e SS^ and/ : L->L is
algebraic then, by induction on the structure of/, it can be shown that/(x) is
expressible in the form (a/\x) V (6AX*) V(C AX**). Therefore, i f / is algebraic
then

(a A/?) v c = 1(= /O)) and u v c = ^ ( = /(I))

so that p = pA(pvc) = (avc)A(pvc) = (aAp)vc= 1. Thus / is not
algebraic.

Some Stone algebras having a smallest dense element are:

(a) Finite Stone algebras.
(b) Well-ordered sets with greatest elements.
(c) Any distributive lattice with a new zero adjoined.
(d) Equationally compact Stone algebras.
(e) Compact, Hausdorff, topological Stone algebras (see (5)).
(/) Injective Stone algebras (see (11)).

Of the algebras in the above list, examples (a), (d), (e) and (f) are all Heyting
algebras.
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4. Pre-Post algebras and Post algebras
If D e <̂ Oi t and E is a finite chain with n ^ 2 elements then we write [D]n

for the free product D*E of £> and is in the category of distributive lattices with
0 and 1 (and 0, 1-preserving lattice homomorphisms) and call it the pre-Post
algebra of order n over D. If B e 38$ then \B\ is the Post algebra of order n
over B (see e.g. (14)). From the papers of Balbes and Dwinger (1), (2) and
Rouseau (14) we have the following equational characterisation of pre-Post
algebras:

Theorem 4.1. In order that the algebra

<L; v, A ; DU ..., Dn_t; e0, ..., en_x>

with two binary (v , A), n—l unary (Du .... Dn_t) andn nullary (e0> ..., e,,^)
operations should be a pre-Post algebra of order n, it is necessary and sufficient
that Le2lOfl and the following identities hold: (i = 1, ..., n— 1)

/),(/)*(*)) = Dk(x)

Some properties of pre-Post algebras which we need are stated in the
following:

Lemma 4.2. In any pre-Post algebra L of order n the following are true:
(i) The set E= {e0, ..., en_1} of nullary operations on L forms a chain

0 = e0<el<...<en_i = 1 and is a sublattice ofL.
(ii) The mappings Dt have a common image D, which is a sublattice ofL, and

reduce to the identity on D.
(iii) Di(x) ^ Dj(x) whenever j g / (i,j = 1, ..., n- 1).
(iv) x ^ yoDlx) ^ D^for all i = 1, ..., n-1.
(v) Dn^(x) ^ x ^ D,{x).

(v i )L= D*E(=[D-]n).
If [Z>]n is a pre-Post algebra of order n with chain of constants

£• = {e0, ...,£„_!}

then a function/: [£>]"->[D]n is said to be monotone on E if
f(eai, •••> O SRePl, ...,epj

whenever the elements («„ ..., am), (f}u ..., fim) e nm satisfy
(ai. •••. « J ^ (Pi, •••. PJ-
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Using the preceding results we can generalise, to the class of pre-Post
algebras, some results of Gratzer (10) about functions on distributive lattices
with 0 and 1 which satisfy the congruence substitution property. The proofs are
slight variations of the proofs of related results given in (4) and are therefore
omitted.

Theorem 4.3. If[D]n is a pre-Post algebra of order n andf, g : [£>]"-• [£>]„
have the congruence substitution property then f = g identically if and only if
fandg agree on the chain of constants of\D\.

Theorem 4.4. lf\_D\ is a pre-Post algebra of order n andf: [!>]"-• [!>]„ has
the congruence substitution property then f is algebraic if and only if it is monotone
on the chain of constants of[D]n.

The following canonical form for algebraic functions on pre-Post algebras is
a straight forward generalisation of the canonical form for algebraic functions
on distributive lattices with 0 and 1 obtained in (8).

Theorem 4.5. If\_D]n is a pre-Post algebra of order n andf: \p^-*\p\n is
algebraic then

f(xu ..., xm) = V/( e « ,» •••> O A A D*Axk),
nm k = 1

where the join \J is taken over all (alt ..., ocm) e ri".

In (14) it was shown that an algebra

<£; v , A , *; Du .... Dn.t; e0, ..., en_!>

is a Post algebra of order n if and only if H = <L; v , A , •> e Jf and the
identities listed in Theorem 4.1 together with the identity Dt(x) v D*(x) = 1
hold. The common image of the mappings Dt is a Boolean subalgebra of H
and L = B*E{= [£]„).

In any Post algebra [5]n it is known that the elements Cf(x) e B defined by

and Ct(x) = Dt(x)ADf+1(x) (i = 1, ..., n-2) form a partition of 1 in that
C;(x) A Cj(x) = 0 (i ¥= j) and \J Cf(x) = 1. Furthermore, every element

ten

x e [5]n has a partition representation x = \ / C;(x) A et, which is unique in the
f e n

sense that if x = \J aiAet and the elements a0, ..., an_1 partition 1, then
i en

at = d(x) (i = 0, ..., « - l ) . In (4) it was shown that if/: [B]™-*[B]n has the

congruence substitution property and g : [B]"->[.B]n is defined by

g(xu ...,xm) = V/(ea i , - , O A A c*Sxk)
nm k = 1

then f = g identically. It follows that an algebraic function on [5]n may be
thought of as a function built up from the constant functions a(xu ..., xm) = a
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and the identity functions Ik(xu ..., xm) = xk by a finite sequence of applications
of the operations v, A , CO, ..., Cn_t.

In (7) Epstein defines a Post function (of m-variables) to be a function
obtained from the constant functions Ek(xu ..., xm) = ek(k = 0, ...,«— 1) and
the identity functions by a finite sequence of the operations v , A , Co, ..., Cn_t.
The next theorem gives a canonical form for algebraic functions on [5]n which
contains the one obtained for Post functions in (7).

Theorem 4.6. If [5]n is a Post algebra of order n and f: [5]™-^[B]n is
algebraic then

f{xu ..., x j = V'/(eai, ..., e j A f\ CXk{xk).
n " k = 1

Proof. It follows verbatim from (7, Theorem 13) that the nm fundaments

/ \ CXk(xk) partition 1 and that the theorem is true for the (general) constant
k = 1

functions, the identity functions and the functions fy v/2, / t A / 2 whenever
/ j and/2 satisfy the theorem. If/satisfies the theorem then, since

f(.ettl, ..., eaj = V ek*Ck(f(exl, ..., eaj)
k en

and [2?]n is distributive, it follows that/(xls ..., xm) = \ / ek A Tk where
ken

Tk = y ck(j(eai,...; o ) A A ca< (xi).
n m / = 1

Utilising the distributivity of [5]n and the partition property of elements and
fundaments, it is clear that the elements Tk (k = 0, ..., n— 1) partition 1. The
uniqueness of the partition representation of f{xu ..., xm) implies that
Tk = Ck(f(x1, ..., xm)) and therefore the theorem is true for the function Ckf.
The result follows by induction on the structure of/.

Corollary 4.7. If[B]n is a Post algebra of order n andf, g : [5]"->[B]n are
algebraic thenf — g identically if and only iff and g agree on the chain of constants

Theorem 4.8. If [B~]n is a Post algebra of order n and f: [B]^"->[B]n is
algebraic then the equation f(xt, ..., xm) = 0 has a solution if and only if

Af(eXl, ..., 0 = 0-
nm

Proof. It follows, since/ = 0 if and only if Z>!(/) = 0 and Z)x is a lattice
homomorphism which reduces to the identity of the underlying Boolean algebra
B, that the equation f(xlt ..., xm) = 0 has a solution if and only if the equation

m

V ^ i ( / ( e a i ' •••' enm))A A C<nHxk) = 0 has a solution. The uniqueness of the
n m k = 1

partition representations for the elements xi7 ...,xm shows that this is equivalent
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to the simultaneous solvability of the system 2 of Boolean equations over B
given by

\/Dl(f(eXl,...,eam))A / \ x*,afc = 0,
k 1

x*.aA*t,/) = 0> (fc = !> •••» "»; «, Pen, a

On writing i/^^x^o, ..., x ^ , , ^ ; .. .; xmi0,..., x ^ , , ^ ) for

V i( AX*.
t = 1 (,\aen

A V (**.
<a,0>en

where the join \ / is taken over all pairs (a, /?) e n2 with a # /? and writing

1 , 0 » l , n - l » • • • » x m , 0 » •••> x m , n - l )

»"> * = 1

the solvability of the system 2 over B is equivalent to the solvability of the
Boolean equation

where i/r = ^ v ^ . This is equivalent, by Theorem B of (8), to

J = A I K I 1 , O J • • • » i l , B - l > • • • » '"m, O» • • • > i | B , i i - l )

being 0 where the meet / \ is taken over all possible assignments from 2m".

In such an assignment we call the set {4,o> ..., 4,n-i} the kth block. Now, for
any assignment from 2mn in which ikx = ik9 = 1 for some k = 1, ..., m and
x, P e n with a ^ /?, the value of 1^, and therefore of \j/, is 1. Thus, we restrict
attention to those assignments from 2mn in which 1 appears at most once in each
block. Furthermore, we can restrict attention to those assignments in which 1
appears exactly once in each block; because if, for example, the kth block does
not contain 1 then the value of /\ x*a is 1 and therefore so is the value of ip.

a en

Clearly there are exactly nm such " basic " assignments from 2m". For each
basic assignment, the value of 1/̂  is 0 so that the value of i[/ is equal to the value
of 1̂ 2- Consequently, / is the meet of the values assumed by \]/2 under the
nm basic assignments. Now, for each basic assignment, the value of the term

m

•DiC/fez,, •••> O ) A A x*,«fc
 i n ^2 i s °> u n l e s s t h e »»-tuplet (als ..., a j e nm

k = 1

is such that ikiak = 1 for all k = 1, ..., m; in which case its value is
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For any pre-assigned /w-tuplet (<x.u ..., am) e if it is clear that there is a basic
assignment from 2m" for which the value of i[/2 is ^ ( / ( e ^ , •••, e<,m))- Therefore,
/ = ADi(/(e£-!» •••> e

xJ) s o tr*at the equation f(xu ..., xm) = 0 is solvable if

and only if D1 (/\f(eai, ..., e«J ) = 0, or equivalent^ /\f{eai, ..., eaj = 0.

Remark. In any Post algebra of order n, x = y if and only if

where Cf(;c) + C,(^) is the symmetric difference of Ct(x) and C^y) in the Boolean
algebra B. It follows, therefore, that every equa t ion /= g over a Post algebra
can be reduced to one of the form / = 0.

5. The word problem for S9a

The word problem for the classes @0,i
 a n d &o have long been solved.

Balbes (3) has recently shown that the class of pseudocomplemented semi-
lattices has a solvable word problem.

It is known (see (11)) that the lattice of equational subclasses of 33a is a
chain @-lcz&)ocgBlc..<=.g8a of type to+l. Furthermore, an algebra
belongs to the class 3$n{n < to) if and only if it is a subdirect product of copies of
the algebras <^0, . . . ,#„ while an algebra belongs to ^ r a if and only if it is a sub-
direct product of copies of algebras obtained from arbitrary Boolean algebras
by adjoining a new unit. That the word problem for the class 3)n{n«o) is
solvable follows easily from its subdirect representation theorem.

The n-ary word algebra associated with the class 3Sa will be denoted by
Wn{38^. life Wn(@a) and Le3Sm then we write fL for the polynomial over L
induced by / . If / , g e Wn(j2Bm) then by / = g we understand that fL = gL

identically in every Le@m. The order offe Wn(@J is the length O(f) of the
smallest sequence/(1), . . . , / ( r ) = / w h e r e every word/ ( l ) (i = 1, ..., r) is either
the zero word, and identity word or is obtained from preceding words by
applying one of the operation symbols v , A , *.

Theorem 5.1. Iff, g e Wn(S9^) then j ' = g if and only iff = g identically in
every algebra <#m 6 3Sm with m ^ 2" + O ( / ) + O ( 9 ) .

Proof. If/T^gr then there exists an algebra <P; v , A ; *> e HBm and
alt ..., aneP such that /P(a1 ; ..., an) # 9r{au ..., an). Let/*,1), ...,/<,°<'» = / p

and g(p, ..., g{°(9)) = gP be sequences for /P and gP. Define

b, =/JP(a1, . - , an) (i = 1, ..., O(/)), Cj =/{/>(«!, - , an) (j = 1, ..., 0(0))

and let L be the sublattice of P generated by the set

{au ..., an, bu ...,
E.M.S.—19/2—O
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Then L has cardinality at most 2 to the power 2n+O(f)+O(9) and is pseudo-
complemented. Furthermore, if x° denotes the pseudocomplement of x in L
then it is clear that if x e L and x* sL then x° = x*. From this it follows that

b, = / i ! ) (a l J .... an) (i = 1, .... O(/)) and c, = gP(au .... an) (j = 1, .... O(g))
and therefore fL(au ..., am) ^ g^flu •••> am)- Now, suppose t h a t / = g identi-
cally in <€m for all m g 2"+O(-'')+O(9) b u t / # #. Then/L is not identically equal
to gL in some algebra L e ^ o having cardinality at most 2 to the power
2n+o(/)+o(9) I t follows from the subdirect product representation of L that
L is a subdirect product of a finite number of copies of some of the algebras
^o> ^i> ^2> •••> s a y »m,> •••> »mt> wnere | %m( | ^ | L \ ^ z ana so
mf ^ 2 n + 0 ( / ) + O ( 9 ) (1 g / g /) . Therefore, since fL is not identically equal togL

in L, there exists an integer k{\ ^ k ^ t) such tha t / i s not identically equal to g
in <£'mfc. This, of course, is contrary to hypothesis.
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