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The nullity of the Alexander module of the fundamental group of the comple-
ment of a knot in S3 was one of the invariants of wild knot type defined and
investigated by E. J. Brody in [1], in which he developed a generalised elementary
divisor theory applicable to infinitely generated modules over a unique factorisation
domain. Brody asked whether the nullity of a knot with one wild point was
bounded above by its enclosure genus; for knots in S3, the present author showed
in [6] that this was indeed the case. In [7], it was (prematurely) stated by the
author that this was also the case for knots k embedded in a 3-manifold M so
that H,(M - k) was torsion-free.

The aim of this paper is to set the record straight. Let k be an oriented knot
in the interior of a connected compact triangulated 3-manifold M, and suppose
that k has only one wild point. Let P(k, p) be the penetration index of k at this
point p. Let n{(M — k) be the fundamental group of M — k; the first Betti group
B^M — k), being the torsion-free part of H^M — k), is a free abelian group of
finite rank. Let JB be the integer group ring of BY{M — k); JB is therefore a
unique factorisation domain, which means that we can apply the results of [1]
and [6] to obtain invariants of M — k, and therefore of the embedding type of
k in M. The Betti module of k is the unique JB-module determined by n^M — k);
the main theorem of this paper, theorem 1, states that the nullity v of the Betti
module of k is bounded above by the expression

in which n(M) denotes the maximum possible nullity of the Betti module of a
tame knot in M, and is an invariant of M. The paper closes with some questions
about n(M), and the conjecture that

v ̂  e(k) + n(M) - 1
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for all compact 3-manifolds M, where e(k) denotes the enclosure genus of k (cf.
[6], p. 550).

The author is indebted to the referee for his criticism and suggestions.

Proof of theorem 1

It will be assumed throughout that readers are familiar with the terminology,
notation, and results of [1] and [6]; in particular, if G is a group and x: G -> G jG'
the canonical map, /?: G jG' ->B the canonical map whose kernel is the torsion
subgroup of GIG', then the Jacobian JB-moduIe of G evaluated at fix (cf. [1],
p. 146, and [6], p. 546 f.) will be called the Betti module of G.

PROPOSITION 1. There exists a closed 3-cell neighbourhood U of p such that
the map Ht(M — k —[/)-»• HL(M — k), induced by inclusion, is an epimorphism.

PROOF. Let N be any tame closed 3-cell neighbourhood of p, whose boundary
is in general position with respect to k and meets k in 2n ( ^ 0) points. The reduced
Mayer-Vietoris sequence

••• -• H^N -k)® HX{M -k-N)^ Ht(M - k) -> H0(BdN-k) = 0

shows that H^M — k] is a quotient of the direct sum of H^N — k) (which is a
free group on n generators) and Ht(M — k — N). This last group is finitely
generated, as it is isomorphic to the first homology group of the compact space
obtained by removing an open regular neighbourhood of k UJV from M; this
means that Ht(M — k) is finitely generated.

Let au—,a.m be a set of paths whose homology classes generate H^M — k),
and let the distance of k from a , U a 2 U - U a m measured with the barycentric
metric on M, be e. Then any 3-cell neighbourhood U of p which lies in the interior
of a ball of radius e and centred at p will have the property we require. Q.E.D.

Since theorem 1 is trivial if P(k, p) is infinite, we may assume that P = P(k, p)
is finite. Let U be a 3-cell of the type given by proposition 1. An admissible
sequence of 3-cells for the knot k is a sequence Ut => U2 => U3 =3 ••• such that,

for each i = 1,2, •••,
(i) Ut is a tame closed 3-cell neighbourhood of p whose boundary is in general

position with respect to k and meets k in precisely P points,
(ii) Ui+1 <= Int Ut and l/x a Int U, and
(iii) n Ut = {p}.
Let l/1 is U2 => U3 ZD ••• be an admissible sequence for k, and let Gt and G

be the fundamental groups of M — k — Ut and M — k respectively. Then the
inclusion maps M — k— [/,<= M — k— Ut+1 and M — k - t / , c M — k induce
maps 0 J : G J - > G I + 1 and t/z^Gi-yG such that iAi+1</>j = i/̂ ,-; note that G is the
direct limit of the sequence
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by [3].
Let o: ^-*sf be the abelianisation functor, given by o(G) = G /G' for all

G eS?. Note that a(G,) s H X(M -k-Ut) and a(G) =* H ^ M - k), so we have a
commuting diagram

HX(M -k-Ut) ^ ^ i -» tf t (M - fc) - ^ . B l ( M - fc) = B

in which T; is the composition of the Hurewicz isomorphism f/,-: Gj/G,--> Ht(M
-k-Ui) with the canonical map Gi-^GJG', (and >/: G/G' -*H1(M - k) is
another Hurewicz isomorphism).

We shall use f, to denote the map riaty^1; note that d- is really just the
homology map induced by the inclusion M — k — t/,- c: M — k. Since t/,- a Int (/,
proposition 1 shows that £, is an epimorphism. We may therefore make G, into a
B-group [Gj,af] by setting af = )SC,TJ; then 0f and i/'j become morphisms in the
category 3$ of B-groups, because the diagrams

B

commute (cf. [6], p. 545).

PROPOSITION 2. [G, /?T] is the direct limit in SS of the sequence

PROOF. (Note that this proposition is analogous to (5.1) of [6]; a proof is
included here because the proof of (5.1) contains a lacuna.)

Notice that [G, /?T] and the maps \j/t: [Gh af] -> [G, fix] satisfy all the com-
muting requirements for a direct limit. Let [L,A] be a B-group and A,: [G,-,a(]
-> [L,A] a family of B-homomorphisms such that Aj+10j = Aj for each i; we wish
to show that there exists a unique homomorphism y in 88 such that Af = yt/̂  for
each i, where y: [G,J?T] -> [L,A].

Now G is the direct limit of the sequence in 0 , so there exists a unique
homomorphism y: G -> L such that the diagram
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+-L

•if I

commutes for each i; we shall show that Xy = /?T.
Consider the diagram

in which every triangle commutes, with the possible exception of GLB. Some
chasing shows that lyf, = /fri ;̂, and this is true for all i. Since the group G is
generated by the image groups \j/£Gj), it follows that Xy =J?T; that is, y is a J'-map.
This shows that [G, fix] is the direct limit of the sequence

in 0 . Q.E.D.
From proposition 2, and theorem 1 of [6], it follows that the Betti module

M[G, /JT] of G is the direct limit of the Jacobian modules of the G; evaluated at
af; since G is generated by the image groups ip,{Gi), M[G, JST] is the union of its
submodules M\]/,{M[Gt, aj), and each of these submodules is finitely generated
because each Gf is. We therefore have a sequence

whose union is M[G,J8T]. Then the nullity of M[G,/JT] as a JB-module is the
supremum of the nullities of the M^,(M[Gj,aj]); by (2.2) of [1], it follows that

T ] ) ^ sup v(M[G;, a,]).

This brings us to the statement of the main theorem.

THEOREM 1. Let k be an oriented knot with one wild point p, lying in the
interior of the compact 3-manifold M: let P(k,p) be the (3-cell) penetration
index ofkatp (see [7], p. 176). / / v denotes the nullity of the Betti module of k,
and if n(M) is the largest integer n such that there exists a tame knot in M
whose Betti module has nullity n (or n(M) = oo if no largest such n exists), then
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PROOF. There is nothing to prove if P(k, p) is infinite, so we assume that
P(k, p) = P is finite and takes the value In. Then to prove the theorem it is suf-
ficient to prove that

for each i.
We join the P points of k n BdUt by n oriented arcs fiu •••,/?„ whose interiors

lie in Int Uit so that the components of k in M — Ut form a consistently oriented
knot k* when joined together by the fi/s. We choose the j8/s so that they are
unknotted and do not link each other; that is, so that n^Ui — u Pj) is a free
group on n generators. The fact that we may choose the p/s in this way can be
proven by induction on n.

Let N be an open regular neighbourhood of BdU( — k* = BdUt — k in
M - k*; the open sets JV U(M -Ut- k*) and N U(C/j - KJfij) have the same
homotopy types as M — Ut — k* and Ut — UjSy- respectively, so we can apply the
van Kampen theorem to show that the diagram

n1(Ui - u

nt(N) - k*)

7T,(M-fc*-l/,) = G(

is a pushout in ^, where all the maps are induced by inclusion maps. Since the
functor a preserves pushouts, the diagram

H^M-k*)

H^M-k-Ud
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is a pushout in s/ (where we have translated every group L /L' by the Hurewicz
isomorphism to the first homology group of the appropriate space; this means
that in the diagram above, the maps between homology groups have all been
induced by inclusion maps). Similarly, the diagram

H^M-k)

in which the maps are induced by inclusion maps, is a pushout in ,s&.
Now we choose a starting point on k lying in M — Uh and order the points

of fcnBdt/j with the order in which we meet them as we travel along k in its
positive direction. If the points of k O Bdt/; = k* n Bd[/; are xu x2, •••, x2n, then
x2m-1 and x2m are joined by an arc of k; we may also assume that they are joined
by the subarc /?m of k*. Let tl,t2,---,t2n_1 be 2n — 1 disjoint simple loops on
BdC/f — k, chosen so that each t} bounds a disc D} on Bdt/j which contains no
other tm in its interior, and whose interior contains Xj but no other points of

Let the n components of k O U, be ordered so that k} starts at x2j_1 and
finishes at x2j. Then H^Ui — k) is generated by the homology classes of the loops
t2!-i in Ut — k; in fact, Hl{Ui — k) is the free abelian group generated by the
elements a(x)(h), a(x)(t3), a(z)(ts),.",o0f)(f2»-i). Similarly, H^Ui-^Pj i s t h e

free abelian group on the n generators O^iXtx), 0(^0((3), •••,o(^i)((2»-i)'
Notice also that a(x) (r2 J = oOc) (f2m-1) and o (^ ) (f2m) = o (^ ) (t2m- x) for each m.

There is therefore an isomorphism co-.H^Uf— Uf}j)-> H^Ut — k) which
makes the diagram

- U

Hi{U,-k)
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commute. Some chasing around the diagram

[7]

H^M-k*)

I a(to2)

•*• H^M-k)

(in which the small rectangles are both pushouts in J / ) shows that this isomorphism
a induces an isomorphism Q.: Ht(M - k*)-y Ht(M - k) such that Qa(a>*)
= aicojco and Qo(co )̂ = o(co2). If fi*: Ht(M - k*) -> B^M - k*) is the canonical
map to the Betti group of k*, then Q induces an isomorphism Q.*: BY{M — k*)
-> Bi(M — k) such that Q*fi* = po.. We therefore have a commutative diagram

-k-U,) - k*)

(because t,t = a((o2) is the map induced by the inclusion of M — k ~ Ut in M - k).
This means that any Jacobian matrix of Gt, evaluated at a,, is the image of a

Jacobian matrix of G,- evaluated at /?*O(CO*)T,- under the ring isomorphism
JQ*: J(Bi(M - k*))-*JB; this is the result we will use to find an upper bound
for v(M[G,,a,]).

Now we direct our attention to finding a Betti matrix for nt(M - k*). Since
n^M - k*) is the quotient of the free product Gfn^Ui - Uj?,) by the normal
subgroup generated by the In - 1 elements of the form ^ ^ ( U ^ ^ C C 1 ) . it
follows that n^M - k*) has a Betti matrix of the form
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where A is a Jacobian matrix of Gt evaluated at /?*a(ct>2)Tj, the matrix 0 has n
columns of zeros, and the matrix C has 2n — 1 rows, one for each of the relators
<»if i(Ofi>*?2(*» *). m = 1,2, - , 2 n - 1. Then by (4.1) of [6], the nullity v* of the
Betti module of TT1(M — k*) is at least as great as the nullity of the matrix (A 0)
reduced by the rank r(C) of C. That is,

v* ^ v(A) + n-r(Q^ v(A) + n - (2n - 1);

hence

v(A) ^ v* + n - 1.

Since JC1* is an isomorphism and Q*P*a(a>*)T:, = aj, the nullity of a Jacobian
matrix of Gt evaluated at /?*a(co*)T, is the nullity of any Betti matrix of Gt. Hence

v(M[Gf,a,.]) = v(A) ^ v* + n - 1

g n(M) + n - l .

As mentioned earlier, this upper bound on v(M[G,, a j ) yields an upper bound for
v[M[(?,/fr]), and the theorem is proved. Q.E.D.

Some open questions

QUESTION 1. How can one compute n(M) for a given compact 3-manifold
Ml Is there an algorithm for computing n(M) from a triangulation of Ml
Does there exist an M such that n(M) = oo?

We can at least give a lower bound for n{M), as follows.

THEOREM 2: For every compact 3-manifold M,

n{M) ^ 1 + v(M),

where v(M) is the nullity of the Betti module of M.

PROOF. Let C be a tame closed 3-cell in the interior of M, and k a tame knot
in the interior of C. Then

nXM - k) £ 7r1(M)*7t1(C - k), and

B^M-k) S B1(M)®Z.

Let /J be the canonical map from Ht(M — k) to BY{M — k); the symbol /?
will also be used to denote the induced map of integer group rings. If A is a matrix
| a l 7 | , P(A) is the matrix | / ? (a y ) | . Now by [4], p. 206, n^M-k) has an
Alexander matrix of the form

A2
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where At is an Alexander matrix for n^M), and A2 an Alexander matrix for
n^C - k); smce BX(C - k) = H^C - A;), it follows that P(A2) = A2 and therefore
that n^M — k) has a Betti matrix of the form

0

o A
Then

v(k) = viPiAJ) + v(A2) = v{p{AJ) + 1 = 1 + v(M),

for every tame knot in a 3-cell has (Alexander) nullity equal to 1. Hence

n{M) =• v(/c) = 1 + v(M). Q.E.D.

Let /(BdM) denote the Euler characteristic of the boundary Bd M of the
3-manifold M. Theorem 2 above then yields the corollary:

COROLLARY : If M is compact, then

(i) if Bd M is empty, or if Bd M is not empty but x(BdM) = 3; then
n(M) = l ;

(ii) ;/ Bd M is not empty but /(BdM) ^ 2, then

n(M) ^ 2 — ^(BdM).

PROOF. The nullity of any Jacobian module of a group G of deficiency d is
bounded below by 0 if d is negative, or by d if d _ 0. A lower bound for the
deficiency of n^M) will therefore yield a lower bound for n(M), by theorem 2;
we have used the lower bounds given in (6.2) of [5] (cf. theorem 2.2 of [2]) to
obtain the lower bounds for n{M). Q.E.D.

Note that if M is orientable and /(BdM) _̂  3, the lower bound for n(M) given
above can be improved by using theorem 2.2 of [2] rather then (6.2) of [5].

QUESTION 2. If M is a closed oriented 3-manifold different from S3 then, by
theorem 1 of [8], M can be written as the connected sum of prime 3-manifolds
M1,M2,---,Mm. If M is not closed, the pair (M,BdM) can, by theorem 4.1 of
[9], be written as the "connected sum along the boundary" of boundary-prime
3-manifold pairs ( M ^ B d M J , (M2,BdM2), •••,(Mm, BdMm). How is the number
n(M) related to the numbers n{Ml,),n{M2),---,n{Mn^)1

QUESTION 3. Can the upper bound of theorem 1 be replaced by e(k) + n(M)
— 1, where e(k) is the enclosure genus of k?

In S3, or in a 3-cell, the answer is yes, by theorem 2 of [6]; I conjecture that
the answer is "yes" for all compact 3-manifolds.

If k is a knot with a finite or empty set of wild points, a meridian of k is a
simple loop in M — k which bounds a disc *n M which meets k in precisely one
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point. Then the proof of theorem 2 of [6] can be modified to yield the following
partial answer to question 3.

THEOREM 3. Let k be an oriented knot with one wild point, lying in the
interior of the compact 3-manifold M, and let e(k) be the enclosure genus of k.
Let v be the nullity of the Betti module of k. Then if B^M — k) is the infinite
cyclic group generated by a meridian of k,

v ^ e(k) + n(M) - 1.

For we can still use the results of p. 549 of [6], since in the diagram

Wl(S3 -k*~U)

which occurs on page 551, all the groups are Z-groups and all the maps are
Z-homomorphisms. Q.E.D.

We conclude with another partial answer to question 3, which may be
obtained by modifying the proof of theorem 2 above, and using theorem 2 of [6] :

If k lies in the interior of a 3-cell in M, then

v ^ e(k) + v(M).
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