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PREDRAG R. JELENKOVIĆ,∗ Columbia University

JIAN TAN,∗∗ IBM T. J. Watson Research Center

Abstract

Consider a generic data unit of random size L that needs to be transmitted over a channel
of unit capacity. The channel availability dynamic is modeled as an independent and
identically distributed sequence {A, Ai}i≥1 that is independent of L. During each period
of time that the channel becomes available, say Ai , we attempt to transmit the data
unit. If L < Ai , the transmission is considered successful; otherwise, we wait for the
next available period Ai+1 and attempt to retransmit the data from the beginning. We
investigate the asymptotic properties of the number of retransmissions N and the total
transmission time T until the data is successfully transmitted. In the context of studying
the completion times in systems with failures where jobs restart from the beginning, it
was first recognized by Fiorini, Sheahan and Lipsky (2005) and Sheahan, Lipsky, Fiorini
and Asmussen (2006) that this model results in power-law and, in general, heavy-tailed
delays. The main objective of this paper is to uncover the detailed structure of this class
of heavy-tailed distributions induced by retransmissions. More precisely, we study how
the functional relationship P[L > x]−1 ≈ �(P[A > x]−1) impacts the distributions
of N and T ; the approximation ‘≈’ will be appropriately defined in the paper based
on the context. Depending on the growth rate of �(·), we discover several criticality
points that separate classes of different functional behaviors of the distribution of N .
For example, we show that if log(�(n)) is slowly varying then log(1/P[N > n]) is
essentially slowly varying as well. Interestingly, if log(�(n)) grows slower than e

√
log n

then we have the asymptotic equivalence log(P[N > n]) ≈ − log(�(n)). However,
if log(�(n)) grows faster than e

√
log n , this asymptotic equivalence does not hold and

admits a different functional form. Similarly, different types of distributional behavior
are shown for moderately heavy tails (Weibull distributions) where log(P[N > n]) ≈
−(log �(n))1/(β+1), assuming that log �(n) ≈ nβ , as well as the nearly exponential
ones of the form log(P[N > n]) ≈ −n/(log n)1/γ , γ > 0, when �(·) grows faster than
two exponential scales log log(�(n)) ≈ nγ .
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1. Introduction

Retransmissions represent one of the most fundamental approaches in communication
networks that guarantee data delivery in the presence of channel failures. These types of
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Retransmissions and heavy tails 107

mechanisms have been employed in all networking layers, including, for example, the automatic
repeat request (ARQ) protocol (see, e.g. Section 2.4 of [2]) in the data link layer [8] where a
packet is resent automatically in case of an error; contention-based ALOHA-type protocols
in the medium access control (MAC) layer that use random backoff and a retransmission
mechanism [7] to recover data from collisions; end-to-end acknowledgement for multi-hop
transmissions in the transport layer [9]; the HTTP downloading scheme in the application layer,
etc. For further discussions of the engineering implications of our results in communication
networks, see [7], [8], and the extended version of this paper [9].

As briefly stated in the abstract, we use the following generic channel with failures [8]
to model the preceding situations. The channel dynamic is described as an on–off process
{(A, U), (Ai, Ui)}i≥1 with alternating periods when the channel is available, Ai, and
unavailable, Ui , respectively; (A, Ai)i≥1 and (U, Ui)i≥1 are two independent sequences of
independent and identically distributed random variables. During each period of time that the
channel becomes available, say Ai , we attempt to transmit the data unit of random size L. If
L < Ai , we say that the transmission is successful; otherwise, we wait for the next period
Ai+1 when the channel is available and attempt to retransmit the data from the beginning.
We study the asymptotic properties of the distributions of the total transmission time T and
number of retransmissions N ; for the precise definitions of these variables and the model, see
Subsection 1.1.

The preceding model was introduced and studied in [10] and, apart from the already
mentioned applications in communications, it represents a generic model for other situations
where jobs restart from the beginning after a failure. It was first recognized in [4] that this model
results in power-law distributions when the distributions of L and A have a matrix exponential
representation, and this result was rigorously proved and further generalized in [13]. Under
more general conditions, Jelenković and Tan [8] discovered that the distributions of N and T

follow power laws with the same exponent α as long as log P[L > x] ≈ α log P[A > x] for
large x, which implies that power-law distributions, possibly with infinite mean (0 < α < 1)
and variance (0 < α < 2), may arise even when transmitting superexponential (e.g. Gaussian)
documents/packets. More recent results on the heavy-tailed completion times in a system with
failures are developed in [1]. In this paper, we further characterize this class of heavy-tailed
distributions that are induced by retransmissions.

From a mathematical perspective, our proofs are based on the method introduced in [8] that
uses the following key arguments. First, in exploring the distribution of N , we assume that the
functional relationship �(·) between the probability distributions F̄ (x)−1 ≈ �(Ḡ(x)−1), with
F̄ (x) := P[L > x] and Ḡ(x) := P[A > x], is eventually monotonically nondecreasing. Then,
we use the result that F̄ (L) is a uniform random variable on (0, 1) given that F̄ (·) is absolutely
continuous (see [8] and [7]), e.g. for F̄ (x) = (Ḡ(x))α, α > 0, the key argument on the uniform
distribution of F̄ (L) from [8] can be illustrated as

P[N > n] = E[(1− Ḡ(L))n] ≈ E[e−nḠ(L)] = E[e−nF̄ 1/α(L)] ≈ �(α + 1)

nα
.

Second, in contrast to [13] and [1], instead of studying the total transmission time T directly,
we study a simpler quantity N and then use large deviation techniques to investigate T , since T

can be represented as a sum of L and {(Ai +Ui)}1≤i<N ; see (1) in the next subsection. Hence,
our analysis is entirely probabilistic, which differs from the work in [1] that relies on Tauberian
theorems.

We extend the results from [1] and [8] under a more unified framework, and study how the
functional relationship between the data unit characteristics and channel dynamics in the form
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P[L > x]−1 ≈ �(P[A > x]−1) impacts the distribution of N , where the definition of the
approximation ‘≈’ may vary according to the context.

The rest of the paper is organized as follows. After a detailed description of the channel model
in Subsection 1.1, we present our main results in Section 2: the asymptotics of the distribution
of N in Subsection 2.1 and the asymptotics of the distribution of T in Subsection 2.2. In
Subsection 2.1 we study three types of distinct behavior, i.e. the very heavy asymptotics in
Subsection 2.1.1, the medium heavy (Weibull) asymptotics in Subsection 2.1.2, and the nearly
exponential asymptotics in Subsection 2.1.3. Some of the technical proofs are postponed to
Section 3.

1.1. Description of the channel

In this section we formally describe our model and provide necessary definitions and notation.
Consider transmitting a generic data unit of random size L over a channel with failures. Without
loss of generality, we assume that the channel is of unit capacity. The channel dynamic is
modeled as an on–off process {(Ai, Ui)}i≥1 with alternating independent periods when the
channel is available, Ai , and unavailable, Ui , respectively. In each period of time that the
channel becomes available, say Ai , we attempt to transmit the data unit and, if Ai > L, we
say that the transmission is successful; otherwise, we wait for the next period Ai+1 when the
channel is available and attempt to retransmit the data from the beginning. A sketch of the
model depicting the system is given in Figure 1.

Assume that {U, Ui}i≥1 and {A, Ai}i≥1 are two mutually independent sequences of
independent and identically distributed random variables.

Definition 1. The total number of (re)transmissions for a generic data unit of length L is defined
as

N := inf{n : An > L},
and the total transmission time for the data unit is defined as

T :=
N−1∑
i=1

(Ai + Ui)+ L. (1)

We respectively denote the complementary cumulative distribution functions for A and L as

Ḡ(x) := P[A > x] and F̄ (x) := P[L > x].
It was first discovered in Theorem 6 of [13] that this model leads to subexponential delay T

under quite general conditions. The following slightly more general proposition was proven in
Lemma 1 of [8] using probabilistic arguments (see also Proposition 1.2 of [1]).

Retransmit

Yes
Receiver

No

Data unit

L Channel with failures
Ai Ui({ )},

L<AiIs ?

Figure 1: Data unit retransmissions over a channel with failures.
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Proposition 1. If F̄ (x) > 0 for all x ≥ 0, then both N and T are subexponential in the sense
that, for any ε > 0,

eεn
P[N > n] → ∞ as n→∞

and

eεt
P[T > t] → ∞ as t →∞.

Clearly, Proposition 1 defines a class of subexponential distributions that are induced by
retransmissions; the proof of this proposition can be found in [8]. The main objective of
this paper is to uncover the detailed structure of this class of distributions. More precisely,
we investigate how the functional dependence of F̄ and Ḡ (stated in the form F̄ (x)−1 ≈
�(Ḡ(x)−1)) impacts the tail characteristics of the distributions of both N and T ; the exact
meaning of ‘≈’ will be defined according to the context.

In the paper we use the following standard notation. For any two real functions a(t) and
b(t), we write a(t) ∼ b(t) as t →∞ to denote limt→∞[a(t)/b(t)] = 1. Similarly, we say that
a(t) � b(t) as t →∞ if limt→∞ a(t)/b(t) ≥ 1; a(t) � b(t) has a complementary definition.
In addition, we say that a(t) = o(b(t)) as t →∞ if limt→∞ a(t)/b(t) = 0. We often simply
write a(t) = o(b(t)) without explicitly stating t →∞ in order to simplify the notation. Also,
we use the standard definition of a generalized inverse function f←(x) := inf{y : f (y) > x}
for a function f (x); note that the notation f (x)−1 is reserved for 1/f (x).

2. Main results

In this section we present our main results. Here, we assume that F̄ (x) is an absolutely
continuous function with support on [0,∞), i.e. F̄ (x) > 0 for x ≥ 0. If F̄ (x) is lattice valued,
our results may still hold; see Remarks 4 and 7. If F̄ (x) has only a finite support, we discuss this
situation in Section 3 of the extended version of this paper [9]; see also Example 3 in Section IV
of [8] and Section 3 of [1]. According to (1), the total transmission time T naturally depends
on the number of transmissions N , and, therefore, we first study the distributional properties of
the number of transmissions N in Subsection 2.1, and then evaluate the total transmission time
T using the large deviation approach in Subsection 2.2. We use the standard notation from the
theory of regularly varying functions [3]. A function l(x) : R+ → R

+ is slowly varying if, for
any λ > 0, l(λx)/ l(x) → 1 as x → ∞; and �(x) = xαl(x) is called regularly varying of
index α. Furthermore, we define the dominantly regularly varying functions.

Definition 2. For an eventually nondecreasing function �(x) : R+ → R
+, we say that �(x)

is dominantly regularly varying if

lim
x→∞

�(ex)

�(x)
<∞, (2)

where e ≡ exp(1).

Remark 1. Note that �(x) is eventually nondecreasing. Thus, if limx→∞�(cx)/�(x) <∞
for some constant c > 1, say c = e, then it holds for all c > 1. Also, it is known that dominantly
regularly varying functions contain the regularly varying functions [3].

Throughout the paper, we assume that �(x) is a positive, locally bounded on (0,∞), and
eventually nondecreasing real function.
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2.1. Asymptotics of the distribution of the number of retransmissions N

In this subsection we present the asymptotic results for the number of retransmissions N

depending on the functional relationship �(·) between F̄ and Ḡ. Informally, we study three
scenarios, very heavy asymptotics (when log(�(n)) is slowly varying), medium heavy (Weibull)
asymptotics (when log(�(n)) is regularly varying), and nearly exponential (when log log(�(n))

is regularly varying), where within and between these subclasses we also identify critical
functional points that define different distributional behaviors of N .

Informally, the results can be briefly summarized as follows.

• If �(n) is dominantly regularly varying, e.g. regularly varying, �(n) = nαl(n), α > 0,
then P[N > n] ≈ �(n)−1, as stated in Proposition 3 and Theorem 1.

• If �(n) is not dominantly regularly varying, e.g. �(n)−1 being lognormal, the preceding
tail equivalence P[N > n] ≈ �(n)−1 does not hold, as shown in Proposition 4. However,
we show in a weaker form that if log(�(n)) is slowly varying then log(P[N > n]) is
essentially slowly varying as well, as proved in Proposition 2. Interestingly, within this
class, we discover two types of distinct functional behavior of log P[N > n] depending
on the growth rate of log(�(n)).

◦ If log(�(n)) grows slower than e
√

log n, then we have the asymptotic equivalence
log(P[N > n]) ≈ − log(�(n)), as shown in Theorem 2 and Corollary 3, which
implies parts (1:1), (2:1) and (2:2) of Theorem 2.1 in [1] and extends Theorem 2
in [8].

◦ If log(�(n)) grows faster than e
√

log n then the preceding asymptotic equivalence
does not hold, and we demonstrate a different functional form of P[N > n] in
Proposition 6.

• If log(�(n)) is regularly varying with index β > 0, then we obtain a Weibull distribution
for N , i.e. log P[N > n] ≈ −(log �(n))1/(β+1), as presented in Theorem 3; we term
it moderately heavy (Weibull tail) asymptotics. This result implies part (1:2) of
Theorem 2.1 of [1], and provides a more precise logarithmic asymptotic instead of a
double logarithmic limit.

• When the decay of P[L > x] is much faster than P[A > x], i.e. their distributions are
roughly separated by more than two exponential scales, precisely, log log(P[L > x]−1) ≈
Rγ (P[A > x]−1) with Rγ (·), γ > 0, being regularly varying of index γ , we obtain
nearly exponential distributions for N of the form log(P[N > n]−1) ≈ n/R←γ (log n)

with R←γ (·) being regularly varying of index 1/γ , implying that R←γ (log n) is slowly
varying; see Theorem 4.

After the preceding characterization of the different classes of distributional behaviors
for N , we study in Subsection 2.2 the total transmission time T . As previously stated, for
studying T , we use the large deviation results since T can be represented as the sum of L and
{(Ai + Ui)}1≤i<N . In this context, our primary results show that (i) when �(·) is regularly
varying, we derive the exact asymptotics for T in Theorem 5, (ii) when log(�(·)) is slowly
varying, we obtain the logarithmic asymptotics for T in Theorem 6, and (iii) when log(�(·))
is regularly varying with positive index, we derive, in a different scale than in Theorem 6, the
logarithmic asymptotics in Theorem 7. Note that the preceding three results on T correspond to
Theorems 1(i), 2, and 3 on N , respectively. Similarly, we can derive the respective statements
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on P[T > t] for other results on P[N > n], but we omit this to avoid lengthy expositions
and repetitions. Interestingly, we want to point out that the minimum conditions needed for
Theorem 7, as shown by Proposition 8, involve an intriguing balance between the tail decays
of P[A > x] and P[L > x].
2.1.1. Very heavy asymptotics. In this subsection we study the situation when the distribution
of the number of retransmissions N is heavier than Weibull distributions. Specifically, we
determine under what conditions P[N > n] ≈ �(n)−1 holds, assuming that F̄ (x)−1 ≈
�(Ḡ(x)−1), meaning that the complementary cumulative distribution function of N is of the
same form (in terms of �(·)) as the functional relationship �(·) between F̄ and Ḡ.

We term this subclass very heavy distributions since if log(�(·)) is slowly varying, then
the number of retransmissions N is always heavier than any Weibull distribution; we state this
result as a proposition.

Proposition 2. If log(�(·)) is slowly varying and

lim
x→∞

log(F̄ (x)−1)

log(�(Ḡ(x)−1))
= 1, (3)

then, for any ε > 0, as n→∞,

lim
n→∞

log(P[N > n]−1)

nε
= 0.

The proof of this proposition will be presented in Subsection 3.1. In the remainder of this
subsection we study the detailed structure of this class of distributions that have very heavy
tails. The Weibull case will be studied in Subsection 2.1.2 on medium heavy asymptotics.

The following two propositions show that P[N > n] is tail equivalent to �(n)−1 basically
only when �(n) is dominantly regularly varying.

Proposition 3. If �(·) is dominantly regularly varying and, as x →∞,

F̄ (x)−1 ∼ �(Ḡ(x)−1), (4)

then, there exists finite c ≥ 1 such that

c−1 ≤ lim
n→∞

P[N > n]�(n) ≤ lim
n→∞P[N > n]�(n) ≤ c.

Remark 2. Note that, for Proposition 3 as well as the results in the rest of the paper, we could
have equivalently assumed that F̄ (x) ∼ �(Ḡ(x)), where �(·) is eventually nonincreasing and
satisfies the appropriate regularity conditions in the neighborhood of 0, e.g. condition (4) would
be restated in the neighborhood of 0. In this case, the respective statement would be in the
form P[N > n] ≈ �(n−1). We choose the current form since it has additional notational
benefits, e.g. log log �(n) would need to be replaced by the more cumbersome expression
log(− log(�(n−1))) in (say) Proposition 6 below.

Proposition 4. If (4) is satisfied and

lim
x→∞

�(cx)

�(x)
= ∞

for some c > 1, then
lim

n→∞P[N > n]�(n) = ∞.
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When �(·) is regularly varying, we can compute the exact asymptotics of the distribution
of N .

Theorem 1. Assume that F̄ (x)−1
∼ �(Ḡ(x)−1), where �(·) is regularly varying with

index α.

(i) If α > 0 then, as n→∞,

P[N > n] ∼ �(α + 1)

�(n)
. (5)

(ii) If α = 0, i.e. �(·) is slowly varying, then, as n→∞,

P[N > n] ∼ 1

�(n)
. (6)

Remark 3. For α > 0, Theorem 1 was proved in Theorem 4 of [8] using the method that we
further expand in this paper; alternatively, a similar result for T was proved using the Tauberian
method in Theorem 2.2 of [1]. We will prove the corresponding result for T in Theorem 5 in
Subsection 2.2.

Remark 4. (Lattice variables.) Note that if F̄ (x) and Ḡ(x) are lattice valued, then the
distribution of N may still be tail equivalent to �(n)−1, as in Proposition 4, but the constant
in front of �(n)−1 may be different from �(α + 1), e.g. if P[L > n] ∼ e−pn, p > 0, and
P[A > n] ∼ e−qn, q > 0, then this constant is between e−p�(1+ p/q) and ep�(1+ p/q).

Before turning to the proof of Theorem 1, we state two straightforward consequences of
the preceding theorems; see also Theorem 1 and Corollary 1 of [8]. The following corollary
allows F̄ and Ḡ to have exponential-type distributions; the corresponding result for T was first
derived in Theorem 7 of [13].

Corollary 1. Assume that Ḡ(x) ∼ e−βx and F̄ (x) ∼ axbe−δx, where b ∈ R and a, β > 0.
Then

P[N > n] ∼ a�

(
δ

β
+ 1

)
β−b (log t)b

tδ/β
.

Proof. It is easy to verify that, as x →∞,

F̄ (x)−1
∼ a−1βb(log Ḡ−1(x))−bḠ(x)−δ/β,

and, therefore, we can choose

�(x) = a−1βb(log x)−bxδ/β,

which, by using Theorem 1, completes the proof.

The following corollary specializes F̄ and Ḡ to have normal-like distributions, i.e. much
lighter tails than exponential distributions, as shown in Corollary 1 of [8] (see also Corollary 2.2
of [1]).

Corollary 2. Suppose that Ḡ(x) = P[|N(0, σ 2
A)| > x] and F̄ (x) = P[|N(0, σ 2

L)| > x], where
N(0, σ 2) is a Gaussian random variable with mean 0 and variance σ 2. Then

P[N > n] ∼ �(α + 1)α−1/2 (π log n)(α−1)/2

nα
, (7)

where α = σA
2/σL

2.
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Proof. First, note that

P[|N(0, σ 2)| > x] ∼ 2σ√
2πx

e−x2/2σ 2
,

and, therefore, recalling that α = σA
2/σL

2, we obtain

F̄ (x) ∼ π(α−1)/2α−1/2(− log Ḡ(x))(α−1)/2(Ḡ(x))α.

Hence, F̄ (x) and Ḡ(x) satisfy the assumption of Theorem 1 with

�(x) = α1/2(π log x)(1−α)/2xα,

which implies (7).

Next, we present the proofs of Propositions 3 and 4, and Theorem 1. Note that the following
proof represents a basis for the other proofs in this paper.

Proof of Proposition 3. Note that the number of retransmissions is geometrically distributed
given the packet size L:

P[N > n | L] = (1− Ḡ(L))n.

Therefore,
P[N > n] = E[(1− Ḡ(L))n]. (8)

Since �(x) is eventually nondecreasing, there exists x0 such that, for all x > x0, �(x) has
an inverse function �←(x). Condition (4) implies that, for 0 < ε < 1, there exists xε such
that, for x > xε,

(1− ε)F̄ (x)−1 ≤ �(Ḡ(x)−1) ≤ (1+ ε)F̄ (x)−1,

and, thus, by choosing xε > x0, we obtain, for x > xε,

�←((1− ε)F̄ (x)−1) ≤ Ḡ(x)−1 ≤ �←((1+ ε)F̄ (x)−1). (9)

We first prove the upper bound. Recalling (8), noting that V := F̄ (L) is a uniform random
variable on (0, 1) (see, e.g. Proposition 2.1 of [12, Chapter 10]), and using (9), we obtain, for
large n,

P[N > n] = E[(1− Ḡ(L))n]
= E[(1− Ḡ(L))n 1(L > xε)] + E[(1− Ḡ(L))n 1(L ≤ xε)]
≤ E[e−n/�←((1+ε)V−1)] + (1− Ḡ(xε))

n

≤ P

[
0 ≤ n

�←((1+ ε)V −1)
≤ 1

]

+

log(εn)�∑

k=0

e−ek

P

[
ek ≤ n

�←((1+ ε)V −1)
≤ ek+1

]

+ e−e
log(εn)�+1
P

[
n

�←((1+ ε)V −1)
> e
log(εn)�+1

]
+ (1− Ḡ(xε))

n

≤ 1+ ε

�(n)
+

log(εn)�∑

k=0

e−ek 1+ ε

�(n/ek+1)
+ e−εn + (1− Ḡ(xε))

n. (10)
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Condition (2) implies that there exist finite nd and d such that, for n > nd ,

�(n)

�(n/e)
< d,

resulting in, for small enough ε and all k satisfying n/ek−1 ≥ 1/ε > nd ,

�(n)

�(n/ek+1)
≤ dk+1, (11)

and, therefore,
�(n) ≤ �(nd)d log(n/nd )+1.

The preceding inequalities, in conjunction with (10), yield

lim
n→∞P[N > n]�(n) ≤ 1+ ε +

∞∑
k=0

(1+ ε)e−ek

dk+1

+ lim
n→∞(e−εn + (1− Ḡ(xε))

n)�(nd)d log(n/nd )+1

= 1+ ε +
∞∑

k=0

(1+ ε)e−ek

dk+1

<∞. (12)

Let us now prove the lower bound. Recalling (9) and choosing n > xε, we obtain

P[N > n] = E[(1− Ḡ(L))n]
≥

(
1− 1

n

)n

P

[
Ḡ(L) ≤ 1

n

]

≥
(

1− 1

n

)n

P[�←((1− ε)F̄−1(L)) ≥ n]

≥
(

1− 1

n

)n 1− ε

�(n)
,

implying that

lim
n→∞

P[N > n]�(n) ≥ lim
n→∞

(
1− 1

n

)n

(1− ε) = e−1(1− ε),

which, in conjunction with (12), proves the proposition.

Proof of Proposition 4. Recalling (9) and choosing n large enough such that {Ḡ(L) ≤
e/n} ⊆ {L > xε} with xε being the same as in (9), we obtain

P[N > n] = E[(1− Ḡ(L))n]
≥

(
1− c

n

)n

P

[
Ḡ(L) ≤ c

n

]

≥
(

1− c

n

)n

P

[
�←((1− ε)F̄−1(L)) ≥ n

c

]

≥
(

1− c

n

)n 1− ε

�(n/c)
,
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implying that

lim
n→∞

P[N > n]�(n) ≥ lim
n→∞

(
1− 1

n

)n
(1− ε)�(n)

�(n/c)
= ∞,

which completes the proof.

Proof of Theorem 1. We begin by proving (5). Without loss of generality, we can assume
that �(x) is eventually absolutely continuous and strictly monotone since, by Proposition 1.5.8
of [3], we can always find an absolutely continuous and strictly monotone function

�∗(x) = α

∫ x

x0

�(s)s−1 ds, x ≥ x0, (13)

which satisfies, as x →∞,

F̄ (x)−1
∼ �(Ḡ(x)−1) ∼ �∗(Ḡ(x)−1).

We first prove the upper bound. Recalling (8), noting that V := F̄ (L) is a uniform random
variable on (0, 1), and using (9), we obtain, for 0 < ε < 1,

P[N > n] = E[(1− Ḡ(L))n]
= E[(1− Ḡ(L))n 1(L ≥ xε)] + E[(1− Ḡ(L))n 1(L < xε)]
≤ E[e−n/�←((1+ε)V−1)] + (1− Ḡ(xε))

n.

Then, by choosing integer nd , as in (11), and noting that �(n) is regularly varying, the preceding
inequality yields, for large n and x > xε,

P[N > n] ≤ E

[
e−n/�←((1+ε)V−1) 1

(
0 <

n

�←((1+ ε)V −1)
≤ em

)]

+
log(n/nd )−1∑

k=m

e−ek

P

[
ek ≤ n

�←((1+ ε)V −1)
≤ ek+1

]
+O(e−n/nd )

+ (1− Ḡ(xε))
n

≤
∫ em

ε

e−z

(
�′(n/z)

�2(n/z)

(1+ ε)n

z2

)
dz+ P

[
n

�←((1+ ε)V −1)
< ε

]

+
log(n/nd )−1∑

k=m

e−ek 1+ ε

�(n/ek+1)
+ o

(
1

�(n)

)
,

resulting in

P[N > n]�(n) ≤
∫ em

ε

�(n)

�(n/z)

�′(n/z)

�(n/z)

e−z(1+ ε)n

z2 dz+
log(n/nd )−1∑

k=m

(1+ ε)e−ek �(n)

�(n/ek+1)

+�(n)P

[
n

�←((1+ ε)V −1)
< ε

]
+ o(1)

=: I1 + I2 + I3 + o(1). (14)
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Since regularly varying functions are also dominantly regularly varying, the bound in (11)
implies that

I2 ≤
log(n/nd )−1∑

k=m

(1+ ε)e−ek

dk+1 ≤
∞∑

k=m

(1+ ε)e−ek

dk+1 → 0 as m→∞. (15)

For I1, since �(n) is regularly varying, by the uniform convergence theorem of slowly varying
functions (see Theorem 1.2.1 of [3]), it is easy to obtain uniformly for ε ≤ z ≤ em, as n→∞,

�(n)

�(n/z)
∼ zα

and, recalling (13),
�′(n/z)

�(n/z)
= zα

n
,

which imply that

I1 ∼
∫ em

ε

(1+ ε)αe−zzα−1 dz. (16)

Furthermore, �(n) being regularly varying (α > 0) implies that I3 → 0 as passing n → ∞
and then ε→ 0. Thus, passing n→∞ in (14), recalling (15), and then passing m→∞ and
ε→ 0, we obtain

P[N > n]�(n) �
∫ ∞

0
αe−zzα−1 dz = �(α + 1). (17)

For the lower bound, the proof follows similar arguments, and the details are presented in
Subsection 3.2. The same subsection also contains the proof of the statement (ii) of the theorem.

Informally, the condition of �(·) being dominantly varying is almost necessary in order for
P[N > n] ≈ �(n)−1 to hold. As shown in Proposition 5, this tail equivalence does not hold
if �(·) is not dominantly varying, e.g. �(n) = e(log n)2

(lognormal type). Here, we further
characterize the behavior of the lognormal-type distributions in the following proposition.

Proposition 5. If log(�(x)) = λ(log x)δ, δ > 1 and λ > 0, then, under condition (4), we
obtain

lim
n→∞

log(P[N > n]−1)− log(�(n))

(log log n)(log n)δ−1 = −λδ(δ − 1).

The proof of this proposition is presented in Subsection 3.3.

Remark 5. In Proposition 5, it can be verified that �(·) is not dominantly regularly varying.
Therefore, by Propositions 3 and 4, we know that P[N > n]�(n)→∞ as n→∞. However,
Proposition 5 further characterizes how fast P[N > n]�(n) goes to infinity in the logarithmic
scale, which also implies the weaker result

lim
n→∞

log(P[N > n]−1)

log(�(n))
= 1.

In the following theorem we extend the preceding logarithmic limit under a more general
condition on �(·).
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Theorem 2. If �(x) = el(x) satisfies (3), where l(x) is slowly varying with

lim
x→∞

l(x/l(x))

l(x)
= 1, (18)

then

lim
n→∞

log(P[N > n]−1)

log �(n)
= 1. (19)

Remark 6. It can be easily verified that if log(�(x)) = e(log x)δ then condition (18) holds when
0 < δ < 1

2 and does not hold when δ ≥ 1
2 . Furthermore, if log(�(x)) = �(log x), where �(x)

is regularly varying, e.g. �(x)−1 being lognormal, then condition (18) also holds; we state this
result as Corollary 3 below.

Remark 7. (Lattice variables.) When L is lattice valued, it is easy to see from the proof of
Theorem 2 that, if there exists a continuous random variable L∗ such that log P[L∗ > x] ∼
log P[L > x] as x →∞, or, equivalently, if there exists a continuous negative nonincreasing
function q(x) such that log P[L > x] ∼ q(x), then Theorem 2 still holds, e.g. when L has a
geometric or Poisson distribution. To rigorously prove this claim, we can use similar arguments
as in the proof of Theorem 3.1 of [9]. Note that this remark also applies to other logarithmic
asymptotics; see, e.g. Corollary 3, Propositions 6 and 7, and Theorems 3, 4, 6, and 7.

Corollary 3. If a regularly varying function �(·) with a nonnegative index satisfies

lim
x→∞

log F̄ (x)−1

�(log Ḡ(x)−1)
= 1

and, in addition, is eventually nondecreasing when �(·) is slowly varying, then we have

lim
n→∞

log(P[N > n]−1)

�(log n)
= 1.

Remark 8. Corollary 3 and, more precisely, Theorem 6 in Subsection 2.2, imply parts (1:1),
(2:1), and (2:2) of Theorem 2.1 of [1] and extend Theorem 2 of [8]. The latter theorem states
that if, for α > 0, limx→∞ log F̄ (x)/ log Ḡ(x) = α then limn→∞ log P[N > n]/ log n = −α.

Proof of Corollary 3. For a regularly varying function �(·), it is easy to verify that l(x) =
�(log(x)) satisfies

lim
x→∞

l(x/l(x))

l(x)
= lim

x→∞
�(log x − log �(log(x)))

�(log(x))
= 1,

and, therefore, by Theorem 2, we prove the corollary.

Remark 9. Note that, in conjunction with Remark 6, condition (18) is close to necessary
since (19) does not hold if log(�(x)) = e(log x)δ , 1

2 < δ < 1, as can be seen from the following
proposition.

Proposition 6. If log(�(x)) = eλ(log x)δ , 1
2 < δ < 1 and λ > 0, then, under condition (3), we

obtain
log(log(P[N > n]−1))− log(log(�(n))) ∼ −δλ2(log n)2δ−1.

The proof of this proposition is presented in Subsection 3.4.
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Remark 10. Note that Proposition 6 implies that, for 0 < ε < 1 and large n,

0 ≤ log(P[N > n]−1)

log �(n)
≤ e−(1−ε)δλ2(log n)2δ−1 → 0,

which is not covered by the limit in (19).

Proof of Theorem 2. Since �(x) is eventually nondecreasing, there exists x0 such that, for
all x > x0, �(x) has an inverse function �←(x). Condition (3) implies that, for 0 < ε < 1,
there exists xε ≥ x0, such that, for x > xε,

F̄ (x)−(1−ε) ≤ �(Ḡ(x)−1) ≤ F̄ (x)−(1+ε).

Thus, for x > xε, we obtain

�←(F̄ (x)−(1−ε)) ≤ Ḡ(x)−1 ≤ �←(F̄ (x)−(1+ε)). (20)

We first prove the upper bound. Recalling (8), noting that V := F̄ (L) is a uniform random
variable on (0, 1), and using (20), we obtain, for integer y and large n,

P[N > n] = E[(1− Ḡ(L))n]
= E[(1− Ḡ(L))n 1(L > xε)] + E[(1− Ḡ(L))n 1(L ≤ xε)]
≤ E[e−n/�←(V−(1+ε))] + (1− Ḡ(xε))

n

≤
y∑

k=0

e−k
P

[
k ≤ n

�←(V −(1+ε))
≤ k + 1

]
+ e−(y+1) + (1− Ḡ(xε))

n,

which, using the fact that P[N > n] decays slower than any exponential function (see
Proposition 1), noting that �(x) = el(x), and choosing y = 
l(n)� − 1, implies that

P[N > n] ≤

l(n)�−1∑

k=0

exp

(
−k − 1

1+ ε
l

(
n

k + 1

))
+ e−l(n) + o(P[N > n])

≤ 
l(n)� exp

(
− 1

1+ ε
l

(
n


l(n)�
))
+ e−l(n) + o(P[N > n]). (21)

From (3), it is easy to see that l(x) increases to infinity when x →∞ and, since l(x) is slowly
varying, by (18) and (21), we obtain

lim
n→∞

log P[N > n]−1

l(n)
≥ 1. (22)

Let us now prove the lower bound. Recalling (20) and choosing large enough n, we obtain

P[N > n] = E[(1− Ḡ(L))n]
≥

(
1− 1

n

)n

P

[
Ḡ(L) ≤ 1

n

]

≥
(

1− 1

n

)n

P[�←(F̄−(1−ε)(L)) ≥ n]

≥
(

1− 1

n

)n 1

�(n)1/(1−ε)
,

https://doi.org/10.1239/aap/1363354105 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1363354105


Retransmissions and heavy tails 119

implying that

lim
n→∞

log P[N > n]−1

l(n)
≤ 1

1− ε
,

which, by passing ε→ 0 and in conjunction with (22), proves the theorem.

2.1.2. Medium heavy (Weibull) asymptotics. In the preceding subsection, we studied the
scenario when the distribution of N is heavier than any Weibull distribution. Specifically,
we established the necessary conditions under which P[N > n] ≈ �−1(n) holds when the
separation between P[L > x] and P[A > x] can be characterized in the form of �(x) = el(x)

with l(x) being slowly varying. In this subsection, we further increase the separation in the
sense that �(x) = eRβ(x) with Rβ(x) being regularly varying of index β > 0, and, under
this condition, the distribution of N is shown to be of Weibull type. In this situation, the tail
equivalence developed in the preceding subsection does not hold anymore and admits a different
form, as stated in the following theorem.

Theorem 3. If �(x) = eRβ(x) satisfies (3), where Rβ(x) = xβl(x), β > 0, is regularly varying
with l(x) satisfying

lim
x→∞

l((x/l(x))1/(1+β))

l(x)
= 1, (23)

then

lim
n→∞

log(P[N > n]−1)

(log �(n))1/(β+1)
= β1/(β+1) + β−β/(β+1). (24)

Remark 11. Theorem 3 and, more precisely, Theorem 7 in Subsection 2.2, imply part (1:2)
of Theorem 2.1 of [1], and provide a more precise logarithmic asymptotic instead of a double
logarithmic limit that was proved in [1]. Furthermore, although condition (23) appears
complicated, it is easy to check that any slowly varying function l(x) = l1(log x) satisfies
it, where l1(·) is also a slowly varying function.

Proof of Theorem 3. We first begin by proving the upper bound. Following the same
approach as in the proof of Theorem 2, we obtain, for ε > 0, integer y, and large enough n,

P[N > n] ≤
y−1∑
k=0

e−k
P

[
k ≤ n

�←(V −(1+ε))
≤ k + 1

]
+ e−y + o(P[N > n])

≤
y−1∑
k=0

exp

(
−k − 1

1+ ε
Rβ

(
n

k + 1

))
+ e−y + o(P[N > n]). (25)

Using the same argument as in (13), we can find an absolutely continuous and strictly
increasing function R∗β(u) := β

∫ u

u0
Rβ(s)s−1 ds, u ≥ u0 > 0, that is a modified asymptoti-

cally equivalent version of Rβ(u). The newly constructed function R∗β(u) has the property that,
for 0 < ε < 1, there exists yε > u0 such that (1− ε)R∗β(u) < Rβ(u) < (1+ ε)R∗β(u) for
u > yε. Therefore, for 0 < x < n/yε,

x + 1

1+ ε
Rβ

(
n

x

)
≥ x + 1− ε

1+ ε
R∗β

(
n

x

)
,

and, for u ≥ u0,
(R∗β(u))′ = βuβ−1l(u). (26)
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Choosing y = 
n/yε� in (25) and using the asymptotic equivalence relationship between
Rβ(·) and R∗β(·), we obtain

P[N > n] ≤

n/yε�−1∑

k=0

exp

(
−k − 1

1+ ε
Rβ

(
n

k + 1

))
+ e−n/yε + o(P[N > n])

≤

n/yε�−1∑

k=0

exp

(
−k − 1− ε

1+ ε
R∗β

(
n

k + 1

))
+ o(P[N > n]). (27)

Next, let f (x) = x + R∗β(n/x)(1− ε)/(1+ ε), and, from (26), it is easy to check that

f ′(x) = 1− 1− ε

1+ ε

(
R∗β

(
n

x

))′
n

x2 = 1− 1− ε

1+ ε

β

n

nβ+1

xβ+1 l

(
n

x

)
.

Then, defining g(u) := uβ+1l(u), and using the same argument as in the construction of R∗β(·),
we can find an absolutely continuous and strictly increasing function

g∗(u) := (β + 1)

∫ u

u0

uβl(u) ds, u ≥ u0,

such that (1− ε)g(u) < g∗(u) < (1+ ε)g(u), u > yε; possibly for a larger yε. Therefore, for
0 < x < n/yε, we obtain

1− 1

1+ ε

β

n
g∗

(
n

x

)
< f ′(x) = 1− 1− ε

1+ ε

β

n
g

(
n

x

)
< 1− 1− ε

(1+ ε)2

β

n
g∗

(
n

x

)
, (28)

where, as shown in the preceding inequalities, the lower and upper bounds of f ′(x) are two
monotonically increasing functions for 0 < x < n/yε.

Now, define

x1 :=
(

(1− ε)3

(1+ ε)2

)1/(β+1)

β1/(β+1)nβ/(β+1)l(n)1/(β+1)

and
x2 := (1+ ε)1/(β+1)β1/(β+1)nβ/(β+1)l(n)1/(β+1).

After some straightforward calculations, by condition (23), for large enough n, we obtain

f ′(x1) ≤ 1− 1− ε

(1+ ε)2

β

n
g∗

(
n

x1

)
< 1−

(
1− ε

1+ ε

)2
β

n
g

(
n

x1

)
< 0

and

f ′(x2) ≥ 1− 1

1+ ε

β

n
g∗

(
n

x2

)
> 1− β

n
g

(
n

x2

)
> 0,

which, by (28), imply that f ′(x) < 0 for all 0 < x ≤ x1 and f ′(x) > 0 for all x2 ≤ x < n/yε.
Therefore, for all x ∈ (0, x1] ∪ [x2, n/yε), f (x) is bounded from below by min(f (x1), f (x2)).
Now,

min(f (x1), f (x2)) ≥ inf
x∈[x1,x2]

f (x)

≥ x1 + inf
x∈[x1,x2]

1− ε

1+ ε
R∗β

(
n

x

)

≥ x1 + 1− ε

1+ ε
R∗β

(
n

x2

)
, (29)
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since R∗β(u) is increasing for u ≥ u0. Hence, using (27) and (29), and recalling that
Rβ(u) < (1+ ε)R∗β(u), we obtain

P[N > n] ≤
⌈

n

yε

⌉
exp

(
1− x1 − 1

(1+ ε)2 Rβ

(
n

x2

))
+ o(P[N > n]),

resulting in

lim
n→∞

log(P[N > n]−1)

nβ/(β+1)l(n)1/(β+1)
≥

(
(1− ε)3

(1+ ε)2

)1/(β+1)

β1/(β+1) + (1+ ε)−β/(β+1)−2β−β/(β+1).

Passing ε→ 0 in the preceding inequality yields

lim
n→∞

log(P[N > n]−1)

nβ/(β+1)l(n)1/(β+1)
≥ β1/(β+1) + β−β/(β+1). (30)

Let us now prove the lower bound. By recalling condition (20) and using 1− u ≥ e−(1+ε)u

for small enough u, we obtain, for xn = o(n) > 0 and large enough n,

P[N > n] ≥ E[(1− Ḡ(L))n 1(L ≥ xε)]
≥ E[e−(1+ε)Ḡ(L)n 1(L ≥ xε)]
≥ E[e−(1+ε)n/�←(V−(1−ε)) 1(V ≤ F̄ (xε))]
≥ e−xnP

[
(1+ ε)n

�←(V −(1−ε))
≤ xn, V ≤ F̄ (xε)

]

= e−xn�

(
(1+ ε)n

xn

)−1/(1−ε)

= exp

(
−xn − 1

1− ε
Rβ

(
(1+ ε)n

xn

))
,

since {(1+ ε)n/�←(V −(1−ε)) ≤ xn} implies that {V ≤ F̄ (xε)} for all large enough n. Next,
choosing xn = β1/(β+1)nβ/(β+1)l(n)1/(β+1), using condition (23), and then passing n→∞ as
well as ε→ 0, we obtain

lim
n→∞

log(P[N > n]−1)

nβ/(β+1)l(n)1/(β+1)
≤ β1/(β+1) + β−β/(β+1). (31)

Finally, combining (30) and (31) completes the proof.

2.1.3. Nearly exponential asymptotics. In the preceding subsection, the functional separation
between P[L > x] and P[A > x] was characterized in the form of �(x) = eRγ (x) with Rγ (x)

being regularly varying. In this subsection we investigate the situation when the separation in
terms of �(x) is even larger than eRγ (x), which leads to the nearly exponential asymptotics for
P[N > n] in the following proposition and Theorem 4 below.

Proposition 7. If log(F̄ (x)−1) ∼ e(log(Ḡ(x)−1))δ , δ > 1, then

log(log(P[N > n]−1))− log n+ (log n)1/δ ∼ 1

δ
(log n)2/δ−1.
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Remark 12. Observe that δ = 2 represents another critical point since (log n)2/δ−1 converges
to 0 or ∞ if δ > 2 or 1 < δ < 2, respectively. Furthermore, the result shows that
P[N > n] ≈ exp(−n/e(log n)1/δ

), which means that N is nearly exponential because e(log n)1/δ

is slowly varying for δ > 1 (see [3, p. 16]). In addition, informally speaking, we point out
that δ = 1 corresponds to the Weibull case already covered by Theorem 3 in Subsection 2.1.2,
meaning that Proposition 7 describes the change in functional behavior on the boundary between
the Weibull case and the nearly exponential case.

Proof of Proposition 7. We first prove the upper bound. Following the same approach as in
the proof of Theorem 2, we obtain, for ε > 0,

P[N > n] ≤
n−1∑
k=0

exp

(
−k − 1

1+ ε
e(log n−log(k+1))δ

)
+ o(P[N > n]). (32)

Then, we bound the preceding sum by estimating the minimum of

f (x) := x + 1

1+ ε
e(log n−log x)δ .

We can check that f ′(x) is an increasing function and f (x) is convex in x on (0, n]. Now, for
0 < ε < 1, define

x1 := n

e(log n−(1−ε)(log n)1/δ)1/δ
,

and, for large enough n, it can be verified that f ′(x1) < 0, implying that f (x)′ < 0 for x < x1.
Therefore, the point x∗ where f (x) achieves its minimum on (0, n] satisfies

x∗ ≥ x1. (33)

Combining (32) and (33), we obtain, for large n,

P[N > n] ≤ ne1−f (x∗) + o(P[N > n]) ≤ ne1−x1 + o(P[N > n]) < 2ne1−x1 ,

and, therefore, for large enough n,

log(P[N > n]−1) ≥ n

e(log n−(1−ε)(log n)1/δ)1/δ
− log(2n)− 1,

which implies that

log(log(P[N > n]−1))− log n+ (log n)1/δ � 1

δ
(log n)2/δ−1. (34)

Let us now prove the lower bound. By using the same arguments as in the proof of the lower
bound for Theorem 3, we obtain, for large enough n,

log(P[N > n]−1) ≤ xn + 1

1− ε
exp

((
log

(
(1+ ε)n

xn

))δ)
,

which, by choosing xn = (1+ ε)ne−(log n−(log n)1/δ)1/δ
, and passing n → ∞ and then ε → 0,

yields

log(log(P[N > n]−1))− log n+ (log n)1/δ � 1

δ
(log n)2/δ−1. (35)

Finally, combining (34) and (35) completes the proof.

https://doi.org/10.1239/aap/1363354105 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1363354105


Retransmissions and heavy tails 123

Theorem 4. If log(F̄ (x)−1) ∼ eRγ (Ḡ(x)−1), where Rγ (·) is positive, locally bounded on
[0,∞), and regularly varying with index γ > 0, then

log P[N > n]−1 ∼ n

R←γ (log n)
, (36)

where R←γ (·) is the generalized inverse of Rγ (·).
Remark 13. Note that the functional form in (36) is different from that in (24) which describes
the Weibull case. In principle, one could study the situations where �(·) grows faster than three
exponential scales, which would make the distributions of N even closer to the exponential one.
However, from a practical point of view, these cases will basically be indistinguishable from
the exponential distribution and, thus, we omit these derivations.

Proof of Theorem 4. We first prove the upper bound. Following the same approach as in the
proof of Theorem 2, we obtain, for 0 < ε < 1 and y > 0,

P[N > n] ≤
�n/y�−1∑

k=0

exp

(
−k − 1

1+ ε
eRγ (n/(k+1))

)
+ o(P[N > n]). (37)

By using the same argument as in (13), we can choose R∗γ (x) = γ
∫ x

1 Rγ (s)s−1 ds, x ≥ 1,

and observe that R∗γ (·) is absolutely continuous, strictly increasing with an inverse R∗←γ (·).
Theorem 1.5.12 of [3, p. 28] implies that R∗←γ (·) is regularly varying with index 1/γ and is
also the asymptotic inverse of Rγ (·). Therefore, there exists y > 0 such that, for 0 < x < n/y,

x + 1

1+ ε
eRγ (n/x) ≥ x + 1

1+ ε
e(1−ε)R∗γ (n/x).

Now, define f (x) := x + e(1−ε)R∗γ (n/x)/(1+ ε), and note that

f ′(x) = 1− 1− ε

1+ ε
e(1−ε)R∗γ (n/x)

(
R∗γ

(
n

x

))′
n

x2

= 1− 1− ε

1+ ε
e(1−ε)R∗γ (n/x) γRγ (n/x)

x

≤ 1− 1− ε

1+ ε
e(1−ε)2R∗γ (n/x)

γR∗γ (n/x)

x
,

where the right-hand side of the above inequality is an increasing function in x on (0, n/y) for
large enough y. Next, defining

x1 := n

R∗←γ ((log n− (1− ε)(1+ 1/γ ) log log n)/(1− ε)2)
,

it can be verified that, for all large enough n, f ′(x1) is bounded from above by

1− γR∗←γ ((log n− (1− ε)(1+ 1/γ ) log log n)/(1− ε)2)(log n− (1− ε)(1+ 1/γ ) log log n)

(1− ε2)(log n)(1−ε)(1+1/γ )
< 0,

which implies that f (x)′ < 0 for 0 < x ≤ x1 and large n. Thus, infx∈(0,x1] f (x) ≥ f (x1) ≥ x1;
observe that infx∈(x1,n/y) f (x) ≥ infx∈(x1,n/y) x ≥ x1, implying that

inf
x∈(0,n/y)

f (x) ≥ f (x1) ≥ x1. (38)
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Combining (37) and (38) yields, for large enough n,

P[N > n] ≤ n

y
e1−f (x1) + o(P[N > n]) ≤ 2n

y
e1−x1 ,

resulting in

log(P[N > n]−1) ≥ n

R∗←γ ((log n− (1− ε)(1+ 1/γ ) log log n)/(1− ε))
− log

(
2n

y

)
− 1.

Therefore, noting that R∗←γ (·) and R←γ (·) are asymptotically equal, and passing n → ∞ and
then ε→ 0 in the preceding inequality yields

log P[N > n]−1 � n

R←γ (log n)
. (39)

Let us now prove the lower bound. By using the same arguments as in the proof of the lower
bound for Theorem 3, we obtain, for large enough n,

log(P[N > n]−1) ≤ xn + 1

1− ε
eRγ ((1+ε)n/xn),

which, by choosing

xn = (1+ ε)n

R←γ ((1− ε) log n− (1/γ ) log log n)
,

and noting that Rγ (R←γ (u)) ≤ u/(1− ε) for all large enough u, yields, for large n,

log(P[N > n]−1) ≤ xn + n

(1− ε)(log n)1/(1−ε)γ
.

The above inequality implies that

log(P[N > n]−1) � n

R←γ (log n)
. (40)

Finally, combining (39) and (40) completes the proof.

2.2. Asymptotics of the total transmission time T

In this subsection we compute the asymptotics of the total transmission time T based on the
previous results on P[N > n] and the relationship between N and T described in (1). Theorem 5
and Theorem 6 below characterize the exact asymptotics and logarithmic asymptotics for the
very heavy case, respectively, and Theorem 7 below gives the result for the moderate heavy
(Weibull) case. Interestingly, we want to point out that the minimum conditions needed for
Theorem 7, as shown by Proposition 8 below, involve an intriguing balance between the tail
decays of P[A > x] and P[L > x].

Similarly, the corresponding results on T can be derived for the other statements on N ,
e.g. Propositions 3, 4, 5, and 6, and Theorem 4. However, to avoid lengthy expositions and
repetitions, we omit these derivations. In the following, let ∨ ≡ max.

Theorem 5. If E[U(α∨1)+θ ] <∞, E[A1+θ ] <∞, and E[Lα+θ ] < ∞ for some θ > 0, then,
under the same conditions as in Theorem 1(i), i.e. F̄ (x)−1

∼ �(Ḡ(x)−1) with �(x) being
regularly varying of index α > 0, we obtain, as t →∞,

P[T > t] ∼ �(α + 1)(E[U + A])α
�(t)

. (41)
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Remark 14. E[Lα+θ ] < ∞ is close to a minimum condition for α > 1 since E[Lα−θ ] = ∞
implies that E[T α−θ ] = ∞ in view of T ≥ L, which would contradict (41).

The proof of Theorem 5 is presented in Subsection 3.5.

Theorem 6. Under the same conditions as in Theorem 2, i.e. �(x) = el(x) satisfies (3), where
l(x) is slowly varying with

lim
x→∞

l(x/l(x))

l(x)
= 1, (42)

and, in addition, if E[A] < ∞, P[L > x] = O(�(x)−(δ+1)), E[U ] <∞, and xP[U > x] =
O(�(x)−(δ+1)) for some δ > 0, then we obtain

lim
t→∞

log(P[T > t]−1)

log(�(t))
= 1.

Remark 15. Theorem 6 implies parts (1:1), (2:1), and (2:2) of Theorem 2.1 of [1] and extends
Theorem 2 of [8]. Furthermore, it shows that, if log P[L > x]−1 ≈ α log P[A > x]−1, meaning
that the hazard functions of L and A are asymptotically linear, the distribution tails of the number
of transmissions and total transmission time are essentially power laws. Thus, the system can
exhibit high variations and possible instability, e.g. when 0 < α < 2, the transmission time has
an infinite variance and, when 0 < α < 1, it does not even have a finite mean.

Remark 16. It is easy to understand that, if the data sizes (e.g. files, packets) follow heavy-
tailed distributions, the total transmission time is also heavy tailed. However, from Theorems 5
and 6, we see that even if the distributions of the channel characteristics and data are highly
concentrated, e.g. when they are asymptotically proportional on the logarithmic scale (see
Corollary 2 in Subsection 2.1.1), the heavy-tailed transmission delays can still arise.

The proof of Theorem 6 is presented in Subsection 3.6.

Theorem 7. Under the same conditions as in Theorem 3, i.e. �(x) = eRβ(x) satisfies (3), where
Rβ(x) = xβl(x), β > 0, is regularly varying with l(x) satisfying

lim
x→∞

l((x/l(x))1/(1+β))

l(x)
= 1,

and, in addition, if E[A] <∞, P[U > x] = O(exp(−(log �(x))(1+δ)/(β+1))) for δ > 0,
P[L > x] = O(e−xξ

), and P[A > x] = O(e−xζ
), where ζ ≥ 0, ξ > β/(β + 1), and

(1− ζ )β < ξ , then we obtain

lim
t→∞

log(P[T > t]−1)

(log �(t))1/(β+1)
= β1/(β+1) + β−β/(β+1)

(E[A+ U ])β/(β+1)
. (43)

Remark 17. Theorem 7 implies part (1:2) of Theorem 2.1 of [1], and provides a more precise
logarithmic asymptotic instead of a double logarithmic limit. Furthermore, it is easy to check
that the condition (1 − ζ )β < ξ holds in two special cases: (i) if ζ ≥ β/(β + 1) and
ξ > β/(β + 1), and (ii) if ξ > β and ζ = 0 (assuming no conditions for P[A > x] beyond
E[A] <∞).

The proof of Theorem 7 is presented in Subsection 3.7. Basically, the condition (1−ζ )β < ξ

is needed since the following proposition shows that P[T > t] could have a heavier tail than
predicted by (43) if (1− ζ )β > ξ (or, equivalently, ξ/(ξ + 1− ζ ) < β/(β + 1) when ζ < 1).
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Proposition 8. If P[L > x] = e−xξ
and P[A > x] = e−xζ

with 0 < ξ, ζ < 1, then, as
t →∞,

P[T > t] � e−2tξ/(ξ+1−ζ )

. (44)

Proof. It is easy to see that, for δ, y > 0,

P[T > t] ≥ P

[
T > t, y < Ai < (1+ δ)y, 1 ≤ i ≤ t

y
, L > (1+ δ)y

]

≥ (P[y < A < (1+ δ)y])t/yP[L > (1+ δ)y],
which, by noting that P[A > x] = e−xζ

with ζ > 0, yields

P[T > t] � (P[A > y])t/yP[L > (1+ δ)y] = e−(tyζ /y+yξ ).

Choosing y = t1/(ξ+1−ζ ) completes the proof.

If (1− ζ )β > ξ then the exponent on the right-hand side of (44) satisfies ξ/(ξ + 1− ζ ) <

β/(β + 1), which would contradict (43).

3. Proofs

3.1. Proof of Proposition 2

If log(�(x)) is slowly varying then, for any 0 < δ < ε < 1, there exists xδ > 0 such that
log(�(x)) < xδ for all x > xδ . By using condition (3), or, equivalently, (20), we obtain, for
large enough n,

P[N > n] = E[(1− Ḡ(L))n]
≥

(
1− 1

n

)n

P

[
Ḡ(L) ≤ 1

n

]

≥
(

1− 1

n

)n

P[�←(F̄−(1−ε)(L)) ≥ n]

≥
(

1− 1

n

)n

e−nδ/(1−ε),

where we have used the fact that, for xε chosen as in (20), we can always select n large enough
such that {Ḡ(L) ≤ 1/n} ⊂ {L > xε}. Therefore, we obtain

0 ≤ lim
n→∞

− log P[N > n]
nε

≤ lim
n→∞

1+ nδ/(1− ε)

nε
= 0,

which proves the proposition.

3.2. Continuation of the proof of Theorem 1

Now, we prove the lower bound. For K > 0, 1 > ε > 0, and xε selected as in (9), choosing
xn > xε with �←((1− ε)F̄ (xn)) = n/K , we obtain, for large n,

P[N > n] = E[(1− Ḡ(L))n]
≥ E[(1− Ḡ(L))n 1(L > xn)]
≥ E

[(
1− 1

�←((1− ε)V −1)

)n

1(V < F̄ (xn))

]
,
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where V is a uniform random variable on (0, 1). Recall that, without loss of generality,
�(·) can be assumed to be absolutely continuous and differentiable. Thus, by letting z =
n/�←((1− ε)u−1), we obtain

P[N > n]�(n) ≥ �(n)

∫ F̄ (xn)

0

(
1− 1

�←((1− ε)/u)

)n

du

≥
∫ K

ε

(
1− z

n

)n
�(n)

�(n/z)

�′(n/z)

�(n/z)

(1− ε)n

z2 dz. (45)

From (45), following the same approach as used to derive (16), we obtain, as n→∞,

P[N > n]�(n) ∼
∫ K

ε

(1− ε)αe−zzα−1 dz,

which, passing K →∞ and ε→ 0, yields

P[N > n]�(n) �
∫ ∞

0
αe−zzα−1 dz = �(α + 1). (46)

Combining (17) and (46) completes the proof of (5).
We now proceed to the proof of (6). We begin by proving the lower bound. Recalling (9),

for large enough n and ε > 0, we obtain

P[N > n] = E[(1− Ḡ(L))n]
≥

(
1− ε

n

)n

P

[
Ḡ(L) ≤ ε

n

]

≥
(

1− ε

n

)n

P

[
�←((1− ε)F̄−1(L)) ≥ n

ε

]

≥
(

1− ε

n

)n 1− ε

�(n/ε)
,

implying that

lim
n→∞

P[N > n]�(n) ≥ lim
n→∞

(
1− ε

n

)n
(1− ε)�(n)

�(n/ε)
= (1− ε)e−ε,

which, by passing ε→ 0, yields

lim
n→∞

P[N > n]�(n) ≥ 1. (47)

Let us now prove the upper bound. Following an approach similar to that used to derive
(10), we obtain

P[N > n] ≤ E[e−n/�←((1+ε)V−1)] + (1− Ḡ(xε))
n

≤ P

[
0 ≤ n

�←((1+ ε)V −1)
≤ em

]

+

log(εn)�∑

k=m

e−ek

P

[
ek ≤ n

�←((1+ ε)V −1)
≤ ek+1

]
+ o

(
1

�(n)

)

≤ 1+ ε

�(n/em)
+

log(εn)�∑

k=m

e−ek 1+ ε

�(n/ek+1)
+ o

(
1

�(n)

)
,
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resulting in

P[N > n]�(n) ≤ (1+ ε)�(n)

�(n/em)
+

log(εn)�∑

k=m

e−ek (1+ ε)�(n)

�(n/ek+1)
+ o(1). (48)

Note that the second term on the right-hand side of (48) is always finite because of (11) and,
by passing n→∞ and then m→∞ in (48), we obtain

lim
n→∞P[N > n]�(n) ≤ 1. (49)

Combining (47) and (49) completes the proof of (6).

3.3. Proof of Proposition 5

We first prove the lower bound. By recalling condition (4), or, equivalently, (9), and using
1− x ≥ e−(1+ε)x for small enough x, we obtain, for large enough n and xn = o(n) > 0,

P[N > n] ≥ E[(1− Ḡ(L))n 1(L ≥ xε)]
≥ E[e−(1+ε)Ḡ(L)n 1(L ≥ xε)]
≥ E[e−(1+ε)n/�←((1−ε)V−1) 1(V ≤ F̄ (xε))]
≥ e−xnP

[
(1+ ε)n

�←((1− ε)V −1)
≤ xn, V ≤ F̄ (xε)

]

= e−xn(1− ε)�

(
(1+ ε)n

xn

)−1

= (1− ε)e−xn−λ(log n−log(xn/(1+ε)))δ .

Using the preceding inequality and setting xn = λδ(log n)δ−1 yields, for large enough n,

log P[N > n]−1 − λ(log n)δ ≤ λ

(
log n− log

(
xn

1+ ε

))δ

− λ(log n)δ + xn − log(1− ε)

≤ −(1− ε)λδ(log n)δ−1 log(λδ(log n)δ−1)+ λδ(log n)δ−1,

which, by passing n→∞ and then ε→ 0, results in

log P[N > n]−1 − λ(log n)δ � −λδ(δ − 1)(log log n)(log n)δ−1. (50)

Let us now prove the upper bound. Following the same approach as used in the proof of
Theorem 2, we obtain, for large n and yn = λ(log n)δ − λδ(δ − 1) log log n(log n)δ−1,

P[N > n] ≤
yn−1∑
k=0

e−k
P

[
k ≤ n

�←((1+ ε)V −1)
≤ k + 1

]
+ e−yn + o(P[N > n])

≤ (1+ ε)

yn−1∑
k=0

e−k−λ(log n−log(k+1))δ + e−yn + o(P[N > n]). (51)

For f (x) = x + λ(log n− log x)δ , it is easy to check that f ′(x) = 1− λδ(log n− log x)δ−1/x

is monotonically increasing in x on (0, n). Then, by defining

x1 := λδ(log n)δ−1 − (1− ε)λδ(δ − 1)2(log log n)(log n)δ−2, ε > 0,
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we obtain, after some calculations, for large n,

f ′(x1) ≥ 1− (log n)δ−1 − (1− ε/2)(δ − 1)2(log log n)(log n)δ−2

(log n)δ−1 − (1− ε)(δ − 1)2(log log n)(log n)δ−2 > 0,

which implies that f ′(x) > 0 for x ≥ x1 and, therefore, infx∈[x1,n) ≥ f (x1). In addition,
f (x1) ≥ inf0<x≤x1 f (x) ≥ λ(log n− log x1)

δ . Hence, by (51) we obtain

P[N > n] ≤ (1+ ε)yne1−λ(log n−log x1)
δ + e−yn + o(P[N > n]),

which, by recalling the definitions of yn and x1, results in

log P[N > n]−1 − λ(log n)δ � −(1+ ε)λδ(δ − 1)(log log n)(log n)δ−1. (52)

Finally, passing ε→ 0 in (52) and combining it with (50), we complete the proof.

3.4. Proof of Proposition 6

We first prove the lower bound. Applying the same arguments as used in the proof of the
lower bound for Theorem 3, we obtain, for 0 < ε < 1, xn > 0, and large enough n,

log(P[N > n]−1) ≤ xn + 1

1− ε
log

(
�

(
(1+ ε)n

xn

))
= xn + 1

1− ε
eλ(log((1+ε)n/xn))δ .

Setting xn = eλ(log n)δ(1−δλ(log n)δ−1), 1
2 < δ < 1, in the preceding inequality yields

log(P[N > n]−1) ≤ eλ(log n)δ(1−δλ(log n)δ−1) + 1

1− ε
eλ(log n−log xn+log(1+ε))δ ,

which, by noting that λ(log n − log xn + log(1 + ε))δ ≤ λ(log n)δ(1 − (1 − ε)δλ(log n)δ−1)

for all large enough n, implies that, for large enough n,

log(log P[N > n]−1) ≤ log

(
1+ 1

1− ε

)
+ λ(log n)δ(1− (1− ε)δλ(log n)δ−1).

Passing ε→ 0 in the preceding inequality results in

log(log P[N > n]−1)− λ(log n)δ � −δλ2(log n)2δ−1. (53)

Let us now prove the upper bound. Following the same approach as used in the proof of
Theorem 2, we obtain

P[N > n] ≤
yn−1∑
k=0

exp

(
−k − 1

1+ ε
eλ(log n−log k)δ

)
+ e−yn + o(P[N > n]). (54)

Choose yn = eλ(log n)δ(1−(1+ε)δλ(log n)δ−1), and let f (x) = x + eλ(log n−log x)δ /(1+ ε). Since
f ′(x) is an increasing function in x on (0, n), it is can be shown that f ′(x) ≤ f ′(yn) < 0 for
all 0 < x ≤ yn and large enough n. Therefore, for 0 ≤ k ≤ yn, we obtain

exp

(
−k − 1

1+ ε
eλ(log n−log k)δ

)
≤ exp

(
−yn − 1

1+ ε
eλ(log n−log yn)δ

)
,
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which, by (54), yields

P[N > n] ≤ yn exp

(
−yn − 1

1+ ε
eλ(log n−log yn)δ

)
+ e−yn + o(P[N > n])

≤ (yn + 1)e−yn + o(P[N > n]),
implying that

log(log P[N > n]−1)− λ(log n)δ � −(1+ ε)δλ2(log n)2δ−1. (55)

Finally, by passing ε→ 0 in (55) and combining it with (53), we complete the proof.

3.5. Proof of Theorem 5

The proof is based on large deviation results developed by Nagaev in [11]; specifically, we
summarize Corollary 1.6 and Corollary 1.8 of [11] in the following lemma.

Lemma 1. Let X1, X2, . . . , Xn, and X be independent and identically distributed random
variables with

∫
u≥0 us dP[X < u] <∞ and EX = 0.

• If 1 ≤ s ≤ 2 then there exist finite ys, c > 0 such that, for x > y > ys ,

P

[ n∑
i=1

Xi ≥ x

]
≤ nP[X > y] +

(
cn

xys−1

)x/2y

. (56)

• If s > 2 then there exists finite c > 0 such that

P

[ n∑
i=1

Xi ≥ x

]
≤ cn

xs
+ exp

(−x2

cn

)
. (57)

We are now ready to prove Theorem 5.

Proof of Theorem 5. We first establish the upper bound. By recalling Definition 1, for any
1
2 > δ > 0, we obtain

P[T > t] = P

[N−1∑
i=1

(Ui + Ai)+ L > t

]

≤ P

[ N∑
i=1

(Ai ∧ L+ E[U ]) > (1− 2δ)t

]
+ P

[ N∑
i=1

(Ui − E[U ]) > δt

]

+ P[L > δt]
=: I1 + I2 + I3. (58)

The condition E[Lα+θ ] <∞ implies that

I3 ≤ E[Lα+θ ]
(δt)α+θ

= O

(
1

tα+θ

)
. (59)

Let us consider I2. Suppose that α > 1, i.e. when E[N ] < ∞. Since N is independent of
{Ui}, by defining Xi := Ui − E[Ui], we obtain

I2 =
∞∑

n=1

P[N = n]P
[ n∑

i=1

Xi > δt

]
.
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To evaluate P[∑n
i=1 Xi > δt] in the preceding equality, we need to apply Lemma 1, which

results in two situations. If 1 < s := α + θ ≤ 2, using (56) with y = δt/2, we obtain, for all
n ≥ 1,

P

[ n∑
i=1

Xi > δt

]
≤ nP

[
X1 >

δt

2

]
+ 2s−1cn

δsts
, (60)

implying that

I2 ≤
∞∑

n=1

P[N = n]
(

nP

[
X1 >

δt

2

]
+ 2s−1cn

δsts

)

≤ E[N ]P
[
X1 >

δt

2

]
+ 2s−1cE[N ]

δstα+θ

= O

(
1

tα+θ

)
. (61)

Otherwise, if s = α + θ > 2, by (57), we obtain, for 0 < γ < αδ/(1+ δ),

I2 ≤ P

[�t1+δ�∑
i=1

Xi > δt

]
+ P[N > t1+δ]

=
�t1+δ�∑
n=1

P[N = n]P
[ n∑

i=1

Xi > δt

]
+O

(
1

t (1+δ)(α−γ )

)

≤ cE[N ]
(δt)α+θ

+ exp

(
−δ2t1−δ

c

)
+O

(
1

t (1+δ)(α−γ )

)
,

which implies that, for some ν > 0,

I2 = O

(
1

tα+ν

)
. (62)

We now suppose that 0 < α ≤ 1. For 1 < s := 1+ θ ≤ 2, θ > 0, recalling (60) and noting

that
∑�tζ �

n=1 nP[N = n] ≤ Htζ(1−α+σ) for α > θ > σ > 0, (θ + 1)/(σ + 1) > ζ > 1, and
large enough H , we obtain, for some ν > 0,

I2 ≤
�tζ �∑
n=1

P[N = n]
(

nP

[
X1 >

δt

2

]
+ 2s−1cn

δsts

)
+ P[N > tζ ]

≤ Htζ(1−α+σ)

(
E[X1+θ

1 ]
(δt/2)1+θ

+ 2s−1c

δst1+θ

)
+ P[N > tζ ]

= O

(
1

tα+ν

)
,

which, together with (61) and (62), yields, for some ν > 0,

I2 = O

(
1

tα+ν

)
. (63)
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Let us now consider I1. It is easy to obtain, for ε > 0,

I1 ≤ P

[(1−2δ)t/E[A+U ](1+δ)∑
i=1

(Ai ∧ (εt)+ E[U ]) > (1− 2δ)t

]

+ P

[
N >

(1− 2δ)t

E[A+ U ](1+ δ)

]
+ P[L > εt]

=: I11 + I12 + I13. (64)

By recalling Theorem 1, we know that

P

[
N >

(1− 3δ)t

E[A+ U ](1+ δ)

]
∼

�(α + 1)(E[U + A](1+ δ))α

�(t)(1− 3δ)α
. (65)

The same argument as that used in (59) implies that

I13 = O

(
1

tα+θ

)
. (66)

Furthermore, I11 is upper bounded by

P

[(1−3δ)t/E[A+U ](1+δ)∑
i=1

(Ai ∧ (εt)+ E[U ])− (1+ δ)E[A+ U ] (1− 3δ)t

E[A+ U ](1+ δ)
> δt

]

≤ P

[
sup
n

{ n∑
i=1

(Ai ∧ (εt)+ E[U ])− n(1+ δ)E[A+ U ]
}

> δt

]
, (67)

where in the above probability, supn{
∑n

i=1(Ai ∧ (εt)+ E[U ])− n(1+ δ)E[A+ U ]} is equal
in distribution to the stationary workload in a D/GI/1 queue with truncated service times with
the stability condition E[(A∧ (εt)+E[U ])] < (1+ δ)E[A+U ]. Therefore, applying similar
arguments to those used in the proof of Lemma 3.2 of [5], for any fixed β > 0, we can choose
ε > 0 small enough in (67) such that, as t →∞,

I11 = o

(
1

tβ

)
,

which, together with (58), (59), (63), (64), (65), and (66), yields, by passing ε, δ→ 0 in (65),

P[T > t] � �(α + 1)(E[U + A])α
�(t)

. (68)

We now prove the lower bound. It is easy to obtain, for δ > 0,

P[T > t] = P

[N−1∑
i=1

(Ui + Ai)+ L > t

]

≥ P

[N−1∑
i=1

(Ui + Ai) > t, N ≥ t (1+ δ)

E[U + A] + 1

]

≥ P

[
N ≥ t (1+ δ)

E[U + A] + 1

]
− P

[N−1∑
i=1

(Ui + Ai) ≤ t, N ≥ t (1+ δ)

E[U + A] + 1

]

=: I1 − I2. (69)
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For I2, by defining Yi := E[U + A] − Ui − Ai , we obtain

I2 ≤ P

[ ∑
i≤t (1+δ)/E[U+A]

(Ui + Ai) ≤ t

]
= P

[ ∑
i≤t (1+δ)/E[U+A]

Yi ≥ δt

]

with Yi ≤ E[U + A] <∞. By Chernoff’s bound, there exist h, η > 0 such that

I2 ≤ O(he−ηt ), (70)

which, by Theorem 1, (69), and passing δ→ 0, yields

P[T > t] � �(α + 1)(E[U + A])α
�(t)

. (71)

Combining (68) and (71) completes the proof.

3.6. Proof of Theorem 6

We first prove the upper bound. It is easy to see that

P[T > t] = P

[N−1∑
i=1

((Ai ∧ L)+ Ui)+ L > t

]

≤ P

[
t/ l(t)�∑
i=1

(Ai ∧ L) >
t

3

]
+ P

[
t/ l(t)�∑
i=1

Ui >
t

3

]
+ P

[
N >

⌈
t

l(t)

⌉
+ 1

]

+ P

[
L >

t

3

]

=: I1 + I2 + I3 + I4. (72)

Now, since l(·) is slowly varying and P[L > x] = O(�(x)−(δ+1)), we obtain

I4 = P

[
L >

t

3

]
= o(�(t)−1). (73)

By Theorem 2 we obtain

lim
t→∞

log(P[N > 
t/l(t)� + 1]−1)

log �(t/l(t))
= 1,

which, by (42), yields

lim
t→∞

log(P[N > 
t/l(t)� + 1]−1)

log(�(t))
= 1. (74)

To evaluate I2, we will use the decomposition

I2 = P

[
t/ l(t)�∑
i=1

Ui >
t

3

]

≤
⌈

t

l(t)

⌉
P

[
U1 >

t

l(t)

]
+ P

[
t/ l(t)�∑
i=1

Ui ∧ t

l(t)
>

t

3

]

=: I21 + I22. (75)
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For 0 < δ < 1 and large t , owing to condition (42), we obtain l(t/ l(t)) ≥ (1− δ/2)l(t), which
yields

I21 ≤ O(e−(1+δ)l(t/l(t))) ≤ O(e−(1+δ)(1−δ/2)l(t)) = o(�(t)−1). (76)

Then, by using Chernoff’s bound, for h > 0, we obtain

I22 = P

[
exp

(
h

(
t/ l(t)�∑
i=1

Ui ∧ t

l(t)

))
> eht/3

]

≤ e−ht/3(E[eh(Ui∧t/l(t))])t/l(t)+1,

which, by selecting h = 6l(t)/t , using ex ≤ 1 + xe6/6 for 0 ≤ x ≤ 6, and noting that
E[U ] <∞, implies that

I22 ≤ e−2l(t)

(
E

[
1+ e6l(t)

t

(
U1 ∧ t

l(t)

)])t/l(t)+1

≤ e−2l(t)

(
1+ e6l(t)

t
E[U1]

)t/l(t)+1

= o

(
1

�(t)

)
. (77)

Combining (75), (76), and (77) yields

I2 = o

(
1

�(t)

)
. (78)

To evaluate I1, we will use the decomposition

I1 = P

[
t/ l(t)�∑
i=1

(Ai ∧ L) >
t

3

]

≤ P

[
t/ l(t)�∑
i=1

(
Ai ∧ t

l(t)

)
>

t

3

]
+ P

[
L >

t

l(t)

]

=: I11 + I12.

Applying the same argument as used in the derivation of (77) and the fact that E[A] <∞, we can
prove that I11 = o(1/�(t)), which, by noting that condition (42) implies that I12 = o(1/�(t)),
yields

I1 = o

(
1

�(t)

)
. (79)

Combining (72), (73), (74), (78), and (79) yields

lim
t→∞

log P[T > t]
log(�(t))

≤ −1. (80)
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Let us now prove the lower bound. Observe that

P

[N−1∑
i=1

(Ai + Ui)+ L > t

]
≥ P

[N−1∑
i=0

(Ai ∧ 1) > t, N >

⌈
2t

E[A ∧ 1]
⌉
+ 1

]

≥ P

[
N >

⌈
2t

E[A ∧ 1]
⌉
+ 1

]
− P

[
2t/E[A∧1]�∑
i=1

(Ai ∧ 1) ≤ t

]
,

and, by applying the same arguments as used in the derivation of (70), it is easy to prove that
the second probability on the right-hand side of the above inequality is exponentially bounded.
Therefore, using Theorem 2 and the preceding exponential bound yields

lim
t→∞

log P[T > t]
�(log t)

≥ −1. (81)

Combining (80) and (81) completes the proof.

3.7. Proof of Theorem 7

We first prove the upper bound. It is easy to see that, for η := E[U ]/E[A+U ] and 0 < ε < 1,

P[T > (1+ ε)t] = P

[N−1∑
i=1

((Ai ∧ L)+ Ui)+ L > (1+ ε)t

]

≤ P

[�(1−ε)t/E[A+U ]�∑
i=1

(Ai ∧ L) > (1− η)t

]
+ P

[�(1−ε)t/E[A+U ]�∑
i=1

Ui > ηt

]

+ P

[
N >

⌊
(1− ε)t

E[A+ U ]
⌋]
+ P[L > εt]

=: I1 + I2 + I3 + I4. (82)

The condition on L implies that

I4 = P[L > εt] = o(e−(log �(t))1/(β+1)

), (83)

and, by Theorem 3, we obtain

lim
t→∞

log(P[N > �(1− ε)t/E[A+ U ]�]−1)

(log �(t))1/(β+1)
= (1− ε)β/(β+1) β

1/(β+1) + β−β/(β+1)

(E[A+ U ])β/(β+1)
. (84)

Now, we evaluate I2. By applying the large deviation result proved in Theorem 3.2(ii) of
[5], and noting that P[U > x] ≤ o(e−x(1+δ/2)β/(β+1)

), we can prove that there exist 1 > γ > 0
and C > 0 such that

P

[�(1−ε)t/E[A+U ]�∑
i=1

(Ui ∧ γ εηt)− η(1− ε)t > εηt

]
≤ C(e−(εηt)(1+δ/2)β/(β+1)

)

= o(e−(log �(t))1/(β+1)

). (85)
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Thus, we obtain

I2 ≤
⌊

(1− ε)t

E[A+ U ]
⌋

P[U1 > (γ εη)t] + P

[�(1−ε)t/E[A+U ]�∑
i=1

(Ui ∧ γ εηt) > ηt

]
,

which, by (85) and the assumption on U , yields

I2 = o(e−(log �(t))1/(β+1)

). (86)

For I1, we begin by proving the case in which ζ = 0 and ξ > β, i.e. assuming no conditions
on P[A > x] beyond E[A] <∞. It is easy to obtain, for 0 < ε < 1/(β + 1),

I1 = P

[�(1−ε)t/E[A+U ]�∑
i=1

(Ai ∧ L) > (1− η)t

]

≤ P[L > t1/(β+1)−ε] + P

[�(1−ε)t/E[A+U ]�∑
i=1

(Ai ∧ t1/(β+1)−ε) > (1− η)t

]

=: I11 + I12.

The condition ξ > β implies that, for 0 < ε < (1− β/ξ)/(β + 1),

I11 ≤ O(e−t (1/(β+1)−ε)ξ

) = o(e−(log �(t))1/(β+1)

). (87)

Using Chernoff’s bound, for h > 0, we obtain

I12 = P

[
exp

(
h

(�(1−ε)t/E[A+U ]�∑
i=1

(Ai ∧ t1/(β+1)−ε)

))
> eh(1−η)t

]

≤ e−h(1−η)t (E[eh(A1∧t (1/(β+1)−ε))])�(1−ε)t/E[A+U ]�,

which, with h = µt−(1/(β+1)−ε), µ > 0, (eµ − 1)/µ < 1+ ε/2, and using ex ≤ 1 +
(eb − 1)x/b for 0 ≤ x ≤ b, yields

E[eh(A1∧t (1/(β+1)−ε))] ≤ 1+ eµ − 1

µ
hE[(A1 ∧ t (1/(β+1)−ε))]

≤ 1+
(

1+ ε

2

)
µt−(1/(β+1)−ε)

E[A1].

Then, the preceding inequalities, using 1+ x ≤ ex , imply that

I12 ≤ e−µ(1−η)tβ/(β+1)+ε

(
1+

(
1+ ε

2

)
µt−(1/(β+1)−ε)

E[A1]
)(1−ε)t/E[A+U ]

≤ e−µ(1−η)tβ/(β+1)+ε

e(1+ε/2)µ(1−η)(1−ε)tβ/(β+1)+ε

= e−µ(1−η)((1+ε)ε/2)tβ/(β+1)+ε

= o(e−(log �(t))1/(β+1)

). (88)

Combining (87) and (88) yields I1 = o(e−(log �(t))1/(β+1)
) for ζ = 0 and ξ > β.
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Now, in order to prove the ζ > 0 case when P[A > x] is bounded by a Weibull distribution,
we need to use the following lemma, which is based on a minor modification of Theorem 3.2(ii)
of [5] (or Lemma 2 of [6]) and can be proved by selecting s = υQ(u)/u, 0 < υ < 1, in
Equation (5.18) of [5], where Q(u) is defined in [5].

Lemma 2. If P[A > x] ≤ He−xζ
, H > 0 and 1 > ζ > 0, then, for xθ < u < εx, ε > 0,

1 > θ > 0, and n ≤ Hx, there exist C > 0 and 1 > δ > 0 such that

P

[ n∑
i=1

Ai ∧ u− nE[A] > x

]
≤ Ce−δuζ−1x.

Note that the case ζ ≥ 1 is trivial since in this situation I1 is exponentially bounded using
Chernoff’s bound. Therefore, we need to only consider the 0 < ζ < 1 case. Using the union
bound and the independence of {Ai} and L, it is easy to obtain, for 0 < ε < 1/(β + 1),

I1 = P

[�(1−ε)t/E[A+U ]�∑
i=1

(Ai ∧ L) > (1− η)t

]

≤ P[L > εt] + P

[�(1−ε)t/E[A+U ]�∑
i=1

(Ai ∧ t1/(β+1)−ε) > (1− η)t

]

+
∫ εt

t1/(β+1)−ε

P

[�(1−ε)t/E[A+U ]�∑
i=1

(Ai ∧ u) > (1− η)t

]
dP[L ≤ u]

=: I11 + I12 + I13.

From (83) and (88), we obtain

I11 + I12 = o(e−(log �(t))1/(β+1)

). (89)

Applying Lemma 2 yields, for t1/(β+1)−ε ≤ u ≤ εt ,

P

[�(1−ε)t/E[A+U ]�∑
i=1

(Ai ∧ u) > (1− η)t

]

≤ P

[�(1−ε)t/E[A+U ]�∑
i=1

(Ai ∧ u)−
⌊

(1− ε)t

E[A+ U ]
⌋

E[A] > ε(1− η)t

]

≤ Ce−δε(1−η)uζ−1t ,

resulting in

I13 ≤
∫ εt

t1/(β+1)−ε

Ce−δε(1−η)tuζ−1
dP[L ≤ u]

≤ Ce−δε(1−η)tuζ−1
P[L > u]|t1/(β+1)−ε

εt

+
∫ εt

t1/(β+1)−ε

He−uξ

Ce−δε(1−η)tuζ−1
(1− ζ )δε(1− η)tuζ−2 du

≤ sup
t1/(β+1)−ε≤u≤εt

{Ce−uξ−δε(1−η)tuζ−1}
(

1+O(1)

∫ εt

t1/(β+1)−ε

tuζ−2 du

)
.
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Since the function f (u) := Ce−uξ−δε(1−η)tuζ−1
is absolutely continuous on [t1/(β+1)−ε, εt],

the supremum is obtained either at the two endpoints or when f ′(u) = 0. Straightforward
calculations show that there is only one point u∗ where f ′(u∗) = 0, and f (u∗) =
O(e−htξ/(ξ+1−ζ )

) for some h > 0. Furthermore, for some h > 0, we can verify that f (u) =
O(e−ht(ξ+β)/(β+1)+(1−ξ)ε

) when u = t1/(β+1)−ε and f (u) = O(e−htξ ) when u = εt . Therefore,
by our assumptions ξ > β/(β + 1) and (1 − ζ )β < ξ , these preceding bounds imply that
I13 = o(e−(log �(t))1/(β+1)

), which, together with (89) and the proof of the ζ = 0 case, implies
that, for all ζ ≥ 0,

I1 = o(e−(log �(t))1/(β+1)

). (90)

Thus, combining (82), (83), (84), (86), and (90), and passing ε→ 0 yields

lim
t→∞

log P[T > t]−1

(log �(t))1/(β+1)
≥ β1/(β+1) + β−β/(β+1)

(E[A+ U ])β/(β+1)
. (91)

Let us now prove the lower bound. Applying the same argument as used to derive (69) in
the proof of the lower bound for Theorem 5, it is easy to obtain, for δ > 0,

P[T > t] ≥ P

[
N ≥ t (1+ δ)

E[U + A] + 1

]
− P

[N−1∑
i=1

(Ui + Ai) ≤ t, N ≥ t (1+ δ)

E[U + A] + 1

]
,

where the second probability on the right-hand side is exponentially bounded (see (70)).
Therefore, using Theorem 3 and passing δ→ 0 yields

lim
t→∞

log P[T > t]−1

(log �(t))1/(β+1)
≤ β1/(β+1) + β−β/(β+1)

(E[A+ U ])β/(β+1)
. (92)

Combining (91) and (92) completes the proof.
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