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Abstract

The class of finitely generated soluble coherent groups is considered. It is shown that these
groups have the maximal condition on normal subgroups and can be characterized in a number
of ways. In particular, they are precisely the class of finitely generated soluble groups G with
the property:

if x, y e G then either the subgroup generated by

{y~' xy': i>0} or the subgroup generated by

{y~{ xy4: i*ZO} is finitely generated.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 20 E 15; secondary 20 F 05.

1. Introduction

The question of which soluble groups are finitely presented has been receiving some
attention in recent years (see Baumslag, 1974). The main tenor of the results
obtained appears to be that the property of being finitely presented imposes very
little structure on a soluble group. For example, Baumslag (1973) has shown that
every finitely generated metabelian group can be embedded in a finitely presented
metabelian group.

In this paper, we approach a stronger condition than that of being finitely
presented. We call a group coherent if all of its finitely generated subgroups are
finitely presented and we show that coherence places a considerable restriction on
the structure of finitely generated soluble groups. To explain this, we require some
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116 J. R. J. Groves [21

notation. Call a group G semi-polycyclic if it is finitely generated, soluble and
satisfies the following condition:

for all x,yeG, at least one of the subgroups generated by {xv<: i>0}
and {xv': JSSO} is finitely generated.

(The notation derives from the fact that requiring both subgroups Xo be finitely
generated is equivalent to polycyclicity.)

THEOREM. Let G be a finitely generated soluble group. Then G is coherent if and
only if it is semi-polycyclic.

The proof that semi-polycyclic groups are coherent proceeds by showing that
they have a well-defined structure intermediate between that of polycyclic groups
and that of soluble linear groups. This structure is then used to show that they are
finitely presented.

The converse is proved by first using a theorem of Bieri and Strebel (1977) to
show that finitely generated coherent soluble groups have the maximum condition
on normal subgroups. Hence each of the finitely generated sections in such a
group is finitely presented. Now define the group M(<x,p), where a is an element of
some field of characteristic p, to be the group generated by the matrices

1 0 1 I" « 0

1 l j [o 1
Then it is not difficult to show that M(<x,p) is finitely presented if and only if

(i) p # 0 and a is algebraic over the prime field, or
(ii) p = 0 and one of a or a"1 is an algebraic integer.

The proof of the theorem is completed by showing that each finitely generated
soluble group which is not semi-polycyclic contains a section isomorphic to some
non-finitely presented M(<x,p).

Finally, it is of interest to note that, using the structure obtained for semi-
polycyclic groups and their equivalence with coherent groups, we can characterize
either class described in the theorem as the class of groups which are HNN-
extensions having polycyclic base group and an associated subgroup equal to the
base group. That is, the class of groups with a presentation <K, t: Vq>= K'>, where
V is polycyclic and q>: V-*V is a monomorphism (compare with Bieri and
Strebel, 1977).

2. Notation and preliminary results

We refer to the book of Robinson (1972) for unexplained notation and basic
results on soluble groups. We shall use / , J+ and J_ to denote, respectively, the
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sets of integers, of non-negative integers and of non-positive integers. We use
special symbols for the following classes of groups:

91 abelian (g finitely generated

9t nilpotent JQ polycyclic

2f finite soluble JQX semi-polycyclic

Suppose that G is a group, H a normal subgroup of G and geG. Then we say
that g has

(a) nilpotent, (b) polycyclic, (c) semi-polycyclic,
action on H if, for each heH,

(a) g is an Engel element in <g, hi},
(b) (h?: iejy is finitely generated,
(c) either (h?: ie J+> or </z"': /e J_> is finitely generated.
We shall also denote by X the class of finitely generated soluble groups G having

a normal series

satisfying
(a) G/H is finite, (b) H/C is cyclic,
(c) H/N is abelian, (d) iV is nilpotent,
(e) each element of C has polycyclic action on N and each element of H has

semi-polycyclic action on C.
A series of this type will be called a X series. (The class of groups X will be shown>

in the next section, to be precisely the class of semi-polycyclic groups.)
We begin our proofs with some elementary observations about the classes

&!and X.

LEMMA 1. IfX = Zk or X = X then SXn © = QX = 2f£ = £ g = X.

PROOF. The proofs are largely straightforward—the only thing likely to give
trouble being the proof that Qt 5 = JQX. By induction, we can reduce this to the
case where H is a normal subgroup of a finitely generated soluble group G with
G/H finite and abelian. If g,heG, observe that [g,h], gneH, for some n and so
<\g,hY*: ieJ+y (say) is finitely generated. It follows easily that ([g,h]0': ieJ+y,
and so <A»*: ie J+>, is finitely generated.

LEMMA 2. Let G be a soluble group, H a normal subgroup ofG,xe G, and suppose
thatG=(H,xy.

(a) If He LSI and x has polycyclic action on H, then GeLQ.
(b) IfHeLQ and x has semi-polycyclic action on H, then (i) there exists e = ± 1

such that, for all heH, (h**1: ieJ+} is finitely generated and (ii) ifG is also finitely
generated, GeQv
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PROOF, (a) Suppose that h1x
ai...hnx

a'eG, with ^eH, c^e/. Since x has
polycyclic action on H, the group K= (hf:jeJ, i= 1, ...,n> is finitely generated
and so, because HeLZl, is polycyclic. But x normalizes K and so <£,*> is also
polycyclic. Since <A1x

ai, ...,Anx
a-><</:,Jc>, the former subgroup is also poly-

cyclic, showing that GeLSl.
(b) (i) Suppose there exist hx,h%&H such that (Jif: ieJ+} and <Af': /e J_> are

both not finitely generated. Since x has semi-polycyclic action on H, either
^(^1^2)*': ieJ+y or (Shxh^: ieJ_) is finitely generated—suppose the former.
Then (hf: ieJ+y is finitely generated and so <(A1/i2)

a:')Afi: ieJ+} is polycyclic.
But <Af*: ieJ+> is a subgroup of this and so is also finitely generated. This
contradiction to our initial assumption proves the result.

(b) (ii) Suppose, by part (i), that <7JX<: ie J+> is finitely generated for all heH.
Let h^./^x^eG with h^h^eH, a,/Je/; let gx = ^x* and let g2 be h^x? if
or (h2xf)-1 if /?<0 (we assume, for convenience, that j8^0). Since

it suffices to show that (.[gltgi]: ieJ+} is finitely generated.
Now g\ = (hzXPf — h2x^ where h2e(_hf: ie J+> and so

Thus <[gi,gj]: /6j+><<Af<,Af': ieJ+}. Since x has semi-polycyclic action on if,
the latter group is finitely generated; since, also, HeLQ, the former group is also
finitely generated. Thus GeQ1( as required.

PROPOSITION 3. X

PROOF. Let GeX and let

be a 2-series for G. Since JV is nilpotent it is locally polycyclic. Since C has poly-
cyclic action on N and C/N is abelian, C is locally polycyclic, by (i) of Lemma 2.
Since H has polycyclic action on C and H/C is cyclic, / / is semi-polycyclic, by
(ii) (b) of Lemma 2. Finally, G is semi-polycyclic by Lemma 1.

We complete this section with two technical lemmas which will be used in the
next section.

LEMMA A.LetGe %, let

{\}^N^C^H^G

be a %-series for G and suppose that G = H= <C, JC>. Suppose that G has max-n.
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Then N has a finite central series

such that Ni+1 = (Nitdf+l: jejy for some di+1eNi+1.

PROOF. By induction on the class of N, we can suppose that N has a finite central
series

with Ni+1/Ni of the required form for i>0 and Nt central in N.
Since G has max-n, Nt is finitely generated as a normal subgroup of G—by

nv...,ni, say. Also, since C/N is abelian, we can choose xx, ...,xkeC such that
each element g of C can be written in the form g = nx%a)... x%(k) (neN,
Thus;, as Nt is central in N,

Nl = ^ ^ . . . . . - w ^

But, as xt has polycyclic action on njf (nf1"1': <x(l)ejy is finitely generated and so,
proceeding inductively, (n ?1°(1)•• x*°"*): a(i)e/> is finitely generated. Hence there
exist a\,...,dteNx such that Nx = <df: fieJ,j= 1, ...,s}.

We can now refine the above series of N by

which completes the proof of the lemma.

LEMMA 5. Let Kbe an algebraic number field and let K* denote the multiplicative
group of non-zero elements of K. Suppose that G is a finitely generated subgroup of
the n-fold direct power K*x...xK* of K* with the following property:

(/"(*!» •••> <*n) 6 G>tnen either all at or all atr1 are algebraic integers.

Then G has a normal subgroup N satisfying:
(a) G/N is cyclic;
(b) if(<xlt ...,<x^)eN, then each ĉ  is a unit in the ring of algebraic integers of K.

(For basic facts about algebraic number fields, see Artin, 1968.)

PROOF. If keK*, let <p(k) be the absolute value of the norm of & in AT. Let
p: K* x ... x K*->• Q* (where Q is the field of rationals) be given by

p : (<*!,...,ccn)H>-<p(oti)...<p(<xn)

and denote Gf by G. The condition given for G implies that, for each aeG, a is
either a natural number or the inverse of a natural number.
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Choose b to be the least natural number in G not equal to 1 and let ceG. Then
we can choose s = ± 1 so that ce is a natural number and hence bm^ce<bm+1 for
some natural number m. Thus 1 ^b~mce<b and so, b~m<? is a natural number in
G which is less than b. Hence b~m(f = 1, that is, c = 6me and so ce<6>. Thus

Let N be the kernel of f. Then G/N^G and so G/JV is cyclic. Also, if
(ocv...,an)eN, then <p(a1)...<p(an) = 1 and so, because we have that either each

or each ^(c^)-1 is a natural number, it follows that each 9»(ai) is 1. Hence each
is a unit in the ring of algebraic integers of K, as required.

3. Semi-polycyclic groups are 2-groups

We begin by showing that groups in X are finitely presented and so, as !QX = X,
have max-n. This will then be used to show that £ = Qx.

PROPOSITION 6. Each group in X is finitely presented.

PROOF. Let GeX and let

be a 2-series for G. Since finite extensions of finitely presented groups are finitely
presented, it clearly suffices to suppose that H= G. Suppose also that G = <C, x}.
By Lemma 4, there exists a finitely generated subgroup D of N such that
N= (DxK.jejy. Since C/N is finitely generated, it follows that there exists a
finitely generated subgroup Dx of C such that E= (Df':jeJ+y (say) is finitely
generated. Let q>: E-+E be the monomorphism of £ induced by conjugation by x.
Then G clearly has the presentation

Since C is locally polycyclic, E is polycyclic and so finitely presented. Thus G is
finitely presented.

The bulk of the proof in showing that semi-polycyclic groups are 2-groups
is to show that they have finite rank. We accomplish the major portion of this
in the next lemma.

LEMMA 7. Let GeJQx and suppose that G has an abelian normal subgroup A
which is either torsion-free or of finite prime exponent. IfG/AeX, then A has finite
rank.
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PROOF. We give the proof only in the case that A is torsion-free; the case when A
has finite exponent is similar.

Let
A/A < N/A s£ C/A < HI A < G/A

be a 3>series of G/A. As usual, it suffices to assume that G = H. Because A is
torsion-free, it naturally embeds in the tensor product A = A ®j Q (where Q is
the field of rationals) and A has finite rank if and only if A does. Observe that A is
naturally a Q(G/A)-modu\e; we use additive notation for the multiplication in A,
so that, if ge G/A and me A, m-g denotes g~*mg and ©<•••> denotes "the rational
subspace of A generated by . . .".

We commence the proof with some observations.
(1) If me A, geG/A, then, because g has semi-polycyclic action on m,

Q(m:gl: ieJ) has finite dimension.
(2) If me A and Nx is a finitely generated subgroup of N/A, then Nt has a

generating set glt...,gk so that each geNx can be written in the form g j 1 . . . ^ *
(ajG/) and so, using (1) Q^m-g: geN{y has finite dimension.

(3) If me A, deN/A and geG/A, then, as g has semi-polycyclic action on N/A,
we can suppose, without loss of generality, that D+ = <aff<: ieJ+y is finitely
generated. Hence, using comments (1) and (2)

dim-gleg*: ijej, eeD+y

has finite dimension. But, if heD = <</"*: ie /> , then h"1 = A1eD+ for some y"
and so

Hence G<w/i: heDy has finite dimension.
Suppose now that

A/A^NJA sS.

is the finite central series of iV//! guaranteed by Lemma 4 (G/̂ 4 has max-« by
Proposition 6). Then a repeated application of (3) shows that, if meM,

(4) Q<(m-g: geN/Ay has finite dimension.

Now G/N is a finitely generated abelian group, and so, by repeated application
of (1), combined with (4), if me A

(5) Q(m-g: geG/Ay has finite dimension.

Finally, G/AeZ and so is finitely presented, by Proposition 6, and so A is a
finitely generated Q(G/A)-module. Hence, by (5), A has finite dimension, which
completes the proof of the lemma.
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PROPOSITION 8. Let G be a finitely generated soluble group with an abelian normal
subgroup A. Suppose that G/AeX and G has semi-polycyclic action on A. Then
GeX.

PROOF. Since, by Proposition 6, each group in X is finitely related, G has a
quotient maximal with respect to not lying in X. Without loss of generality, we can
assume G is this quotient. Since, by Proposition 6, each group in X has max-n, it
follows that G also has max-n.

Let T be the torsion subgroup of A. Then T is normal in G and, since G has
max-n, T has finite exponent. By Lemma 7, and the fact that every proper quotient
of G is in X it follows that Tis finite. But then, by Lemma 1, it suffices to assume
T is trivial.

Hence A is torsion-free, and so, by Lemma 7, of finite rank. Let K be the
centralizer of A in G. Then GjK can be regarded as a matrix group of finite degree
over the rational numbers. Thus, by Mal'cev's theorem (see 3.6 of Wehrfritz, 1973),
GIK has a triangularizable normal subgroup H/K of finite index in G/K.

Each element of G has semi-polycyclic action on A and so each matrix g in H/K
satisfies an equation

with each oct an integer and either an or a,, equal to 1. Thus the eigenvalues of g
are either all algebraic integers or all inverses of algebraic inters. Since H/K is
triangularizable, Lemma 5 applies to show that there is a subgroup C/K of H/K
(which we can assume normal in G/K) such that H/C is cyclic and the eigenvalues
of any matrix in C/K are units in the ring of algebraic integers.

Let N/K be the unitriangularisable subgroup of H/K. Observe that N/K is
unipotent; that is, if aeA, geN, then [a,ng] = 1 for some fixed natural number n.

We now have a normal series of G

Let
A/A < NJA < CJA < HJA < G/A

be a 2-series for G/A and denote HnHv CnHlt NnNx by H2, C2, N2 respectively.
We claim that

is a 2-series for G. For,
(a) since G/H and G/iJi are both finite, so is G/H2;
(b) HJC^CiHaHJ/C^H/C and so H2/C2 is cyclic;
(c) H'^H'nH'^Nn Nt = N2 and so HJN2 is abelian;
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(d) NnNJA^NJA and so NnNjA is nilpotent; also, as NnNjA^N/A, each
element geNnNJA satisfies [A,ng] = 1 for some n independent of g; thus
iVnNx is nilpotent;

(e) if g e C2, then gKe C/K, and so g has polycyclic action on A ("the eigenvalues
of gK are units")—also gAeCxA and so g has polycyclic action on NJA;
thus g has polycyclic action on Nz.

Hence G has a 3>series and so G e %—which completes the proof.

THEOREM 9. The class of semi-polycyclic groups is precisely the class ofZ-groups

PROOF. The fact that S^Gx is Proposition 3 and the reverse implication follows
directly from Proposition 8 using a straightforward induction on solubility length.

4. Coherent groups are semi-polycyclic

We begin by showing that finitely generated coherent soluble groups have
max-n.

PROPOSITION 10. A finitely generated coherent soluble group G has max-n.

PROOF. Let l(G) denote the solubility length of G and let m{G) denote

min {torsion-free ranks of G/H where H^G, G/H is abelian

and H is soluble of length /((?)-1}.

The proof is by a double induction on l(G) and m(G).
Choose H^G so that G/H is abelian, H has length l(G)— 1 and the torsion-free

rank of G/H is m(G). If m{G) = 0, then G is a finite extension of H and, as H has
max-n by induction on l(G), G thus has max-n.

Suppose then that m(G)>0 and choose N so that H^N^G and G/N is infinite
cyclic. Let G = <iV, t} for t e G. Now G is finitely presented and so by Theorem A
of Bieri and Strebel (1977) it is an ascending HNN-extension with finitely generated
base group B^N and stable letter t. Induction on m(G) now shows that B has
max-«.

Let M;S G. It suffices to show that M is finitely generated as a normal subgroup
of G and so, as M/MnN= MN/N is cyclic, that MnN is finitely generated as
normal subgroup; that is, we can suppose M^N. Now MnB is normal in B and
so, as B has max-n, MnB = (m1,...,mky

B for some m1,...,mkeMnB. But if
meM, then nfeMnB for a suitably chosen positive power tn of /. Thus
mv>e(m1,...,mky

B and so me(m1,...,mky°. Hence M= (jnli...,mky
o—which

completes the proof.
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Recall that the groups M(a,p) are defined as matrix groups, over a field of
characteristic p, generated by

1 0 1 U 0

1 1 J [O 1
The following is a simple application of Theorem C of Bieri and S.trebel (1977).

LEMMA 11. The group M(at,p) is finitely presented if and only if
(i) p ^ 0 and a. is algebraic over the prime field, or
(ii) p = 0 and at least one of a or a"1 is an algebraic integer.

In order to investigate necessary conditions for coherence, we introduce an
expanded version of the class Qx of semi-polycyclic groups.

The class of finitely generated soluble groups G satisfying:

for all x,yeG with (xyi: ieJ} abelian,

either <*«': ieJ+> or <*"': ieJ_> is finitely generated,

will be denoted by C^.
It is easily seen that a group M(oc,p) belongs to Qj precisely if it is finitely

presented. Extending this gives a necessary condition for coherence.

LEMMA 12. Let G be a finitely generated soluble group and suppose G^QQ. Then
G contains a subgroup isomorphic to M(<x,p) withp^O and a transcendental over the
prime field or p = 0 and neither <x nor a"1 an algebraic integer. In particular, G is
not coherent.

PROOF. Since G<££^, there exist elements x,yeG such that A = <xyi: ieJ} is
abelian and neither <*"': i e J + ) nor (xv<: ieJ_} is finitely generated. Without
loss of generality, we can assume G = <JC,^>.

Let T be the torsion subgroup of A. Since G is metabelian and so has max-w,
Thas finite exponent. Thus if 7* is infinite it contains an infinite subgroup S, normal
in G, of prime exponent p. If (sxi: iejy is infinite for some seS, then
(s,xy^M(<x,p) with a transcendental. So we can suppose <sx<: iejy is finite for
each seS. But then, as G has max-n and so S is the normal closure of a finite
number of elements, S is finite. Thus we can suppose T is finite.

Since G is metabelian, G is residually finite and so there exists a subgroup H of
finite index in G such that HnT'= {1}. Clearly HnA must contain an element w
such that neither <M'"<: ieJ+y nor <w"': ieJJ) is finitely generated and so it
suffices to assume that H=G or, equivalently, that A is torsion-free. But then
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G^M(a,0) for some a and so, as G ĵQa, neither a nor a"1 can be an algebraic
integer. Lemma 10 again shows that G is therefore not coherent.

Unfortunately, perhaps, the classes Qx and £l2 are distinct; for example, straight-
forward calculations show that the two generator relatively free centre-by-
metabelian groups lies in £l2 but not in JQX. (It can be shown, although we do not
offer a proof here, that the classes coincide for abelian by nilpotent groups.)
There is, however, a strong relationship between them.

LEMMA 13. If G is a finitely generated soluble group and every quotient of G lies
inSz, thenGeQv

PROOF. By induction on the solubility length of G. Let A be the last non-trivial
term of the derived series of G. By the inductive hypothesis, G/Ae^ and so, by
Theorem 9, GJA eZ. Since every element of G has polycyclic action on A (because

), Proposition 8 implies that Ge%. Hence Ge&j, as required.

COROLLARY 14. If a finitely generated soluble group G^£iv then some subgroup
of a quotient group ofG is isomorphic to an infinitely presented M(ot,p).

The proof that finitely generated soluble coherent groups are semi-polycyclic
is now obtained by a simple combination of Proposition 10 and Corollary 14.
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