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§1. Introduction

The first author and S. Takenaka introduced the structure of a
Gel’fand triplet o# C (L*) C #* into Hida’s calculus on generalized Brown-
ian functionals [4-7]. They showed that the space # of testing random
variables has nice properties. For example, »# is closed under multipli-
cation of two elements in s, each element of J# is a continuous functional
on the basic space ¢*, in addition it can be considered as an analytic
functional, and moreover exp [td,] (4, is Volterra’s Laplacian) is real
analytic in e R as a one-parameter group of operators on #, etc.

In this paper, we will prove, by a method different from [4-7], that
each element of s is continuous on the basic space &* and by using
this result we will show that the evaluation map §,: ¢ — ¢(x) (x € &*)
belongs to s#*. The norm of §, will also be estimated.

The fact that 6, belongs to #* is very useful in the argument of
positive functionals [8].

§2. Gel’fand triplets

Here we will summarize fundamental facts about three Gel’fand
triplets & S F© G F*, exp [R€] S exp [QE,] S exp [R6*] and # S (1Y)
C #*, which were introduced and discussed in [4-7, 9], for later use.
Let T be a separable topological space with a topological Borel field %
and v be a ¢-finite measure on 7T without atoms. We suppose that there
exists a Gel’fand triplet (or a rigged Hilbert space) &  LXT, v) C &* (cf. [3]).
Namely, the space & of testing functions on T is topologized by the pro-
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jective limit of Hilbert spaces {E,},., with inner products {(§, ),; &, 7 € €},cz
such that

GD €= f e,

(G.2) the norms {||¢|, = ((§, £),)"*},cz are consistent and increasing,

(G.3) E_, is the dual space of E, (p > 0), and

(G.4) for any p there exists g (> p) such that the injection mapping
tpqe: E,— E, is of Hilbert-Schmidt type.

The dual space &* of & is the inductive limit of E_, as p — 0. We
denote by (-, -)> the canonical bilinear forms between any dual pairs.
Then obviously, (&, 5> = (&, 5), holds if &, neé&.

Further let us assume the following [A.1] and [A.2].

[A.1] There exists a constant p e (0, 1) such that

2.1 pllEl, > el for any £€& and any peZ.

[A.2] The evaluation map 6,: & — £(f) gives a continuous map ¢+ §, from
T into E_, with

2.2) 1IF = j 16,1 doft) < oo .

Then [A.1] assures suitable analytical properties of nonlinear func-
tionals which appear in these Gel’fand triplets. [A.2] assures that each
testing function &(tf)e & is continuous and that the injection ¢, is of
Hilbert-Schmidt type.

Since & G E, = L¥(T, v) S &* is a Gel’fand triplet, by Bochner-Minlos’
theorem, we can find a probability measure y on &* such that

2.3) [ exolic, o) = exn [~ L]

Notice that the measure g is full on E_,, ie. y(E_)) = 1 by (2.3). Let us
denote L¥&*, u) simply by (L%).

Let Eg‘”‘ be the n-fold symmetric tensor product of E,. By virtue of
(G.2), we have natural inclusions E®", S E &, Let &% denote the projective
limit of E$” and ¢*®* the inductive limit of E® as p —oco. We always
associate the inductive limit convex topology with the inductive limit space.
Here we remark the following Lemma, which implies the continuity of

the mapping &* 5 x > x" € £*4,
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LemmA 2.1. Fix a yeé*, eg. ye E_, for some ¢ > 0, and a neigh-
bourhood W which is given by the absolutely convex envelope of the sets
{ze E_,; l|zl|l-., <7,}, p > q with given 1, 0<7,< 1. Then for any x¢
W + y, there exists a finite number of positive numbers «, q < p < N,

N ~
with 3 a, <1 such that x°" is expressed in the form
pr=q

. . , N .

249 2=yt v, With [U,lleé < nl 4 |yl e,
p=q

for any n > 1.

N
Proof. Since any x€ W + y can be written as x =y + >, a,2, with
p=q

M=

a, <1, &, >0 and 1250l-p <Tps

[

p=q

A

N
_ ¥ (n 2 %) y&m-
Un,p = Zx(k> Z-" Xpy 'al-'kzZH@ ®Zrk®y®(n K
k=1 MaxX (P1,-++5 k) =P

p > q, satisfy the requirement. Od

The orthogonal direct sum
(2.5) exp [QE,) = E) ®(n!)ES"
with inner product

(2.6) (F)uzsr (@zdestny = 2,1 (For &)ar

is called a Fock’s space. Its dual space is exp [®E’_p] with the canonical
bilinear form

@7 Gz (£ = 201G fo

for (G)uso€exp[®E_,] and (f,).s0 € exp[®E,], (p>0). Again by virtue
of (G.2), we have natural inclusions exp[®E,,,] S exp[QE,] for peZ.
We denote by exp [®¢&] the projective limit of exp [®E,,] and by exp [®&*]
the inductive limit of exp [®E_,] as p — oo, respectively.

PropostTioN 2.2. (a) The triplet exp[®&] S exp[®E] S exp [®&*]
is a Gel’fand triplet.
(b) The mapping from &* to exp [R&] defined by

E*% 5 x—> exp [Rx] = i} (—Bi'x(@” € exp [®&*]
=0 n!

is continuous.
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(¢) For (g,).s0 € exp [®&], define a functional ¥(x) on &* by
UOEDWENEOP

Then ¥(x) is a continuous functicnal on &.
(d) For (G,).s, € exp [€*], define a functional U(§) on & by

(2.8) UE) = 3 (G £ .

Then U(&) is a continuous functional on &.

Proof. (a) is seen in [4] by (2.1). (b) Fix a ye & and let ¢ be a
natural number such that ye E_,. For a given absolutely convex neigh-
bourhood V of the origin of exp[§*] of the form

V = conv (ng {25 12llexprom_pn < &) s

put 7, = min{e, exp[—(1 + ||¥]-,)*]l, 1} and let W be the neighbourhood in
Lemma 2.1. Then by (2.4), for x¢ W + y we have the expression

exp [®x] — exp[®y] = X (2}@ ;,-vn,p)

g<p<N

with norms

(2 e )‘” <
== 1] Xn X.E, .
exp [®F - p] n=1 (n!) mPlE—p e

e 1
2. @'—'— Un,p
n=1 n.

Hence exp[®x]e V + exp [©y] for any x€ W4 y. Thus (b) is proved.
By (b), (¢) is obvious since (g,).s, is a continuous linear functional on
exp [®&*] and since ¥'(x) = ((8,)rs0 €xp[Xx]), (d) is easier to prove. []

Let & (vesp, F®, F*) be the image space of exp[®&] (resp.
exp [®E,], exp [®&*]) under the mapping (2.8) and introduce a topology
from the original space. Then % @ is the reproducig kernel Hilbert space
with the reproducing kernel exp [(¢, )_,]. The following Propositions are
shown in [4].

ProrosiTioN 2.3. (a) F C FO C F* is a Gel'fand triplet.
(b) Let & and £ be in & and n, m be non-negative integers. Then (&, p)™
and (&, O™ belong to F® and satisfy the equality

(<§’ 77>m, <$’ C>n).¢<zﬁ = 5m,nn!(779 C)Z for any p € Z'
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ProrosiTION 2.4. For each fixed & ¢ &, write

29 F© = & %) = exp [¢x, & — gk -

Then the mapping & defined by

(2.10) (o)) = | o@D D) = [ olx + Haptx)
is an isomorphism from (L?) onto F©. Especially,

2.11) (FFE) = exp (7, )1 for any &, pe &
and

@12) #: H(G s Inlf) —> <& "

where H(z;7) (n =0, 1, 2, - - .) are the Hermite polynomials with parameter
t defined by the generating function exp [a)z — %aﬂ];

= 1 n . —_— T 2
(2.13) > —w"H, (2;7) = exp [a)z — —a)] .

=0 n! 2

Put #® = #-(F®) for p> 0 and # = ¥ (%) and introduce inner
products by

(90’ ‘r’")x‘lﬂ = (ygoa y‘!")y@’

in #®. Let s be the dual of #® for p > 1, and # (resp. #*) be the
projective (resp. inductive) limit of #®, We call s the space of testing
random variables and #* the space of generalized random variables.

ProposITiON 2.5. For any €€ &, f(€; x) is in # and the mapping &
is extended on #* by

(2.14) (FENE) = ¥ (x), [E; %)) -

Then & gives the isomorphism from # S (L) G #* to F S FOC F*,
Namely, #® is isomorphic to F® through & for any pe Z.

PropositioN 2.6. For p > 0, the isomorphism

exp [®Ep] 2 (fn)nzo > 90 S %(1’)
is given by

(2.15) 0= SL().  elew = [ Dezolbss 05,1
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where I,(f,) is the multiple Wiener-It6 integral

2.16) L(f) = j . jmfn(tl, )WL) - W(dt,)

with respect to the Gaussian white noise W(dt) given by the relation

(2.17) (x, &) = f EOW(d ) as. xed* ().

§3. The space # of testing ramdom variables

In [4-7], it was shown that the multiplication ¢, 4 — ¢-4 is contin-
uous as the mapping from # X & into s#. Further each element of ¢ € #
is continuous functional on &*. More surprising thing is that each U(¢) e &
can be extended to a continuous functional U(x) on &* and the class
{ﬁ(x); U(§) € #} coincides with 5. Those results were proved in a very
complicated way with the help of Volterra’s Laplacian.

Here we prove the continuity in x € §* for every functional ¢(x) € o#°
and the continuity of the evaluation map:

3.1 0,0 39— p(x)eR,

directly by using basic results.
Firstly, we prove that the multiple Wiener-Ité6 integral I,(f,) has a
continuous version as a functional on &* if f, is a good function.

THEOREM 3.1. For f, e &%,

62 L)W= F (-1 I f Ly as xe s,

where
(3'3) fn]n—Zk(tl’ ctt t’n—2k)
= '[' o JT’C fn(tl’ A tn—Zk’ Uy Upy >0y Uy, uk)d"’(ul) v dy(uk) .

Proof. We denote by .#,(f.) the right hand side of (3.2) for f, € &5".
Then it is a continuous (non-linear) functional of xe& &* because of
Lemma 2.1 and of the following estimation:

(34) ”fnm -2k ”Egb(n—zk)

= _[ . IT" ”fn(th sy basan, Uy Uy, - - vy Uy, uk)”E?‘"‘”‘) dv(u,) - - - du(u,)
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= I N J‘Tk ”fn”E;@n”(;ul”zl e ”51Nc”2—1402(p_1)kd9(u1) N dv(uk)
< fallsgrlalon=y .

Consequently, for xe E_,, we have

/2] A
(3.5) SN BT I Ui oo
3 !2 n—2k p-1)\2k A
<2 —ﬁ%)mnxn (I3l Il
<Vl €l lall o)1l

)lk!
< n! (lle-p + [18lle® )" Ifallzén

by 2-*/k! = (2k — D!/(2k)! < ¥/ n!|(2k)! for 2k < n. Since .£,(f,) is linear
in f,, £.(fY) converges to £,(f,) uniformly on any bounded set B of &¥*,
if f9 —f, in &%,

First consider the case f, = (¢, - - - 9(¢,). Then the equality I(f,) =
H,({x, », ||I7|k) is well known (actually it is shown by Propositions 2.4
and 2.6). Since the equality

(xO@= f ey = (x0TI I et -, _g))
= gl 7y
holds, (3.2) is obvious in this case by the formula of the Hermite poly-

nomials;

) v nl@2)¢
H(z; 1) = Z( 1) o n: 2k)”;!-~z (see p. 193 [11]).

For a general f, in &%, there exists a sequence of the form {fP =
= 3 ¢, (5)¥)7_, which converges to f, in &%*. Then I(f{") = S(f{)
holds a.s. xe &* and £,(f{) converges to £,(f,) for every x < &*. Since

1LY = Lfdlzs = V0P — fullsgn,

a suitable subsequence of I,(f$’) converges to I.(f, a.s. This implies
that I(f,) = S.(f,) a.s. xe&*. O

Now we are ready to prove our main theorem:

TeEOREM 3.2. For any o€, ¢ has a continuous version ¢(x) and
it is bounded on each bounded set of &*. Moreover the evaluation map
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3,1 @ — (%) is a continuous linear functional on #, i.e., §,€ #* for any
x e d*.

Proof. For ¢pe #, let (f,),», be the element of exp [®5] satisfying
(2.15) in Proposition 2.6. Put

. 19-k
m = Z=: —1)* (mj_—vz-z)'*z——fmzmm-

Then (g,).-, belongs to exp [&&], because

”(gm)mzo”exp[&))s_,,] < i Vm! | & llx&m

< Z v m! (Z %(Ha”w 1)2kamT2k”E®(m+2k\>

< 58 AIZE e L sty o

a=0i=0 +/(n — 2R) k! E

SR d* k " TN
I TR [

< S A+ ooV Rl fls2y,

(]- (1 + ||5H)2P 1) UZ“(f )n>0”exp[®E‘_p r]

for sufficiently large r as (14 |[6])p” <1, by +(2k)! < 2°k! and 1<

!
—(h*:nwl.e??' By Theorem 3.1 and the definition of .#,(f,), we see that

(3.6) #x) = 2 £ = ((8nso exp (O]

and ¢(x) = @(x) a.s. p. By Proposition 2.2 (c), @(x) is a continuous func-
tional on &*. By (3.5),

196 < |5 LuFI@] < @ = (2l-p + 13109 [l

holds for sufficiently large p as |x|_, + ||d]jp>* < 1. This shows that
the evaluation map §, belongs to s#*. O

From now on, ¢(x) (for ¢ € #) is always considered as the continuous
version.

§4. The evaluation map 4,

We have seen that §, belongs to %, if ye *. Therefore §, must
belong to #¢® for some p = p(y) > 0 and its image under & can be
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observed. By (2.14) in Proposition 2.5, we have

(CRY) (L3N8 = (5,, f(§;-)) = f(§;9)  for §e&.

Since & is an isomorphism from #¢P to P, we can estimate the
norm of §, by computing ||f(£; y)||,-» directly.

Suppose that ye E_,, p > 1. Since the injection ¢, is of Hilbert-
Schmidt type, there exists a c.o.n.s. {{;}7., of E, such that {{};., C E,
and > 5., 2 < oo for 23 = ||{;|f,. For £e&, we have

I

f(&; ) =exp [(y, & — —;—HEH%] g(ﬁo% Lém, &4 H,((y, Cj>))

=3 X T e e H ().

n=0 n=ny+ecc+nj+--e j=1 1.0
Hence we have, for y any z€ E_,,
“2) (fC5;2, f(52)pi-nm
= BT AHL E) H (2 L)

J

= 1(3 L 2 EC 0 Bz, )
ji=1\n=0 n!

= [1@—z)

= _ l 23‘<_’)’, Cj>2 - 22§'<y’ Cj><z’ C > =+ 24‘<z’ Cj>2
«fio [} HO =BG 0 1
< [, = 2y exn [ 2QiE, + 121

by Proposition 2.3 and the formula

4.8) i —ﬂH"(u)H,,(v) = (1 — ) " exp [__1_ _tzuz — 2tuv + tzvz]
n=0 n! 2 1 - tz

with H,(u) = H,(u; 1) (see [11] p. 194]. In particular,

.49 IFC s PN = }1 ((1 — )" exp [J%CZJTV])
<T@ =22 expllylE,]-

1

<.
)

Summarizing the above computations, we have:

THEOREM 4.1. The generalized random variable &, has the following
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properties;
@ (50 = f&:3) = exp[<x, & — L elg].

(b) (5,,, 53)#(_“ = Jﬁl(l — 2;_)-1/2

= __l 2§<y’ Cj>2 - 22?(,’)’, Cj><z: C]> + 2§<Z, Cj>2
XJI;[IBXP[ 2 1% ]’

1 .
©) 6, llec-n < exp [—;_“[(J,IJH;I.S.] exp ['2‘“3’”2—19] if yeE_,
(d) J\‘*“b‘y”i’(—p)d‘u(y) =] ”l(L2),_#(p)”§{'S. .

Proof. The only thing we still have to prove is (d). By (2.2) the
injection ¢, from E, into E; is of Hilbert-Schmidt type. By Sazonov’s
theorem, the support of the measure p is E_,. Hence the integral in (d)

is taken over E_,. Since {{y,¢{,>;Jj=1,2,---} are independent of each
other with respect to p, we can easily calculate;

45) [ oucrdut) = L= ).

-1 i=
The left hand side is equal to the Hilbert-Schmidt operator norm of the
injection ¢, . by the proof of Proposition 3.6 in [9]. O

In [7], the renormalization : : has been introduced. By the notation
used in it we may write

(4.6) 5,(x) = exp [(y, x>+ — % j @) YOl 1,

because the right hand side is defined by

s {exp|<n & — o [ eran)).
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