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Abstract. The Jackson integrals associated with the non-reduced root system are defined as
multiple sums which are generalization of the Bailey’s very-well-poised ¢ty sum. They are clas-
sified by the number of their parameters when they can be expressed as a product of the Jacobi
elliptic theta functions. The sums which appear in the classification list coincide with those
investigated individually by Gustafson and van Diejen.
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1. Introduction

This paper is a sequel to the paper [Ito2]. In [Ito2], we introduced the Jackson inte-
grals associated with irreducible reduced root systems, and discussed the condition if
they can be expressed as a product of the Jacobi elliptic theta functions. In this
paper, we study the Jackson integral for the non-reduced case. The Jackson integral
associated with the non-reduced root system, i.e., the root system BC,, is a multiple
extension of Baily’s very-well-poised ¢if4 sum (g-series).

The result is Theorem 3.3, which classifies the Jackson integrals associated with
BC, when they are expressed as a product of the Jacobi elliptic functions. Bailey’s
very-well-poised ¢}/ summation formula

i (1 — d*q*")(ab: q),(ac; q),(ad; q),(ae; q), ( q )
= (1 —a*)qa/b; 9),(qa/c; q),(qa/d; q),(qa/e; q), \bcde
_ (@ D)oo/ 0% D) oo(qa®; ) "
 (g/ab; 9)o(q/ac; 9)o(q/ad; @)n(q/ae; q)n,
(9/b¢; 9)5o(q/Dd; @)ss(q/D€; @)os(q/ cd; @)oo(q/ ce; )os(q/de; §)
(qa/b; 9)oo(qa/c; @) o(qa/d; ) (qale; q)s(q/bede; q)

can be regarded as the formula for the BC,-type Jackson integral in Theorem 3.3. In
[Gul], Gustafson established multidimensional generalization of ¢ summation for-
mula corresponding to semi-simple Lie algeblas. By using Gustafson’s C,-type sum,
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van Diejen [vD] proved a summation formula for his BC,-type sum, which includes
Aomoto’s B, and C,-type sums as special cases. Gustafson’s C,-type sum and van
Diejen’s BC,,-type sum are included in the classification list in Theorem 3.3. The for-
mulae appearing in Theorem 3.3 were essentially investigated by a series of Gustaf-
son’s works [Gul, Gu2, Gu3, Gu4]. Although we were able to find a new summation
formula [Ito4] for the root system F; in the irreducible reduced cases [Ito2], Theorem
3.3 assures, in our sense, his formulae are all those of BC,-type. Note that Schlosser
[S] also presented other multidimensional generalization of ¢y summation formula
and his C,-type sums are not included in our list.

Throughout this paper, we assume 0 < ¢ < 1 and use notation
o)

(% oo = [ (1 = xg) and  (x;9), = (x; Do/ (Xq"; -
i=0

2. Jackson Integral Associated with the Root System BC,

Let {ei,...,e,} be the standard basis of E=R" satisfying (s;,¢;) = d; for all
i,j=1,...,n, where §; is the Kronecker delta. Let R be the root system BC, provi-
ded by R = R U R, U2R; where

Ry ={=x¢; 1 <i<nj, Ry ={Fxe e 1 <i<j<n}
and

2Ry = {42¢;; 1 < i< n}.
We set

R ={es 1 <i<n}, Rf ={eite;1<i<j<n}
and

2R?r ={2e; 1 <i<n}.

For each o € R, let ¥ =20/ (o, ). The root systems B, and C, are the sets
Ry UR; and R, U2Ry, respectively. Let {oy, ..., a,} be a basis of the root system

C, given by
O = &1 — &2, 0 =8 — &3,...,0u—1 = Ex—l — En, Oy = 28,.
Let {y;, ..., y,} be the set of the fundamental coweights of C, given by

X1=¢, Ja=¢ete,. s fyuy =&+t et Ly =1+ +en)/2,
which satisfy (a;, %) = o; forall i,j=1,...,n. We denote by P the coweight lattice
of C, defined by P :=Zy, +---+ Zy,,, and Q be the coroot lattice of C, defined by

Q:=Z2Zo)+---+2Zuo) =Ze +---+Zg, CP.

Let L be any sublattice of P of rank n. We assume L is W-stable, i.e., L = wL
for we W. The scalar product (-,-) is uniquely extended linearly to Ec =
E®r C = C". For x € Ec, we define a function ®p, ({b;};_,. {Cj}§:1§ X) as
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(I)B”({b }, 1» {Cj}[—1§ x)
_l—[l—lq(l/z by (g q)oonl—[q(l/z ) @ g)
(g =2; g) (g5 @)

i=1 aeRf o j=l aeRf
—bi+(ek,x)

_ 1—[ (l_[ q(l/Z—b,-)(:k x) (q s Doo > %
i=1 \k=I ("9 g

/ 1— ¢ it (eu—ey,X) 1— q i+ (eutey, x)
(=2¢) ) (@ T g) o (g7~ T )
x 1_[ ( 1_[ q " (qc i+ (eu—ey,X) ) X) - ’

I<u<v<n ) q)oo (qc, (entan ) 61)00

where s,/ € Z > ¢ and b;, ¢; € C. We denote by Ac,(x) the Weyl denominator of C, as
Ac (x):= 1_[ (q(%X)/2 _q7<a.x>/2) 1_[ (q<°"x>/2 _ q7<a»X>/2)

aERS a€2R}
— (o, ,X)/2 — (o, x) /2
— H(q@/ Y)_q (o V)) H(q(l x)/ —q (ot,x)/ )
xR xRS
n
:H(q(ak,x) —(&k, ‘c l_[ (6] (eu—ev,x)/2 __ (e,l &y, x)/Z)(q(eﬂ-&-f\ ‘c)/2_q—(su+sv,x>/2)'
= I<u<v<n

Let W be the Weyl group generated by orthogonal reflections with respect to the
hyperplane perpendicular to o € R. For w € W, we define wF(x) := F(w™'x) for a
function F(x) of x € Ec. For w € W, we denote U, (x) by a function defined by

0(g"*; q) e (g g)
Uu() = o s van 00 0)
l_[ J;Ir H(ql —bi+(o,x) q) 1_[ J;Ir 0((11 (j/+<o(,x>; q)’

—W *175R+ —W *lyeRJr

where 0(&; q) := (& 9)oo(9/E5 @) - The function 0(E; g)(q; q) 1s called the Jacobi
elliptic theta function. Since 0(; g) has a property 0(¢¢; q) = —0(&; q)/&, we see
U,(x) is an invariant under the shift x — x+ y for y € P. Under the action of
w € W, the function := ®r({b;}, {c;}; x) changes as follows:

w®s, ({(biY_. {eti_y: X) = Un(x) Bp,(1bL,. (i} i %), we W. (1
The Weyl denominator A, (x) changes by the action of W as
wAc,(x) = sgnw Ac,(x). (2)
For z € Ec, we now define the Jackson integral associated with the root system BC,
as
s I 7. o s Lo
Tse, (Y Act—y: Li2) ==Y @5, (b} {cl—yi 2+ 2) Ac, (2 + 2)- (3)
7L

For simplicity, we abbreviate Jpc,({bi};_, {c,}/ 13 L; z) by Jpe,({bi}, {¢cj}; L; z). By
definition, the Jackson integral Jgc,({6:}, {¢;}; L; z) is obviously invariant under the
shift z — z+ y for y € L:

Joc,({bi}, {¢j}; Ly z + 3) = Jpc,({bi}, {e}; L; 2). 4)
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From (1) and (2), for w € W, we have the following property of Jgc,({b:}, {c;}; L; 2):

wJhpc,({bi}, {cj); L; z) = sgnw U,(2) Jpc,({bi), (¢} Ly z), we W.

3. Product Formula

In this section, we discuss the sum Jpc,({:}, {¢;}; L; z) which can be expressed as a
product of the Jacobi elliptic theta function 0(&; g)(q; ¢)o- The function 0(&; ¢) has
a quasi-periodic property such as 0(¢&; q) = —0(&; q)/¢. By using this property, for
v € L and 0(¢g°T*?; ¢), we have

9(q0+<06,2+x); q) = (_1)<fx.x)q(1/2—6)<fx.x)—<0<,X)2/2—<0<.2)<0<,X>g(qc*-s-(w:); q9), (5)
which is used in the subsequent discussion.
LEMMA 3.1. Assume that L=P or Q. For a € Rf U2R}, if (a,2) =0, then
Jec,({bi}, {ej}s Ly z+ ) = 0 for all y € P.
Proof. See [Ito2, p. 332 Lemma 4.2]. O
PROPOSITION 3.2. For L = P or Q, the sum Jpc,({bi}, {c;}; L; z) is expressed as

, - P
1) ”f)<°"z>9(q<2aq2>; q) 1_[ q(%*z,:, ‘f)(%2>0(q<a,:); q)
Hj:] Q(qbl-‘y-(%,.’); CI) 1 1_[11:1 0(qc/+(3(,2>; q)

7] o

aeRf
where f(z) is a holomorphic function of z € Ec.
Proof. Since Jpc,({bi}, {¢;}; L; z) has poles lying in the set

s /

zeEc: l_[ l_[ H(qbiJr(ec,z); q)l_[ 1_[ 0(q<r/+<o<,z); Q) =0},

i=1 aeRf J=1 aeRy

the sum Jpc,({b;}, {c;}; L; z) is written as

Jsc,({bi}, {cj}; L; 2)

$=1-3"0 bi) @, B3 )
foeRT q(Z 1 Z,:l )(OC 2) erR; q( 2 Z/:l L’)w )

s . 7 ! . ’
T Toers 0g%+ 20 ) Ty Tl 0(g+7); 9)

=g(2)

where g(z) is a holomorphic function of z € Ec. By Lemma 3.1, the function g(z) is
divided out by the product [],. RF 0?5 @) [ e RS 0(g™?; g). O

Now we consider the case where the holomorphic function f{z) in Proposition 3.2

is a constant not depending on z. As we see in the next theorem, its classification list
includes not only two cases for arbitrary n, but three exceptional cases.
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THEOREM 3.3. For L = P or Q, the sum Jpc,({b:}, {c;}; L; z) is expressed as

(7_1 le )(g, 265,2) .
Cpe, (1bi}, {ehs L)l_[q [T 0(qh+(”‘(? q) .

q(l—1—2 Z/,Zl C/)(&ul) Q(q(si,—s\‘A,:); q)@(q<8“+£"’z>; C[)

X

X l_[ )

/ —&y,2) . (e tey,z) .
L<icven L1 0ot @)0(gattntens); q)

where Cpc,({bi}, {c;}; L) is a constant not depending on z € Ec, if and only if (s, 1)
satisfies the following:

| (s
n| s —
2 ] (0,3)
any | (4D or S
2| @2
any| 2n +2,0) T
3] 02

Remark 3.3.1. In particular, if =1 in Theorem 3.3, we have s =4 and it is
nothing but Bailey’s very-well-poised ¢i)¢ summation formula (see [vD, p. 484]).

Remark 3.3.2. The cases (s,/)=(4,1) and (2n+2,0) were investigated by
Gustafson [Gul, Gu2, Gu3] and van Diejen [vD]. The explicit forms of the constants
Cpe,({bi}, {cj}; Q) are the following:

Cpc, (b1, by, b3, bs, c1; Q)
1 _(./_1)('1 _bu_bv .

( l_[ (ql e, s q)oo I <upu<v< 4((1 5 q)oo
qa oo (ql Cle. q) (ql_(”+/—2)01—b1—bz—b3—b4; q) ’
—bu—by.

n l_[l < pu<v < 2n+2(q ’ q)oo

CBC,I(bl, ceey b2n+2; Q) ((1 Q) (ql bi——bapia- q)
» 400

For C,-type, the sum Je,({b:}, {c;}; L; z) of (s,/) = (1,1) and (0, (n 4 1)/2), n: odd,
in [Ito2, p. 334 Theorem 4.5] are the special cases of the cases above.

Remark 3.3.3. In [Gu4], Gustafson studied the generalized Nasrallah—Rahman
integral. There exist the generalized Nasrallah—Rahman integrals corresponding to
the Jackson integrals Jpc,({bi}, {c;}; Q;z) in the list of Theorem 3.3 (see [Gu4,
pp. 447-449]). The explicit forms of the constants Cgc,(c1, ¢2, ¢35 Q), Crc,(b1, b2,
c1, ¢2; Q) and Cge,(c1, ¢2; Q) are the following:

Cpo,(ci, €2, ¢33 0)

@950 Doo(d' T D)o@ @)oo T D
(q—m - c;7q)oo i (ql L/’q)OO
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Cpe, (b1, b, 1, ¢2; O)

17}717])2 17[7]7})27('] . 17})]7})2702,

=(¢: 9% (g F D)oo(q $ Doolq § Qoo X

l—C|—(’2, 1—21)1—6‘1—62. 1—2b2—€1—cz.

x (q s Dol s Doolq § @)oo X

(g'Phmame g ﬁ(ql‘zf’; Do

X - y
(qlfzblfzbzfzclfzcg; q)oo o (ql—(,/; q)oo

Cgcy(c1, 25 Q)

1—c1—2c. 1-2¢1—c3.

= (¢: 9 (q s ool  )oo X

P s PO PN 2 _ D —3¢:
@O 9@ T o 1@ Do (617 Do
(73972 ) 11 @795 D (@79 Do

Proof of Theorem 3.3. By the g-periodicity (4) of Jpc,({b:}, {c;}; L; z) and (5), for
% € L, the function f{z) in Proposition 3.2 satisfies

Sz + 20 =V,2)f(2), (6)

where

V,(z) = 1—[(_1)S<w>q(x74)(*<a,x>2/27<a,:><zx,x>) H(_1)(171)%)0q(lfl)(*w,x)Z/Zf(a,:)(m))- (7)

aeRf xRy
If f(x) is a constant, V,(z) = 1. From (7), it suffices to find (s, /) satisfying

s ) +U=1D Y ) =0 (mod2) (8)
aeR, %R

fori=1,...,n, and

(s =4 Y (g + =1 D (o o 7)) =0 ©)

xR} xRS
fori,j=1,...,n, where {y},...,,} is a basis of L. We define positive definite in-
tegral symmetric matrices 4, = (a;); —; and By = (by)] ,_; as
ag=Y (oo gl by= Y oz 1)
aeR] aeRS
Since we see By = (2n — 2)A; by [Ito2, p.335 Lemma 4.6], Equation (9) implies that
s—44+Q2n—-2)(l—-1)=0. (10)
From (10), we have (s, /) as in Theorem 3.3. Equation (8) is valid for such (s,/). [

THEOREM 3.4. If (s,1) satisfies the condition in Theorem 3.3, then the following
relation holds for L = P or Q:
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Jpc,({bi} ¢} P; 2) = 2 Jpe,({bi}, {¢); O; 2),
in particular,

Cpe,({bi}, {¢j}; P) =2 Cpe,({bi}, {¢j}; O).

Proof. We set y,+ QO :={x,+ 4 4 € Q}. Since the lattice P is described as
P =QU(yg,+ Q) by the definition (3) of Jzc,({bi}, {¢j}; L; z), we have

Jpe,({bi} {cj); P 2) = Jpe,({bi}, {c); Qs 2) + Jpe, ({bi}, {cj); Qs 2+ 1)

From the theta product expression of Jpc,({b:}, {¢;}; O; z) in Theorem 3.3, it follows
that

Joc,({bi}, {¢j}; Os 2z + 1) = JIpe, (1bi}, {¢j}; Q5 2).

Thus we have Jpc,({bi}, {c;}; P; z) = 2Jpc, (b}, {¢j}; O; z). This concludes the
proof. ]
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