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Abstract

Various problems related to the propagation of small amplitude long waves on the surface
of superfluid helium (helium II), usually called third sound, are studied on the basis of the
appropriate governing equations. The two-fluid continuum model due to Landau is
considered, with the effects of healing and relaxation incorporated, and viscosity, heat
conduction and compressibility terms retained. The helium vapour is treated as a classical
(Newtonian) compressible gas and the exact jump conditions across the liquid/vapour
interface are employed. These liquid, vapour and jump equations constitute the exact
problem although, in an effort to reduce the complexity of the equations, a simplified set
of 'model' surface boundary conditions is also introduced. This full set of equations is
non-dimensionalised taking care that all physical parameters are defined using only the
undisturbed depth of the layer as the appropriate length scale. The ratio depth/wave-
length (8) is then a separate parameter as is the wave amplitude/depth ratio (E). The
limit which corresponds to the wave under discussion is then e, 5 -» 0 with all the other
parameters fixed.

A number of analyses are presented, four of which describe various aspects of the
linearised theory and two examine the nature of the far-field nonlinear problem. Using
the simplified surface boundary conditions we discuss in turn: the wave motion in the
absence of healing: the rdle of a second wave speed leading to a wave hierarchy; and the
effects of healing. The final linearised problem makes use of the full vapour model, but
again the healing terms are ignored. This latter analysis suggests that if the upper
boundary of the vapour is sufficiently close to the liquid surface then third sound is
suppressed.

The complexity of the equations, particularly when the nonlinear terms are to be
examined, is such that the incompressible limit is now taken in the absence of both
healing and relaxation. Imposing the physically realistic limiting process (e, S — 0) we
show that the only equation valid in the far-field is the Burgers equation. However, we
also demonstrate that allowing the other parameters to be functions of c (which is not
physically realisable in practice) it is easy to derive, for example, the Korteweg-de Vries
equation.
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1. Introduction

The propagation of small amplitude long waves on the surface of superfluid
helium (or 'helium II') was first predicted by Atkins [1]. This wave is the analogue
of the classical water wave insofar as the body force potential is required for the
maintenance of such a motion. In other words we are dealing, in essence with a
'gravity' wave—although here the potential is dominated by van der Waals
forces. The surface waves were detected in 1962 by Everitt et al. [7]— and later by
Pickar and Atkins [21]—on relatively thick films (l-10cm), but our results will
be applicable mainly to thin films in the range 5-100A (about 25 atomic layers):
see Atkins and Rudnick [2]. The mode of propagation under discussion here is
usually referred to as third sound, and there are now known to be quite a few
sound speeds associated with superfluid helium. (First sound corresponds to
ordinary sound in a classical fluid i.e. a pressure or density wave; second sound is
special to the superfluid since the normal and superfluid components (see below)
move in opposite directions producing a temperature wave.) In third sound the
normal fluid is essentially stationary and only the superfluid oscillates.

The most successful macroscopic theory for helium II is Landau's two-fluid
model (Landau [18]; Landau and Lifshitz [19]; Hills and Roberts [9]). The liquid
helium below the X-point (a second-order phase transition at about 2.2°K) is
modelled as a mixture of two component fluids; one moves irrotationally—the
superfluid, and the other is a classical (Newtonian) viscous fluid—the normal
fluid. It must be emphasised that Landau's approach provides a very convenient
model only: it is not to be thought that a quantum fluid like helium II actually is
composed of two identifiable fluids. However, on the basis of this model, a
considerable body of theory and results has been obtained producing surprisingly
good agreement with quite a range of physical phenomena (see, for example,
Donnelly [6]; Putterman [22]). Of course, when compared with the problem of
surface waves on a classical fluid, it is already clear that the corresponding
problem for helium II is vastly more complicated. Unfortunately there are even
further difficulties encountered here which have no counterpart in the water-wave
problem. Nevertheless, we shall demonstrate that a systematic and useful ap-
proach is readily available (which mirrors that used for water waves).

Two novel and curious properties are enjoyed by the superfluid component.
The first arises from a description based on the wave function ty, whence the
superfluid density turns out to be proportional to | ^ |2. This means that where the
wave function drops to zero then so will the superfluid density: this is the
phenomenon of 'healing'. In this work we shall employ the model of healing due
to Hills and Roberts [10], which allows the superfluid density to take any assigned
value at a boundary of the liquid film. The wave function is certainly zero
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wherever it encounters an infinite potential barrier such as a solid wall, however
the free surface requirement is less straightforward. Earlier workers tacitly assume
that ^ = 0 there; indeed work of Sobaynin [24] and Ginzburg and Sobaynin [8]
indicate that almost certainly the superfluid density is zero at such a surface. We
shall, where it is necessary, assume that the superfluid density is zero at all
boundaries of the liquid. The second novel aspect is the necessity for a constitu-
tive equation describing the relaxation process governing the conversion of
normal fluid to superfluid, and vice versa. (In the equilibrium state there is only
normal fluid at the X-point, and only superfluid at absolute zero.) We shall adopt
the relaxation model introduced by Hills and Roberts [10], which in turn is based
on that due to Khalatnikov [13]. The details of these various models will become
clear when we introduce the equations themselves.

Finally, at the surface of the liquid film, a far more significant but also
potentially troublesome condition arises by virtue of the evaporation/condensa-
tion between the liquid and its vapour. This produces two effects: first, the
surface level can change over and above the usual kinematical contribution; and
second, a heat transfer must occur to accommodate the latent heat associated with
the exchange. Even with this additional physics, there is still the matter of
deciding how to model the vapour. On the one hand we could ignore the vapour
altogether and impose appropriate boundary conditions at the surface, solving
only for the liquid. Clearly a more satisfactory approach is to model the vapour
itself as, say, a classical (Newtonian) compressible gas. We shall examine both
choices here and, in the case of the latter, we shall adopt the exact jump
conditions developed by Hills and Roberts [11] for helium II with healing and
relaxation.

In this paper we shall present the exact equations and boundary conditions,
within the framework of the model, that are required for the solution of the
surface wave problem. The aim is to analyse these equations by introducing an
appropriate (and simple) limiting process which describes the character of the
solution under discussion. In this way we avoid making ad hoc approximations
(e.g. assuming incompressibility) which are not necessary to the successful
completion of the theory. Previous work has tended to start from simplified
approximate equations derived by elementary physical arguments rather than
precisely defined mathematical operations applied to the exact equations. (For
earlier work, which will be referred to in detail later, see in particular Putterman
[22]; also Atkins and Rudnick [2], Bergman [3] and [4].) A more systematic
approach was adopted in Johnson [15], although rather idealised surface condi-
tions were used in an effort to reduce the complications to a reasonable level.
Here we shall—in passing—reproduce this work but a little more emphasis will
be given to the solution of the linearised problem coupled with that for the
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vapour. Further, we are able to examine the role of the healing terms (which will
be ignored in the initial phase of the analysis) and also consider the form of
non-linear equations that can arise to describe the wave propagation on long time
scales.

The methods we employ here are based on the construction of asymptotic
expansions; the procedure is quite straightforward and it lends itself readily to the
examination of higher order terms. To this end the equations are non-di-
mensionalised so as to introduce an amplitude parameter (e) and a wavelength
parameter (6). Since our interest is centred on small amplitude long waves we
consider e -» 0, S -> 0 keeping all other parameters fixed. It turns out that no
other approximations are required to enable the linearised problem to be solved
(although the healing terms cause some slight irritation, as we shall see). The
philosophy is simply that, for any particular equilibrium state, all the parameters
describing the helium II (and its vapour) are given and independent of the
amplitude and wave length of the wave to be generated on the surface. Of course
once we have obtained propagation speeds, for example, then it may well be
expedient to simplify the results by ignoring some of the parameters because they
are small (in the strictly numerical—as opposed to the asymptotic limiting—
sense). However we emphasise that such ad hoc approximations are not an
essential ingredient of our approach.

2. Basic equations and non-dimensionalisation

The ambient state of the helium is assumed to be a two-dimensional channel of
stationary helium II in equilibrium with its vapour. The co-ordinate x' (or x\)
measures distance along the channel and y' (or x'2) is measured up through the
liquid helium from the solid phase (see Figure 1). By virtue of the van der Waals
forces of attraction at the wall the helium solidifies to form a layer on the wall;
this occurs at a pressure of about 25 atm. for temperatures below about l.8°K.
We assume that this solid phase is of constant thickness, although the passage of
the wave presumably causes a slight fluctuation in the position of the phase
boundary. The undisturbed depth of the liquid is h and a typical wavelength of
the motion is A. (As an alternative a typical frequency could be introduced which
is just Ac, where c is a typical phase speed; see below.) The deviation of the
surface away from its equilibrium position is given by TJ'(*', /'), where /' is a time
co-ordinate; the velocity in the liquid is u' = (u', u') (or («',, v'2)). Throughout we
shall denote the superfluid and normal components by the subscripts V and '«',
respectively. The equations for the liquid phase follow Hills and Roberts [10], and
appear in Johnson [15].
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vapour K

Figure 1. The co-ordinate system and variables.

The conservation of mass, valid at every point interior to the liquid, can be
written as

aT "*" J T ( P X + Psvs ) = 0, (1)

where p'n, p's are the densities of the components and the density of the mixture is

p — pn + ps. (2)

The momentum equation for the liquid is

3*: Pi ,' 3 * ;

(3)
where/?' is the pressure, fi the body force potential and /*,, jn2 are the (constant)
bulk and shear viscosities, respectively. The healing of the wave function is
represented by the term in /?' (a constant), where the coefficient has been taken
proportional to \/p's (see Khalatnikov [13]; Hills and Roberts [10]). If we
introduce A(p', p's, T')—the Helmholtz free energy—where 7" is the temperature,
then the irrotationality of the superfluid is described by

= o,
where

and

(4)

(5)

The relaxation process appears here by virtue of the term in A (a constant) with a
relaxation coefficient proportional to (p's)~

>/2 (again after Khalatnikov); ms is the
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mass supply function for the superfluid,

3p,' . 3 / , . \ / , \

The equation of state is

and the constitutive equation for superfluid production is

p;r1/2 = o. (8)

Finally, remembering that -9/1/37" = 5" ' s t r i e entropy, the energy equation
becomes

where K' is the (constant) thermal conductivity and

These equations for the liquid phase, (1), (3), (4), (7), (8) and (9), require
boundary conditions on both the bottom (the liquid/solid boundary) at y' = 0
and on the surface at y' = h + r\'. Since y' — 0 is a solid boundary for the liquid
we must have

„; = „;; = ,,; = 0 o n / = 0, (11)

although it is quite possible for u's ̂  0 on y' = 0 since the superfluid is inviscid.
Of course there is also a thermal condition ony' = 0 where the temperature or
heat transfer is prescribed. It is generally accepted (see Putterman [22]) that the
solid phase acts as a perfect insulator, i.e.

dT'/dy' = 0 on/ = 0. (12)

We now turn to the problem of determining the requirements that are to apply
on (and perhaps above) the free surface. It is clear that three types of condition
are necessary: kinematic, stress and thermal. These can be obtained by either
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stipulating (almost arbitarily) the conditions that are to pertain ony' = h + TJ'; or
the vapour itself can be modelled together with the use of the exact jump
conditions valid across an interface. In this work we shall adopt both approaches
and compare them (and we note that the former procedure was at the heart of the
surface conditions used by Johnson [15]). The first task is to formulate what we
might regard as the exact surface conditions. To this end we suppose that the
vapour is a compressible gas obeying a Newtonian viscosity law. If we let the
vapour be denoted by subscript ' g ' (for gas) then the equations become

(mass) -jj-f + •^~~r(Pgug7) — 0, (13)
j

(momentum) -r-y (p'v' ) + -5-7 (p'v' v'.)

, (H)dx'k

dA
(state) P' = p?-W> A* = AM'r*)> 05)

(energy) Tg^(P'gS'g) + ±(P'gSgSgJ)

where

Tg'J ~ '

and the notation is exactly as used for equations (1)—(10).
The general interfacial conditions that exist between a liquid and its vapour,

and in particular for helium II, have been derived by Hills and Roberts [11].
These jump conditions incorporate the effects of both healing and relaxation and
are therefore consistent with our model for the liquid. The conditions are
evaluated for our chosen geometry and are merely quoted here. The kinematic
condition, which arises from the conservation of mass across the surface, can be
written as
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where tan 0 — 3 T J ' / 3 X ' is the slope of the surface. Here, J is the mass flux across
y' = h + r\' so that J > 0 corresponds to evaporation from the surface. The
continuity of stress at the interface provides an expression for the pressure
difference across the free-surface (the normal stress) as well as a relation for the
shear stress,

/ 3M' 3o' \ I 3M' dv' \

+ COS20
\dx'l dx' dx' \ dy' dx'

dy' + \dx'j dx- dx' \ dy' dx'

and

' dy') Y [dx'J } \ d y ' + dx'

l * - ^ ) - l\ - l ) \ t +
dx \ dx dy ) [ \ dx' } J \ dy dx

Finally the maintenance of an energy balance across the surface yields

cos [ | J ^ ( ; ; ) ^ ( ^ ) ] (
(20)

where L = T'(5^ — 5') and, in addition, the temperature itself must be continu-
ous so

T'=T'g ony' = h + n'. (21)

In equation (20) 'J' is a suitable generalisation of the difference in chemical
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potential, and may be written as

dx' dy') p' \ dx' dy' j 2p'ps'

+ cos20
' \ dx') dx' dx' \ dy' dx'

a " M i . (22)
3 / ' I dx' I dx' dx' \ dy' dx'

To complete the conditions we require a constitutive relation between J and ^ :
Hills and Roberts [11] propose that / be proportional to *,

[p , p , T) (** i))9 (23)

and n' can usually be taken as a constant. Of course these surface conditions,
(17)-(23), are all to be evaluated ony' = h + 17', and (20) has been written in its
simplest form by using the requirement that p's = 0 on the free surface. Note that
thermodynamic equilibrium between the liquid and its vapour is given by ty = 0,
and this must hold when no disturbances are present. The presentation of all the
equations describing the two-fluid model of helium II, with healing, relaxation
and a vapour model included, is thus complete. The very involved nature of this
problem is now manifest, but it is hoped that there is some virtue in presenting
here the full set of equations for reference. Clearly, if there is any reasonable
possibility of producing a somewhat reduced version of the problem, then there is
a case for further investigation. In particular we might expect to be able to write
down simpler surface conditions which retain the general character of the
problem. This was the philosophy behind the equations given in Johnson [15],
which were then regarded as posing an exact problem in its own right. However,
this simplified choice of boundary conditions (which we shall also consider here)
clearly falls very far short of the formulation given in the equations (13)—(23).
Furthermore, it turns out—and it is hardly surprising—that this 'reduced' set of
surface conditions can not be obtained from (13)—(23) by any completely sys-
tematic limiting procedure.

The alternative model that we adopt is described in detail in Johnson [15], and
it follows quite closely the ideas expressed by Atkins and Rudnick [2] and
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320 R.S.Johnson

Putterman [22]. The helium vapour is assumed to be a gas at constant tempera-
ture, T'v, and constant (vapour) pressure, p'v. Also the presence of the gas is
supposed to produce a zero viscous shearing stress at the surface. These two stress
conditions yield

+ COS20 , , „ , „ , ,
9^ 3x dx

The evaporation/condensation process is assumed to transfer mass and heat in
proportion to the difference between the surface temperature and To'. If we
suppose that there is no superfluid at the free surface then

(26)

<27>

(These latter two equations show minor alterations when compared with those
given in Johnson [15]; here L' and M' are constants.) Equations (24)-(27), all
evaluated on y' = h + TJ', replace (17)-(20) and we observe that the continuity of
temperature, (21), is now redundant since we must not have T = T'v on y' = h +
7}'. Comparison of the two sets of surface conditions indicate that, by and large,
agreement is obtained if we eliminate the gas terms, e.g. in (18) set nlg = fi2g — 0
and p'g — p'v but also ignore the term in J2. To generate (26) and (27) we model J
by M'(T" — Tu'), although we must also use ¥ = 0 (consistent with the idea of the
liquid and vapour being predominantly in equilibrium), ignore (23) and set
n'g = 0, L = U — constant. In fact, if the temperature perturbation is not re-
quired, J can be eliminated from the boundary conditions and then the linearised
problem solved for the surface wave (as we shall demonstrate): this applies to
both pairs (17), (20) and (26), (27).

The final stage in our formulation of the problem is to define an appropriate
set of non-dimensional variables. To this end we make use of the length scales
(/i, A), a typical temperature TQ (= T'o for the simplified model) and a typical
density p0 (for the liquid). The time scale is most conveniently based on X and a
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[i l l Long waves on superfluid helium 321

typical speed c. For the vapour we use the density pOg and a speed cg (except for
the time variable). The temperature TQ (not very close to the A-point) is chosen to
be the equilibrium temperature in the absence of any disturbances. Now we
define

(28)

y' = hy, xf — Xx, t' = Xt/c, -qf = e/rij,

u' -— ECU , v' -^ €ocv , <ps ^ £AC^D_ , i —- TnT^

p' = pop, p'q = popq, p' = c2pop, A - c2a, fi = c2u,

y = c2\p, J = cpoj, n' = pov/c where q = n, s,

and for the vapour

p ; = PO gPg , P'g = c2
gPgPg>

 A
g = clar (29)

The various non-dimensional parameters that appear in the equations are given
by

e = typical wave amplitude/A, 5 = h/X, fi = $'/ {he)2, y = h.po
/2/{hc),

«, = M,/ (hcPo). «/g = M,g/( hcgpg) (i = 1,2),

K = K'To/(hPoc
3), Kg = K'gT0/(hp0gc

3
g),

(30)

and in addition, for the simplified model,

M = M T o / ( c P o ) , l = L'/c2. (31)

In the above scheme all the physical parameters have been defined with respect to
the single length scale h which is prescribed for a given film. The wavelength of
third sound is embodied in just one parameter, S, whence long waves correspond
to 8 -» 0 with all other parameters held fixed. The use of h for the gas parameters
may appear a little unconventional but, since no limit process is associated with
the gas length scale whatever it may be, any convenient choice is admissible.
Strictly the same argument can be applied to the choice of pOg and c , but these
new scales are retained to facilitate the analysis of the effects of small gas density
(Pog/Po « 1) in our final equations. Of course, no limit process is implied or
employed but two further parameters will therefore appear in the governing
equations,

0 = Pog/Poi A = cg/c. (32)
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322 R. S. Johnson

3. Equilibrium state and asymptotic expansion

[12]

The problem under consideration here is described by the limit e -» 0, 8 -» 0,
i.e. small amplitude long waves, and the relative magnitude of e and S does not
have to be closely specified (although it is not arbitrary in all cases of interest.) As
the wave vanishes, so the liquid film and its vapour must approach a state of
thermodynamic equilibrium which we shall denote by a circumflex, so p = p(y),
pg — pg(y), etc. and T= Tg= 1. It should be noted that the equilibrium variables
(except temperature) are functions of y, and the presence of a wave disturbance
will perturb the fluid away from equilibrium. Thus we write

T=

er,

Tg =

= pq+erg

eSrg, p=p + ep, pg=p

= n,s,g), (33)

which are consistent with the (non-dimensional) equations; the complete set of
governing equations, using (28)-(33), is given in the Appendix.

The equations representing mechanical and thermodynamic equilibrium be-

come

dp_ _ „ rfco _ d
dy ~~P dy P dy

°Ps Ps dy2 2

p-rr = 0,

(34)

for the liquid, where a = a(p,ps, 1). (Equations (34) are not independent: for
example, the first three imply the fourth upon the elimination of p and w.) For the
vapour in equilibrium with the helium II we have

dy A2 pg Pg (35)

where a = a (p , 1) and at the interface we require
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o n j = l , (36)

this latter condition being just $ = 0. The equations for the equilibrium state are
to be solved with the boundary conditions

ps = 0 on_y = 0,1, p—Pb onj> = 0, (37)

where ph is the (non-dimensional) pressure at which helium II solidifies (at a
temperature TQ). It is observed that the role of (36b) is merely to determine the
arbitrary constant in the definition of the Helmholtz free energy for the vapour;
the corresponding constant for a is fixed by (34b), given a.

The body force potential, u(y), is dominated by the van der Waals force of
attraction to the wall which takes the form

k< I v + d \'x ,
!—T ! + —, ' ( 3 8 )

(y + d)3\ *2 /
where kx,k2 are constants and d is chosen so that solidification occurs ony = 0.
If u(>>) is represented solely by (38) then, since w -» 0 as>> -» oo, the vapour tends
to a constant pressure (and density) far from the surface; this would correspond
roughly with the simplified model. However, if the gravitational term were
included, then the pressure would decrease with distance above the film (if the
film were horizontal) eventually invalidating equations (35). Although it is
convenient to consider y -> oo in our solution there should be no difficulty in
interpreting the results: y -> oo is to be taken to mean large on the scale of h,
which seems perfectly reasonable in the context of the experimental configuration
for thin films. We can also note, of course, that any variation with y will be small
in practice due to the low density of the helium vapour.

Asymptotic expansions can now be generated by seeking a solution in ap-
propriate powers of e and 8, although the precise ordering of these terms cannot
be accomplished without specifying a relation between e and 8. However the
dominant terms that contribute to the perturbation of the equilibrium state can
be obtained directly without recourse to a particular e(5). The equations so
formed (in the limit e, 8 -» 0) are then the basis for the study of the linearised long
wave problem. Four different (linearised) problems, of varying complexity, will be
discussed in the next paragraph. The simplest starts from the reduced surface
conditions and most closely corresponds with the earlier work; other topics
include the role of the healing terms and of course the use of the 'exact' vapour
model.
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4. Linearised problem

a. Elementary third sound
The dominant terms remaining, when e, 8 -» 0, are listed below with a reference

to the appropriate equation in the Appendix. For these equations to be valid we
require, in addition, that e/8 -» 0 in the limit process (see equation A7), although
we shall also omit the healing terms. This point is discussed in Johnson [15] where
it is explained that the significance of the terms in /? is to produce boundary
layers, of O(j81/2), on the upper and lower surfaces of the liquid. In other words
we are supposing—for the moment—that /? is very much smaller than 0(1), but
we shall remove this constraint in a later discussion (see Section 4c). The relevant
equations are

37+g^(M. + A«,) + ay(p-oB + fc»J = o, (39)

( 4 0 )

(A4,

(A7)

with

(A8,

and

(A23

(A21

5) r(

(dT

9)

,22)

,24)

7\fi

^f- = 0, p = rp{ldp + pdpp), (41)

0 = 0, (42)

0, (43)

ony = \. (44)

In (41a) we have introduced 0s = 6s{x, t) where

<ps(x, y, t) = 6s{x, t) + O(82), (45)

which is a consequence of the scalings employed on (us, vs). Equations (40b), (41)
are not independent; it is easily shown, for example, that (40b) follows from the
other two with the aid of the equilibrium state equations. The solution of
(39)-(44) follows in elementary fashion and yields

=J r—
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and, upon the elimination of 8S and T,, we obtain

% 2ap pap dt2

= 0. (46)

Here we have introduced the additional subscript '1 ' , denoting evaluation on
y = 1, and the prime is a derivative with respect to y. Equation (46) is a wave
equation with a (non-dimensional) speed of propagation which is just that
labelled c2 in Johnson [15]. If we make the further assumption that the liquid is
incompressible (2dp + papp -» oo) then

which is the expression obtained by Atkins and Rudnick [2] and Putterman [22].
The appearance here of p,, rather than />„,, is not surprising since pnX = p, i.e.
ps = 0 at the surface. The equilibrium state is still allowed to retain the healing
terms; /? is neglected only in the perturbation equations. (In fact the presence of
superfluid at the free surface gives the same equation, (46), since p, then arises
from pB, + psX.)

The main features of the flow described by equations (39)-(44) are notably that
un = 0, so the normal fluid does not move (as expected) and that the temperature
perturbation through the film plays no role whatsoever. This latter observation is
hardly surprising when it is remembered that the temperature perturbation is
O(e8) and all the other perturbations are O(e): see equations (33). Note, however,
that the mass flux and heat transfer at the surface do contribute (even though it
turns out that aTi/l is numerically quite small). Finally, the superfluid production
equation, (A6), is not required here since this equation uncouples when /? is small
and thus serves only to define rs.
b. The wave hierarchy

The suggestion is made, particularly in Putterman [22], that a second propaga-
tion mode (with speed c,, say) is available which is also associated with surface
wave, i.e. third sound. Actually the dispersion relation developed by Putterman
clearly indicates this other mode, although the approximation then used ignores
it. To investigate this point further, and to see if this other propagation speed
plays any significant role, we can derive a single equation embodying both c, and
c2. The wave equation is then said to describe a wave hierarchy which may, or
may not, predict a stable solution (see Whitham [25], [26]). This particular aspect
was considered in some detail in Johnson [15], and here we shall give a brief
resume of the analysis.
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Two modes do indeed exist and are linked by a time constant which is
proportional to /x, and a balance can be struck between them if ju = MS (M fixed
as 8 -» 0). We make this choice and note that it is necessary to write T -» r/S (so
that all perturbations are now O(e): see (33)); as in Section 4a we ignore the
healing terms in the perturbation equations. Equations (39), (40), (43), (44a, b, c)
are unaltered (if M replaces /i. in (44a)) with

r(2ap + paj + r(aT + papT) + ̂  = 0, (48)

p = rp(2af) + papp) + TP%T, (49)

^ ^ + paT^ + ^(paTVn)+l^2=0, (50)

= MIr oay=l, (51)

replacing (41a, b), (42) and (44d), respectively. These last two equations involve
terms in S'\ although the overall error terms are still o(l). Thus we write

r~T0(x,t)+STl(x,y,t) (52)

and it can then be shown that

ro = -(va\ + d0J/dt)/dTl, (53)

and the equation for rj(x, t) now becomes

a2
 2 a2 \ di, / a2

 2 d2 \ . ,..,
—7 "" c\ 7 a + m\ —7 ~ C2 7 1 = 0. (54)
3 r 2 ' 3 x 2 / 9 ' \ 9 / 2 2 3 x 2 / K J

The speed c2 is exactly that implied by equation (46), m is the appropriate
coupling term,

and the speed c, (which turns out to be independent of the latent heat, /) is given
by

( 5 6 )

Pi + w'i/oP ar4y ~ aTXA]/A2

where

Pi + w'i/oP ar4y ~ aTXA]/A2

/I, = p, +(w'1/a7-1) ( p{paT + pT)aTdy,

A2 = p,dr, - (u\dTi)J [pdTT- aT(paT + pTf\ dy,
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with

p=p('P,ps,T)

The corresponding speed for incompressible flow (a r

A2

0) is given by

Pi aTT\ o
(57)

which again agrees with that obtained by Putterman [22], where it is suggested
that (57) is the result of a less careful treatment since / plays no role; (47) is
regarded as the 'correct' answer. Our presentation makes plain that both speeds
are relevant and coupled via the wave hierarchy equation, (54). It is well-known
that if m > 0 and c, > c2 > 0 then the solutions of (54) are stable and describe
waves eventually travelling at the speed c2: in this sense (47) is indeed the correct
answer. The speeds c, and c2 (from (46) and (56)) are plotted in Figure 2 as

40 •

c,, c2/ms~1

30

20

10-

0 10 40 70 A/A
Figure 2. Propagation speeds against film thickness at T= 1.3°A": without healing c,(—), c2(-);

with healing c,( ), c2( ). Experimental data curve (Putterman [22]) at T= 1.315°A"( ).
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functions of h at a given temperature, and we remark that c2 -» oo, c, — c2 -» 0 as
/i -» 0. Of course, when c, and c2 are close together we can anticipate that the
validity of (54) is in some doubt and may well require the inclusion of nonlinear
terms. The agreement with the available experimental data is quite reasonable
(when compared with c2) except for very thin films (less than about 20A): see
Putterman [22], Johnson [15].
c. The role of healing

One possible explanation for the rather poor agreement with experimental data
on very thin layers could be the (arbitrary) disregard of the healing terms in
respect of the perturbation equations. Even though the effects of healing were
retained in the equilibrium state (and /J itself turns out to be fairly small—per-
haps no larger than about 0.1) the possibility that some important new phenom-
ena might have been overlooked must be investigated. This will also serve as a
very rigorous test of the continuum two-fluid model of helium II. The aim,
therefore, is to examine the perturbation equations (obtained as e, S -» 0) but with
/? fixed. It is immediately clear that the relevant governing equations are much
more involved than those discussed in the two previous paragraphs. With this in
mind we still limit ourselves to the simplified surface conditions; and to enable
estimates for both c, and c2 to be obtained we again write ju = MS, T -» T/S (even
though c2 may well be the more relevant speed).

Of the equations given earlier (39), (40a), (43), (44a, b) and (51) are unaltered
(with M written for /t in (44a), as before). Now that /? = 0(1) in the limiting
process we find that

dy dy
2 dp, drs I 1 dp,

= o,

a*.r(2dp + pdpp) + r(dT + p&pT) + rs{aPs + papj + -£ = 0,

P = r{2pdp + p2app + psaPi + Pf>sdpPs) + rp(pdpT + M P l r )

Mp,J ~

P + V
dy \PS\ dy Ps

dy ps dy

(58)

(59)

(60)

(61)

(62)
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replace (40b), (48), (49), (50) and (44c), respectively. In addition, the superfluid
production equation is also required here to define rs,

(A6) r{aPi +papp) +

~ 7J ft —7 ~ Ps-TTrs - Ps^B T7, + I "ff I rs = 0, (63)
Ps

and since ps = 0 on y = 0, 1 + ETJ we seek the solution for which rs = 0 on
y = 0,1. (This follows since p̂  -» 0 quadratically as y -» 0,1.) However, p̂  -» 0
does not imply that the relaxation terms become unbounded near y = 0,1 (see
Johnson [16]): these terms remain uniformly small as e, 8 -> 0.

It is clear that the real difficulty in this problem stems from the behaviour of
the variables through the layer as functions of y. Given a suitable form for
a(p, ps,T) (which is best constructed from the available data for helium II) the
equilibrium state must be determined and this can be used to find all the
necessary information for the solution of the perturbation equations. This proce-
dure, which is mainly numerical, is adopted in Johnson [17], and only the barest
outline will be described here. In fact the underlying structure of the problem is
no different from that discussed in Section 4b. We find that

and then

(64)

with, for example,

dps drs d \
r + a + a T T 0 r r \ r ^ T r s \ o n ^ l . (65)

dy dt T0 pps\dy %y dy2 )

The equation for rs can be written as

so that we can express the solution as

(66)
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where R(y), Q(y) satisfy second order non-homogeneous ordinary differential
equations. Since the continuity equation yields

we can eliminate 0s and T0 between (64), (65) and (66) (using (59) for r) to give
(54) again

9 3 I 9TJ . / 3 2 32

The speeds c,, c2 and coupling constants m axe now, however, rather more
complicated. For example, we find that

C2 = ".(/-dr,)/o'p,<fr , .
2 «',(/,+ (/-a7. I)/2) + /pI( i- /8G"(i) /p I) ' v ;

where

/, = fX[p&T{paT + pT) + Q{X(aT + pdpT) - paPsT]\ dy,

I2=f\p2aT+Qx)dy; X = ~P2<xT(aP, + p6pP,),

which agrees with our previous expression for c2 if the healing terms are ignored
i.e. Q = 0. Two important observations can be made about (68): first, the limit to
incompressibility ( a r - » 0 ) retains the term Q"{\) arising from the superfluid
perturbation, and second we see that c2 depends only on Q (not on R as well; see
(66)). Thus the assumption of an incompressible liquid does not seem to auto-
matically rule out any connection with the phenomenon of healing. Since c2 is
independent of R, this speed is not associated with the temperature perturbation
(T0) through the layer which, of course, we already know. If we revert to /x (rather
than M) then T0 is absent from the analysis altogether and a wave equation
involving c2 only is obtained (see Section 4a). The speed c,, and m, are even more
complicated than c2 and they do depend on both Q and R.

The main aim of such an analysis as this is to produce predictions for the speed
of propagation of the surface wave, which means essentially c2. However, because
the equilibrium state must also be determined in some detail we obtain in
addition, for example, the superfluid density distribution across the layer. Apart
from showing the way in which the zero boundary conditions are accommodated
—and giving estimates for the boundary layer (healing) thickness—the 'onset'
phenomenon can also be investigated. This is the observation that below a critical
thickness (at a given temperature) no wave propagates: the accepted interpreta-
tion is that ps has dropped to zero right across the layer (see Chester and Yang,
[5]). Surprisingly, just this result is found from the numerical analysis even though
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the thickness is as little as about 5A (between one and two atomic layers): a
remarkable consequence of a continuum theory. Full details of all these calcula-
tions are to be found in Johnson [17], but a few results are given in Figures 2 and
3. Three fairly typical superfluid density profiles are shown in Figure 3, and the
variation of c, and c2 with depth appears in Figure 2. The quite dramatic effects
of healing—predominantly the reduction in the value of /0' ps dy—are evident
here where the theoretical curves start to turn over as h -* 0. (Of course, at the
onset thickness, then c, = c2 = 0.) On balance, the inclusion of the healing terms
would seem to produce rather disappointing results: the effect of these terms is, if
anything, too potent.

20-

0.02

Figure 3. The equilibrium superfluid density at T= 1.3"K for three film thicknesses: 10, 15, 20 A.
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d. The vapour model
In the three previous analyses of the problem of third sound we have used

exclusively the simplified surface boundary conditions (24)-(27). It is, however, to
be expected that a model of the vapour coupled with accurate conditions on
y = 1 + ei) should more closely conform with the experimental configuration. To
best emphasize the role of the vapour it is convenient to restrict the calculation so
that it corresponds to that discussed in Section 4a. Thus we shall ignore the
healing terms and retain ju. = 0(1) as e, S -» 0: this latter constraint implies that
we expect to obtain c2 propagation, but not c,. Since we aim to give a little more
detail here we shall quote all the relevant perturbation equations (although some
of them have appeared earlier). The equilibrium state is given by the complete set
(34)-(36), and then for the liquid (see (39)-(42))

3r

r(2ap + paj

(aT+ papT)^t

pM.) + -^—(pnVn + p.V.) = 0
s s' oy s s

V dy '

= 0, p = rp(2ap + papp),

dun 3

app

= 0.

(69)

The vapour, modelled as a Newtonian compressible gas, is described to leading
order by

(A10.ll) i t + ^'

(A12.13) ^ ^ ^

(A14) \{ag

32«n

a/
= 0,

32T,

(70)

(71)

g

« a, ,23 /
= 0. (72)

The boundary conditions at the bottom of the liquid layer are the standard ones
(A8,9), but at the liquid/vapour interface we now have

(AIM.)

(73)
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obtained by eliminating y'/cos 6 and using the fact that i|/ = O(e8), which itself
implies that

(A19) ^- = A 2 ^- . (74)
Pi Pg\

(Note that (A20) is redundant to this order.) Also

(A16.17) /> + T,/5' = aA2(/> + „ * ) , « 2 ^ = «2,aA2^f, (75)

being the appropriate approximations to the stress conditions; equations (73)-(75)
are evaluated on y = 1. The boundary conditions to be applied at the outer edge
of the vapour (i.e. far from the liquid surface) will be discussed in some detail
shortly.

Two points are worthy of note in our particular formulation of the interface
conditions. One we raised earlier and concerns the arbitrariness in the modelling
of j : the required surface condition can be taken as (73), which agrees with our
previous results if we ignore the gas terms (and delete the mass flux in the gas). In
other words, for example, we could eliminate /XT between (44a) and (44d)
provided we did not specifically require the temperature perturbation at the
surface. The second confirms the condition ¥ = 0 in the simplified analysis for,
in the above, we have shown that a consequence of the scalings is just \p — O(eS).
Thus the 'reduced' boundary conditions correlate quite well with our limit of the
exact conditions. Nevertheless some difficulties still remain if we attempt to
eliminate the gas and thereby recover precisely (24)-(27), although much of the
detail certainly is accurate.

If ug -* 0 as y -» oo then the solution of (69b), (70a), (75b) with un = 0 on
y = 0 is simply

"„ = "g = 0,

so that, as before, the normal fluid is stationary and the vapour is 'locked' to it
via the shear stress at the surface. We then obtain for the liquid

with r = p2aTu\t] and dOs/dt = -«',i), and the energy equation yields

P . « 7 - . « n l + « ( | ^ ) i + / o
1 ( « r + P a p r ) | ^ ^ = O. (77)

Here we have used

P = Piw'ii) onj>= 1,
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which follows from (74), (75a) and the equilibrium state, as does the correspond-
ing result for the gas

pg — ~~^Pg\
u>'\(\ o n j = 1.

The gas density is then given by

rz =

where pgotgT = (2dgp + pgagf>p)'\ and for mass conservation

-ddy = m*' (78)

if m is the mass flux at infinity (outwards). It might be expected that mg should
be zero but we shall demonstrate that, for third sound to exist, this cannot be the
case. Similarly from the energy equation (72) we obtain

9T \ i « 9r

f J ( ) £ (79)
where we have accounted for the (inward) flow of entropy at infinity, and
assumed that drg/dy -» 0 as y -> oo. The necessity for the inclusion of the terms
in mg is quite easily explained when we look a little more closely at the process of
evaporation/condensation. A trough of the wave is (relatively) hotter and causes
evaporation there directly away from the surface, while at a peak the reverse
pertains. At distances comparable with h (and y is scaled on h) this process is
limited to the ̂ -direction. Of course, on larger distance scales there is presumably
a continuous transfer of material from troughs to peaks (see Figure 4), so
maintaining the overall conservation laws. The problem for the outer region of
the vapour can be treated separately since to leading order this is uncoupled from
our solution (provided there is no heat transfer from the outer vapour). However,
if we use the boundary conditions

vg = 0, dT/dy = 0

at finite y (> 1), or y -» oo, then mg = 0 and it is easily shown that 9TJ/9X =
9T;/9/ = 0. Thus if the upper boundary is brought too close to the surface of the
helium II it suggests that the wave will be entirely suppressed.

To complete the analysis we eliminate mg between (78) and (79), express vgi in
terms of vnl (from (73)), substitute for the heat transfer terms in (73) and finally
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use (76) for vn]. This yields the wave equation for -q(x, t)

{dgT + PgagpT - agTaa)fg^ ^

) ^ 0, (80)f
O

where /, = dTl — A2ag7-,, lx = <5r, — h2agTao and we have written rg —
(w\-q/&2)fg(y). This is to be compared with equation (46). The limit which now
'removes' the gas is simply 0 -> 0, keeping all the other parameters fixed. If we
interpret lx as / (see (31)) then the agreement with (46) is achieved. Of course, as
it stands, (80) is valid for arbitrary density ratios (a) and the additional
simplifications here seem reasonable since o is about 0.0014 for helium II and
its vapour. However, the limit a -> 0 presumably implies some appropriate
limit in A: from (36a) the natural choice is 0A2 — 1 if we bear in mind that the
pressures are equal (in the absence of healing). With this choice, the limit
a -» 0 gives a wave speed c2 with

which in turn is just

C2 = ( W ' i /P i ) f Psdy,

if the liquid is assumed incompressible (aT -» 0). This latter expression can be
recovered from (74) when the condition |<5 r i / / |« 1 is incorporated: our limit
implies that agTo0/lx = O(o).

Although the outer regions of the vapour have not been analysed, we can make
one or two observations about this problem. The flow here should accommodate
appropriate boundary conditions very far from the surface e. g. ug -» 0, vg -> 0,
dTg/dy -» 0, and permit the mass and entropy re-circulation (appearing in (78),
(79)) as the surface is approached from above. The actual mathematical character
of this problem is quite involved mainly because it depends critically on the
choice of u(y). For example, if « ( / ) incorporates only the van der Waals term
then pg and rg become independent of y d&y -» oo (since u(y) -» 0). On the other
hand if «(>>) is modelled to include gravity then pg, rg — 0 as y -» oo, and this
approach is exponential. Without being specific about w, the scalings associated
with this outer region therefore cannot be determined and so neither can we find
the corresponding governing equations to leading order. Fortunately, as we have
demonstrated, the vapour does not affect the surface wave provided the gas does
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not conduct heat to/from the neighbourhood of the interface. For a small density
ratio (a -» 0) the presence of the gas is still relevant in that lx {i.e. agTao) rather
than /, appears in the final expression for the wave speed (assuming /^ is fixed in
the limit so as to produce essentially (46)).

y=

Figure 4. A schematic representation of the evaporation, condensation and re-circulation in third
sound.

5. Nonlinear theory

a. Burgers equation
The four discussions in Section 4 have been restricted to various forms of the

linearised problem but the full non-dimensional equations enable higher order
terms to be obtained (at least in principle). These terms, regarded as corrections
to the linear theory, are not of any great interest, however they do indicate the
character of the nonlinear problem. In wave propagation it is more usual—and
far more convenient—to construct directly the appropriate far-field equation
which embodies the nonlinearity as well as (presumably) dispersive and/or
dissipative terms. The problem of third sound is no exception, although the
complexity of the equations and the plethora of parameters makes the task far
from straightforward. Nevertheless, if we restrict the limit process to just e, S -» 0
(which is consistent with our philosophy) and choose to discuss a suitably
simplified set of equations the analysis is quite manageable. In order to examine
the general character of the nonlinear problem we shall confine ourselves to a
model of liquid helium which is both incompressible and without healing and
relaxation. Thus in equations (A1)-(A9) we set /? = y = 0, p = constant (r = 0)
and eliminate pap between (A4) and (A5) whence (A5) is then redundant. The
simplified surface conditions (A21)-(A24), with the above assumptions, are also
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employed. At the surface we require, in addition, a kinematic condition for the
superfluid (ps =fc 0 there) and this simply states that the superfluid and normal
fluid share a common motion,

vn-vs = e(un-us)^. (81)

The choice of incompressibility is really a device of expendiency: its relaxation
does not alter the form of the nonlinear equation we obtain. The main effect of
the exclusion of the healing terms, coupled with the incompressibility, is to
replace ps(y) by a constant. Finally, the relaxation terms are always sufficiently
small (as e, 8 -> 0, even for y ¥= 0 fixed) so as not to contribute at all in the
far-field.

Since higher order terms are to be considered we must decide the relative size
of e and 8: for example, in classical water-wave theory the Korteweg-de Vries
equation is relevant when S2 — O(e). Examination of the various equations here
leads us to first consider the obvious special case 8 = O(e), and so we choose
8 = de where d remains bounded (non-zero) as e -> 0. (We shall comment on
other possible choices later.) Further, since the nonlinearity is on the scale 0(e)
the far-field can be described by the variables 5" = et, £ = x — c2t, where, by
virtue of the linear theory, the wave propagates predominantly at the speed c2.
The speed c, does not appear explicitly here as the limit involves /i = 0(1), e -» 0.
All the dependent variables are assumed to have asymptotic expansions in integer
powers of e,

and (see (45)),

%(i, s, y, e) - eo(€, er) + ««,(€, er) + o(e2).
The leading order terms yield the solution

» T0l = , „ / Vot> (82)
t2

for arbitrary 7jo(£, 5") if

which is (47) evaluated for ps = constant (and of course aT is now also constant).
The additional subscript T on T0 denotes that this is the temperature perturba-
tion evaluated at the surface. The results in (82) can be compared with those given
in Section 4a, whence agreement is immediate if the incompressible limit is taken.
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The next order can be obtained in a straightforward manner, although we shall
mention only a few of the intermediate steps. For example, we find that

u=PMy2-2y)

Pl =

with

and

d2un0 (P^ r ) 2 _ n

3 / X ( a , + a 2 ) " °

This latter result is of some note: the structure of vn0 through the layer is
governed by the length scale (in non-dimensional form),

which is the well-known Clark thickness. This thickness is 0(1) (as e -» 0), since
all the parameters are assumed fixed in the limit process, and consequently ' Clark
boundary layers' are not evident (see Roberts and Donnelly, [23]). Using the
surface boundary conditions, which involve Taylor expansions about y = 1, and
eliminating the surface temperature perturbation TU, we obtain the equation for

4-

(83)

where k (> 0) is a complicated constant involving thermodynamic terms (aT etc.)
and /, p, ps, n, K, a,, a2. To offer a simplified version of this equation let us
suppose that / is large (a point we made in Sections 4a and 4c), whence

. (84)

Equation (83)—and its simplified version (84)—is a Burgers equation with a
positive diffusivity (this is clear from (84)) and so solutions for TJ0 either decay or
approach the steady shock (or 'Taylor') profile. Since we are more concerned with
initial profiles which tend to zero as £ -» ± oo (or are possibly oscillatory) we see
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that no such profiles can propagate unchanged. In particular no solitary wave
solution exists nor are soli tons produced from fairly general initial data: this has
been suggested by Huberman [12] and Nakajima et al. [20] on the basis that the
relevant equation is the Korteweg-de Vries equation. The difficulty really stems
from the character of the normal fluid for which the viscous terms dominate to
produce zero normal flow to leading order. As our equation (84) amply
demonstrates, the neglect of the viscous terms (i.e. a,, a2 -» 0) is in fact a singular
limit and any argument which therefore ignores the motion of the normal fluid
altogether will be open to criticism. Of course we have used a special set of
equations and a well-defined limit 8, e -> 0 (with all other parameters fixed) but,
we claim, more sophisticated models (like A1-A24) would not alter the form of
(83) and the limiting process is the only one consistent for small amplitude long
waves. However it is clear that if all the parameters were treated as functions of e
then a great variety of equations could presumably be concocted to replace (83),
by suitable choice of the e-dependence. Although such a procedure is not
legitimate on physical grounds (as we argued in Section 1), it is quite in order as a
mathematical exercise: we shall pursue this line in Section 5b.

The analysis leading to equation (83) was based on the special choice 8 = 0(e)
and it might be expected that other choices would lead to other nonlinear
evolution equations. In a sense this is correct, but the only real alternative is
equation (83) with the nonlinear term absent i.e. the heat conduction equation
(which of course has decaying solutions). To see this we first note that the
transformation

8 8 e , . e 8
* ^ 7 * ' / " * 7 r > vi^lvi (<? = "'•*)> T ^ 5 T ' % - » - % .

is equivalent to replacing 8 by e. Thus there exists a time and distance scale, for
arbitrary 8, on which the Burgers equation is valid. On the other hand we could
argue that, if e = o(8), then with 9"= 8t and £ = 0(1) we obtain the heat
conduction equation which in turn leads to (83) on longer time and distance
scales. Correspondingly, if 8 = o(e), then with 9"= et and £ = 0(1) we obtain the
nonlinear wave equation (i.e. (83) with d = 0), however as the solutions of this
equation steepen there is an appropriate (shorter) length scale for which (83) is
again recovered. It would therefore appear that the Burgers equation is the
generic equation for the evolution of a small amplitude wave in third sound.
b. A Korteweg-de Vries theory

There has been much interest over the last decade or so in 'soliton' theory and
it behoves us to consider the possibility of a Korteweg-de Vries (KdV) equation
occurring here. As we have already seen this can only be accomplished at the
expense of treating some (or all) of the parameters as functions of e. A fairly
cursory inspection of the governing equations (as used in Section 5 a) indicates
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that a term Vom c a n a " s e ^ w e account for the transfer of heat along the layer i.e.
from the term rxx in the energy equation. Since third sound involves a heat
imbalance between peaks and troughs we can anticipate that any heat transfer
along the layer will tend to disperse the wave. To incorporate this effect we use
exactly the governing equations discussed in Section 5a, but for convenience set
T = f/n, and then choose K/\I = 0(e~'), n = 0(1) or larger. We shall also use

The variables are once again
<5=et, i = x — c2t,

and the expansions also follow the same form with the exception that now

n = l

To be precise about our assumption for K we write K/JU. = 911/e and the leading
order is just

fo = ~P

(see (82)) and c2 is the same. At the next order rather more significant modifica-
tions occur resulting in vnovy — 0, whence the Clark thickness is not relevant, but
otherwise the calculation is very similar to the earlier case. The equation for
7)0(£, 5") is now determined as

(l-aT)(2a\

(85)

where k' is a slight variation on k (see (83)) due essentially to the form of vn0 here.
Equation (85) is a Korteweg-de Vries-Burgers equation (which has some relevance
to the undular bore in water-wave theory; see Johnson [14]). However, even
though we have demonstrated that both dissipative and dispersive terms can arise,
our main interest is in the appearance of a KdV equation. If we retain the same
definitions of 5" and £, but consider 8 = o(e) with d2<d\i= 0(1), then the
dissipative term is absent in (85) (equivalently, set A:' = 0). (It is fairly easy to see
that we do indeed obtain (85), with k' = 0, by assuming S = o(e) and K/JLI =
O(eS'2) in the original equations.)

It must be emphasized that our procedure borders on the ad hoc and is very
little more than an exercise in choosing parameter and scaling sizes. As we have
argued earlier, this approach is in contradiction to the nature of the physical
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system. For a given helium II layer the parameters K, /X etc. are fixed and certainly
cannot depend on the amplitude and wavelength of the third sound under
examination. However it is possible to put forward a case, based on the numerical
size of various parameters, that a KdV equation might be relevant if e and 8 are
small and the thermal conductivity, K, is large. If this underlying premise is
accepted then our theory gives, explicitly, the coefficients of the KdV equation in
terms of the thermodynamic and other physical constants. In particular the ratio
(dispersive term)/(time derivative term) is just

-dTw\

l2c2

if we ignore the dependence on e, 8. Further, if we choose the non-dimensionalisa-
tion so that p = c2 = 1 (which we may always do), then this ratio becomes

and dispersion is presumably therefore more important the larger the value of
(86). (Note that since aT < 0, (86) is positive and so conforms with the usual sign
convention (' positive' dispersion) in the KdV equation.)

6. Conclusion

In this article we have developed a number of theories for third sound by
constructing asymptotic solutions to various sets of governing equations. It has
been shown, using this fairly systematic approach, that we can isolate different
aspects of the problem. So, for example, it has been possible to extract the
phenomenon of a wave hierarchy on the one hand and the effects of healing on
the other. However, underlying all the presentations is the unavoidable—and
rather unpalatable—fact that the mathematical problem is quite involved even for
some of the simpler models. Nevertheless it is evident that the formal procedure
we have adopted avoids many of the pitfalls inherent in tackling the problem in a
purely ad hoc manner. In fact, with the equations as presented in the Appendix, it
is now feasible to examine any particular special case of interest. In consequence
it is hoped that the assumptions and error terms will be clearly understood. It is
also possible to formulate the exact problem, with the vapour, and use just the
limit e, 8 -* 0; we have avoided this mainly because of the difficulties encountered
with the healing terms involving the necessity for numerical solutions (see Section
4c). The overall impression is that the two-fluid equations, with healing, relaxa-
tion and a vapour, embody a very large amount of detailed physics which is
worthy of further study. Of course the aim must be to test any of the special
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predictions against the observed behaviour of helium II, but the results to-date
would seem to indicate that a two-fluid continuum model is amazingly successful,
even for very thin layers. Certainly all the strengths and weaknesses of these
various models must be examined with some care before they are rejected as being
unacceptable. For example, we can anticipate that any continuum theory is likely
to fail when the superfluid is as little as one atomic layer in depth. The real
surprise is that the equations appear to remain quite reasonable at about two
atomic layers thickness.

We have chosen to look at some linear and nonlinear theories for third sound,
of varying complexity, mainly to demonstrate the wealth of detail (and correspon-
dence between differing models) that is available. The linear theories by and large
agree with much of the earlier work and indicate how the derivations can be
generalised, or other physical phenomena included. The nonlinear theory devel-
oped in Section 5a, leading to the Burgers equation, shows that dissipative rather
than dispersive effects dominate in the propagation of small amplitude long
waves. However, more or less as a mathematical exercise and to keep pace with
the current vogue, we have obtained a KdV equation by imposing a special
relation between the thermal conductivity, K, and e. It is just possible, under very
special circumstances, that the assumptions required for the KdV equation to
pertain are realisable in practice.

To conclude, and to suggest that the work presented here is no more than a
beginning, let us mention two or three other problems that could be examined as
an extension of the study of third sound. The discussion of the wave hierarchy,
and in particular the variation of c, and c2 with h (Figure 2), suggests that the
whole analysis should be re-considered with c, — c2 small e.g. c, — c2 = O(e). It
is well-known that in this type of problem the nonlinear term (and higher order
dissipative and dispersive terms) become important and might therefore signifi-
cantly alter the character of the propagation on very thin films. As we saw in
Section 4c the problem of the healing terms gives rise to complicated equations
for ps(y) and rs: there is every likelihood that considerable (analytical) headway
can be made if the liquid is assumed to be incompressible, or nearly so. Finally,
also in connection with the role of the superfluid density, the equations can be
used to test the possibility of employing specific models for the Helmholtz free
energy, A(p, ps,T). So for example, particularly if the healing terms are retained,
we could try A = A}(p, T) + A2(p, T)[ps — ps(p, T)]2 where ps is the equilibrium
superfluid density. Actually even this could be simplified further if the liquid were
again assumed to be incompressible (p = constant): then ps = ps(y) by virtue of
the healing terms above. There are undoubtably many other models or assump-
tions that can be tested against the general equations presented here, and
incorporated into a theory of third sound.
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Appendix
The complete set of equations and boundary conditions, written in non-dimen-

sional form, are given here.

Liquid model:

+ [ Pn + £rn) + "S(PS + £rs)] + Jy-[Vn(Pn + ̂ n) + O,(ft + er,)] = 0,

(Al)

9^ ["«««( Pn £rs )]

(drjdx)2
3 drs/dx(dps/dy + edrjdy)

P*y[ Ps +
 £rs

(A2)

dy dy ^P ' dy

(d'pjdy + edrs/dyf

dx ps + ers

Ps + £rs
4

dy2

(A3)

I+SET

eSy

•(ft + ers)
— \v(b + er\\\ = 0 (A4)

+ ep = (p + er)2^- + (A + er)(ft + «r,)|i

(A5)
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un - usf + 8\vn - v,)2]

[34]

dyz

ers)

+

1 e /3«» . , 2 3 o -
2 fi 2 \ 3^ dx

3 ^ 1 9M n—- + —•—- = 0,a2 S2 d2)

— 0 on^ = 0.

Vapour model:

1 î

A 37

(A6)

(A7)

(A8)

(A9)

(A10)

(Ai2)
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(A13)

2 (dv.

1 £ / 3 M 3D \ 2

2 S 2«\ 3 d

Jump conditions (on y = 1 + erj):

1 -= 0. (A14)

(A15)

+ e5cos20
dx

1 1 1
p + er a p + e r j \+ dy 3x 3x '

dx

(A17)
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(A18)

where

p + er

2 |5 + er

k + er

1 1 1
dt [p + er a pg + erg

p + er

p + er\ dx

2(p + er)(ps + ers) [ dy

erg

|

3A:

p + er

~ ~ — I — ~ "5 1" £^"5~ "5"^ ~ £"5~ ~3~̂  + 52-r-^ L
pg + erg [ oy \ ox I ox ox \ dy dx j I

J

j = v\f>.

Simplified boundary conditions (on y — 1 + e?j):

(A19)

(A20)

d
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(A23)

<A 2 4>

In all these surface conditions, (A15-A24), tan0 =
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