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RAY ANALYSIS AND PUNCHING PROBLEMS
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Abstract

The present paper presents a ray analysis for a problem of technical importance in
fragmentation studies. The problem is that of suddenly punching a circular hole in either
isotropic or transversely isotropic plates subjected to a uniaxial tension field. The ray
method, which involves only differentiation, integration, and simple algebra, is shown to
be particularly useful in clarifying the propagation process of the resulting unloading
waves and obtaining the attendant discontinuities of the various quantities involved.
Numerical results obtained from the ray analysis are presented in graphical form and
compared with those obtained by more elaborate schemes.

1. Introduction

Here we consider the linear boundary value problem resulting from the normal
impact of a flat-nosed cylindrical projectile on isotropic and transversely isotropic
plates subjected to a uniform, uniaxial tensile stress. We assume that "plugging"
occurs, that is, that a circular plug of material, of approximately the same
diameter as the projectile is removed from the plate and unloading waves emanate
from the boundary of the circular hole. We also assume that the plate is
unbounded so that reflected waves are not considered. Miklowitz [6] studied the
related simpler problem of an infinite plate stretched so that it is initially in a
state of axially symmetric hydrostatic tension. A numerical solution to the present
problem has been obtained by Haddow and Mioduchowski [2] employing the
method of near characteristics.
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121 Stretched elastic plates 99

The ray method employed here is a formal procedure whereby problems
involving partial differential equations may be transformed to consideration of
ordinary differential equations for determining the various quantities (amplitude
and phase) in a progressing wave expansion of the solution. The major develop-
ments in the theory and application of ray methods have been carried out by J. B.
Keller and his co-workers [4].

2. Formulation of problem

We consider an unbounded isotropic or transversely isotropic thin elastic plate
of thickness h which is in an initial state of uniform, uniaxial tensile stress ay = S,
as shown in Figure 1. The axis of symmetry of the plate is chosen to coincide with

t t t

I I I i I I I

Figure 1. Infinite elastic plate in uniaxial tension field.

the z coordinate axis. In plane polar coordinates, the initial stress has non-zero
components

a r = (S/2)(l - cos20),

o, = (S/2)(l + cos20), (2.1)

Tre = (S/2)sm26,

where ar, aB, and rr$ are the radial, circumferential, and shear components,
respectively, for generalized plane stress.

At t — 0, a flat-nosed cylindrical projectile of radius a » h, travelling with
velocity »v along the z-axis, strikes the plate and begins to punch out a hole of
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100 T. Bryant Moodie, R. J. Tait and D. W. Barclay [31

radius equal to its own. Under the assumptions of the so-called "plugging"
process (see [6] for details) the boundary conditions at the hole may be written as

- < ) , (2.2)

where H{) is the Heaviside step function and t* is the punching time given by

t* = 2h/w. (2.3)

Equation (2.2) represents a linear change, with time, to zero magnitude, of the
stress components at the edge of the hole. As in [6] and [2], results are obtained
for values of /* which are realistic for "plugging" of a metal plate.

For instantaneous plugging of the hole the boundary condition (2.2) becomes

<2-4 )

The governing equations of motion for the plane stress problems being consid-
ered here are

dar 1 3Trg ar — ae _

where p is the density of the plate material, and u and v are the radial and
circumferential components of displacement, respectively. The stress-strain rela-
tions pertinent to our situation are

oe = fier + aee, (2.6)

where, for the case of transverse isotropy,

« = (C, ,C33 - C,2
3)/C33, fi = {Cl2C33 - C,2

3)/C33, (2.7)

where CtJ axe the elastic parameters and for the isotropic case

— v

where E is Young's modulus and v is Poisson's ratio. For the isotropic case we
have that
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14 ] Stretched elastic plates 101

where \i is the shear modulus. The components of strain, er, eg, and ere, (in terms
of the displacements u and v) when combined with (2.6) yield

, 8t>

It is convenient to solve the problem with the initial state of stress removed and
then superimpose the initial state on the solution obtained. Consequently, we
replace (2.2) by

where

/(0 = {[1 - (t/t*)H(t)]H(t* - t) - 1} (2.11)

(for instantaneous p l u g g i n g / ( / ) = -H(t)) and we then have the quiescent initial
condit ions

The boundary value problem to be solved consists of equations (2.5) together with
(2.10) and (2.12).

3. A decomposition

We shall separate variables by expressing the stress and displacement compo-
nents in the forms

o,(r,8,t) = o?\r,t)+ o?\r, t)cos26,

ae(r, 0, t) = o?\r, t) + of\r, t) cos20,

(3-D
u(r,0,t) = uO)(r,t) + u(2)(r,t) cos20,

v(r,6,t)= v(2)(r,t)sin20.
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102 T. Bryant Moodie, R. J. Tait and D. W. Barclay [s ]

Substituting from (3.1) into (2.9), (2.10), and (2.12) and introducing the potential
functions $ and ¥ defined by

3r ' r 1 '

our originai probiem then decomposes into the simultaneous solution of

a2M(1) 1 a«(1)

g r
2 r dr

1

r'

r2

r2

Mc) -

a ^ 2 '

3r2 '

p
a

32u( l )

a^2 '

together with the initial conditions

= - | ^ ( r , 0 ) = - |^ ( r ,0) = 0,

and the boundary conditions

where

a,

(3-2)

(3-3)

(3.4)

(3-5)

(3.6)

(3.7)

(3.8)
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16) Stretched elastic plates 103

and C, and C2 are the P- and 5-type wave speeds defined by

C? = f, C? = ̂ , (Cl>C2). (3.9)

Under our present decomposition there are two problems to be solved. Problem
I consists of determining M(I) from the first equation in (3.3) together with the
quiescent conditions of (3.4) and the first boundary condition in (3.5). Problem II
consists of finding $ and ¥ satisfying the second and third equations of (3.3)
together with the initial and boundary conditions of (3.4) and (3.5). When these
two problems have been solved we employ their solutions to find ar

(l), a(l)#
(/ = 1,2), and rffi which in turn (through (3.1)) leads us to expressions for ar, ae,
and Trf for the dynamic part of the problem. To these we then add the initial state
of stress to obtain the complete solution.

It will be convenient in what follows to deal with nondimensional quantities.
To this end we introduce the scheme

K.^.Trf) = 2(or,o$,Trt))/(a - ft),

(u,v) = (u,v)/a, ($,¥) = ($,*)/a2,

r=r/a, (/, i*) = C2(t, t*)/a, (3.10)

C, = C,/C2 = (2o/(o - 0))1/2, £ ,= 1,5 = 25/(a - jB),

a=l, y = 2fi/(a-p).

Henceforth we use these nondimensional quantities but, for convenience, omit the
bars. In nondimensional form we have

Problem I:

^ ^ ^ = i ^ , ,>l.,>0. (3.11)
2 ci 9/2c 9 /

, 0 ) = 0 , r>\, (3.12)

/>0, (3.13)

and

Problem II:
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104 T. Bryant Moodie, R. J. Tait and D. W. Barclay (7 ]

* ( r , 0 ) = * ( r , 0 ) = - ^ ( r , 0 ) = - ^ ( r , 0 ) = 0 , r > l , (3.16)

0(1,/) - 2^(1, t) + 8*(1, *) + 4^(1, /) - 4*(1, 0
c (3-17)
f ( 0

= - * / ( / ) / > o (318)

4. Solutions of Problems I and II

Problem I: We assume that the solution of I has the asymptotic form

« ( 1 ) ( r , 0 ~ ! Un(r)Fn[t-P(r)], (4.1)
n=0

where the Fn's are related by

F'H=FH_l, n = l , 2 , . . . . (4.2)

The prime in (4.2) denotes differentiation with respect to the entire argument
t — P and (4.2) enables us to relate all of the Fn's to FQ (the waveform) by
successive integrations. The function P(r) is called the phase function and Un(r)
are amplitude functions. In (4.1), we assume that Un = 0 for n < 0.

We consider the wave given by (4.1) and whose propagation is governed by
(3.11). Substituting (4.1) into (3.11) and employing (4.2) in the resulting expres-
sion, we obtain

U" , - 1PV . + (P')2U - P"U , + - { / ' ,

--PV , - — U 2-—U=0. (4.3)
r " ' r2 2 C\

where the primes refer to differentiation with respect to r. Setting n = 0 in (4.3)
and assuming, without loss of generality, that Uo ¥= 0, yields

_ J_
~ C}'
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181 Stretched elastic plates 105

Equation (4.4) is the well-known eikonal equation of geometrical optics. Integrat-
ing this ordinary differential equation along a ray associated with P-type waves
gives

r - r — 1
, where/* = (4.5)

where the ± signs are associated with outgoing and incoming waves, respectively.
This equation enables us to determine the phase at any point on a ray in terms of
its value at r = 1. The value at r = 1 will be determined from the boundary
condition.

The transport equation for Un, derived from (4.3) with the aid of (4.4), is

I / l C + ( ^ l / ) ' > 0 (4.6)

The general solution of this first-order, linear ordinary differential equation is

where Un = UH(l).

From (4.7), it may be shown by induction that
n

JJ (r\ — »-~'/2 ^ -. ~-j

y=o J"

(4.7)

(4-8)

where the coefficients ujn will be determined for outgoing waves. Substituting
(4.8) into (4.7), taking the plus sign for outgoing waves, and simplying, gives

K(j)uJ_]n_l

Uo

if 1 < j < n,

ify = 0, n > 0,

ify = n = 0,
if y < 0 ory > n,

(4.9)

where

(4.10)

The unknown quantities in our solution, that is, P, Un, and Fn are now
determined from the boundary conditions (3.13). Inserting (4.1) into (3.13) and
employing (4.2) in the resulting expression, we obtain

[C,2f/n'_, - - P ) ~ | (4.11)
n = 0
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106 T. Bryant Moodie, R. J. Tait and D. W. Barclay

We thus choose

[70 = 0, Fo =/( / ) ,
t7, = -S/2C,, P = 0,

[91

(4-12)

Combining (4.9) and (4.12) we have explicitly that

0
-S/2C,

7 = 1
0

if l <./</!,

ify = n = 0,
if/ = O,it = l,

iij <QoTj>n.

From (4.12) and (4.2) we find from Duhamel's theorem that

H(t) 9 /•*. .„ , .
F = ^ r 7 i ( / - T ) / ( T ) ^

For instantaneous plugging of the hole,/(/) = —H(t), and

Fn=-H{t)t"/n\.

For a punching time /* > 0, we employ f(t) from (2.11) in (4.14) to obtain

(4-13)

(4.14)

(4.15)

1
t*(n+ 1)!

n + 1)!

[(t - t*)n+i - t"+i],

, 0 <t<t*,

to,

(4-16)

Writing (4.16) with the aid of Heaviside functions gives

(4.17)

The complete expansion of the solution to Problem I is then given by

«*<•>(/•, /) ~ r-V* I Fn[t - (r - 1)/C,] 1 uJnr-J, (4.18)
n = 0

where the uJn are given recursively by (4.13) and the Fn are given by (4.15) for
instantaneous plugging and by (4.16) or (4.17) for plugging time /* > 0.
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1101 Stretched elastic plates 107

Problem II: Again, as in Problem I, we seek progressing wave solutions to this
initial/boundary value problem. These solutions are assumed to have the asymp-
totic forms

*(r,t)~ 2 4>H(r)Fn[t - Pt(r)], (4.19)

(4.20)

where the Fn's are related by (4.2) and we assume that
44, = 0, ^ = 0, « < 0 .

Substituting from (4.19) and (4.20) into (3.14) and (3.15) and employing argu-
ments similar to those in the treatment of Problem I we obtain the eikonal and
transport equations, that is,

, (P;)2=I,

0-

(4.22)

(4-23)

The solutions of (4.21)-(4.23) are

P(r)=P ±/" r—= P ± —

= P+ ±fdr = P+±(r-l) where P+ =

(4.24)

From the expressions for <j>n, ipn in (4.24), it can be shown by induction that

2 2 V 7 . ">0>
y=o

(4-25)
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108 T. Bryant Moodie, R. J. Tait and D. W. Barclay H i ]

where the coefficients <j>Jn and \f/jn will be determined for outgoing waves. Subsitut-
ing <}>„ and \pn from (4.25) into the integrated forms of the transport equations in
(4.24) and simplying gives

1=0

if; = n = 0,
if ; < 0 or; > n,

if 1 <;'=£«,

if; = 0, n > 0,

if; = n = 0,
if; < 0 or; > n,

(4.26)

(4.27)

where

(4.28)

(4.29)

The unknown quantities in our solution, namely, P^, P^, <j>n, \pn, and Fn must
now be determined from the boundary conditions (3.17) and (3.18). Inserting the
expansions for $ and ¥ from (4.19) and (4.20) into (3.17) and (3.18) gives

2 [^-2(' -
(4.30)

- 4/(0
and

oo

n = 0
(4-31)

f
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1121 Stretched elastic plates 109

The conditions (4.30) and (4.31) are simultaneously satisfied by taking

*,=0, 6=0, F0=f(t),

(4.32)

Combining these initial conditions with the first two equations in (4.24) gives (for
outgoing waves)

p*(r)=r-l.1 / C lJ (4'33)

The complete expansions for $ and ^ are given by

*(/•, t) ~ r- ' / 2 2 Fn[t - (r - 1)/C,] 2 +jHr-J, (4.34)
n = 0 j=\

* ( r , 0 ~ r"'/2 2 K[t ~(r- 1)] 2 V ' ' ( 4 3 5 )
n=0 7=1

where ^ n and ^ n are given recursively by (4.26) and (4.27) in combination with
the boundary conditions (4.32). For instantaneous plugging the Fn are given by
(4.15) whereas for punching time /* > 0 they are given by (4.16) or (4.17).

5. Composing the complete solution

In this section we describe how to construct the complete solution for the stress
fields. As well, we point out certain information which the formal series reveal
about the wave character of the solution.

Employing (3.2) in the relationships among the stress and displacement compo-
nents, we obtain

^ ! (5.1)

(5.2)
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110 T. Bryant Moodie, R. J. Tait and D. W. Barclay [13]

(5.4)
a 9/2 r \ r

m 3 2 * 2 /4 _ 3* 3$ 2 ^ \ , ,
3/2 r \ r 3r dr r I v '

In obtaining the last three formulas we have made use of (3.14) and (3.15), the
differential equations for O and ¥ . Combining (5.1)—(5.5) with the formal series
solutions to Problems I and II using the relation (4.2), we obtain series expansions
for ar

(1), a9
(1), ar

(2), aj2), and T£>. Then using these results in (3.1) we find the
solutions for the stesses or(r, 0, t), oe(r, 8, t) and rr$(r, 0, t). Finally, to these we
must add the initial stresses (2.1).

On examining the formal solutions obtained by the ray method we see that M(1)

and $ are zero for t < (r — 1)/C, while ¥ is zero for t < r — I. Thus a
wave-front leaves the opening at t = 0 ahead of which the stresses have their
initial static values. This leading wavefront propagates radially and, since C, > C2

= 1, has speed C,.
In addition the form of the series solutions facilitate locating and determining

the magnitude of jumps in the stresses and their derivatives. In particular, we find
that ar, ae and Tr$ are continuous, but have finite discontinuities in their time
derivatives and /--derivatives. Graphically the discontinuities in the first deriva-
tives appear as creases in the solution surfaces. There are four distinct lines in the
rf-plane along which these creases occur. Hence the present problem has four
recognizable wavefronts propagating in the radial direction. Two of these leave
the opening with speeds C, and C2 at t = 0, one of which is the leading wavefront
mentioned above. The remaining two leave the opening at t = t* when the
punching is complete, and also propagate with speeds C, and C2.

The location and magnitude of the discontinuities in the time derivative of the
stress components are given in Table 1. The first column in the table gives the
equation of the wavefront on which a discontinuity occurs while the remaining
columns give the magnitude of each of the discontinuities. The square brackets
have the significance

[A]=A2-Al

where A2 and At are the values of A ahead of and behind the corresponding
wavefront. The jump in the /--derivative of a component of stress differs from the
corresponding jumps in the time derivative by a multiplicative factor. For a
wavefront moving with speed C, the factor is — C, and for a front moving with
speed C2 = 1, the factor is - 1 .
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1141 Stretched elastic plates 111

TABLE 1

Location and magnitude of jumps in time derivative of stress components

Wavefronts

c,
/ — r 1

' ' ' C,

/ = /* + r -

1)

1

It*

2t

S
,.</

5

\dor

[at

-(1

0

TO"

0

cos 20)

- cos 26)

It*

2t

sp
r i

Sfi

-(1 -

0

u
0

]
- cos 20)

-cos 20)

2t*i

2t*

% \

0

* • ->/)

0

r > / 2 - m -

6. Numerical results

Numerical results are obtained from the formal series solutions. The various
recurrence formulas generated by the ray method, although complicated, are in a
form suitable for coding in a programming language. Since the computer program
which summed the series required very little computing time, we made several
runs, each time increasing the number of terms in the series. The output of each
run, for a particular component of stress, was in agreement for a certain clearly
defined range of the independent variables r and t. This procedure indicated that
the series solutions are convergent and it was clear for what values of r and t our
numerical results are valid.

All results, presented graphically in Figures 2 to 7, are for the isotropic case
with Poisson's ratio v — 0.3. The curves in Figures 2 and 3 show the variation of
ae with nondimensional time for ;* = 0.25, 0.5 and 1.0. The curves shown in the
remaining figures are for /* = 1.0, the realistic value for plugging of an aluminium
plate, 0.5 mm thick, by an 11 mm diameter projectile, with impact speed 700 ms"1

(see [2]).
The discontinuities in the first derivative of the various components of stress

appear as corners on our graphs. According to Table 1, all our graphs will have
corners except those for 6 — 0. Certain corners are not visible in some of the
figures due to the magnitude of the slopes involved and the scale of the graphs.
Thus for example, the curves in Figure 3 have corners at t = t*, but only those for
/* = 0.25, 0.5 are clearly visible, while the one for /* = 1.0 is not.
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7. Summary

In this paper we have obtained plane stress solutions to the two-dimensional
problem of elastic waves propagating from a suddenly punched hole in a
stretched elastic plate. These solutions were obtained by a ray analysis which is
direct and involves only ordinary differentiation, integration and algebra. A clear
picture of the propagation process was obtained and we were able to identify four
wavefronts which were not discovered by the more elaborate numerical scheme
used in [2].

The ray method has been applied to problems of wave propagation in solids by
many authors [1], [3], [5], [7], (see [4] for a more extensive list of references). As
was pointed out by Karal and Keller [3], the formal series solutions obtained by
this method are not necessarily convergent. The present paper appears to be one
of the first to use the full series to obtain numerical results and in the process
shed some light on the convergence of the series. Because of the complicated
nature of the recurrence formulas (4.13), (4.26) and (4.27), a rigorous analysis of
the convergence of (4.1), (4.19) and (4.20) is difficult and has not been carried
out. For practical purposes this is not necessary. By using an increasing number
of terms, it is apparent that each series is convergent for a certain range of the
independent variable. The numerical results obtained from these convergent series
are valid for important time intervals after the leading wavefront has passed a
station in the plate. These results are in excellent agreement with those presented
in [2].
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