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In this work, we employ well-established relations for compressible turbulent mean flows,
including the velocity transformation and algebraic temperature–velocity (TV) relation,
to systematically improve the algebraic Baldwin–Lomax (BL) wall model for high-speed
zero-pressure-gradient air boundary layers. Any new functions or coefficients fitted by
ourselves are avoided. Twelve published direct numerical simulation (DNS) datasets are
employed for a priori inspiration and a posteriori examination, with Mach numbers up
to 14 under adiabatic, cold and heated walls. The baseline BL model is the widely used
one with semilocal scalings. Three targeted modifications are made. First, we employ a
total-stress-based transformation (Griffin et al., Proc. Natl Acad. Sci. USA, vol. 118, issue
34, 2021, e2111144118) to the inner-layer eddy viscosity for improved scaling up to the
logarithmic region. Second, we utilize the van Driest transformation in the outer layer
based on the compressible defect velocity scaling. Third, considering the difficulty in
modelling the rapidly varying and singular turbulent Prandtl number near the temperature
peak in cold-wall cases, we design a two-layer strategy and use the TV relation to formulate
the inner-layer temperature. Numerical results prove that the modifications take effect as
designed. The prediction accuracy for mean streamwise velocity is notably improved for
diabatic cases, especially in the logarithmic region. Moreover, a significant improvement
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in mean temperature is realized for both adiabatic and diabatic cases. The mean relative
errors of temperature to DNS for all cases are down to 0.4 % in the logarithmic wall-normal
coordinate and 3.4 % in the outer coordinate, around one-third of those in the baseline
model.

Key words: turbulent boundary layers, turbulence theory, turbulence modelling

1. Introduction

In high-speed flows, turbulent boundary layers are known to severely affect the surface
drag and heat transfer, so accurate predictive models are strongly desired for reliable
vehicle design and flow control (Bradshaw 1977). Among various simulation strategies,
the Reynolds-averaged Navier–Stokes (RANS) models are long established yet still
prevailing, especially for engineering problems, owing to their simplicity, efficiency
and robustness (Wilcox 2006). Compared with the incompressible counterpart, however,
compressible RANS models have weaker theoretical foundations, and suffer from
the complications brought about by intrinsic compressibility, heat transfer, shocks,
high-enthalpy effects and other factors (Gatski & Bonnet 2013; Cheng et al. 2024).

The RANS models are usually divided into four categories by the number of additional
equations introduced: the algebraic (zero-equation), one-equation, two-equation and
stress-transport models. The algebraic models are the simplest ones, which directly model
the eddy viscosity μt (and eddy diffusivity κt) using theoretical/empirical algebraic
relations. Two standout models are the Cebeci–Smith (CS) model (Cebeci & Smith
1974) and the Baldwin–Lomax (BL) model (Baldwin & Lomax 1978), both of which
formulate μt into a two-layer structure. The inner layer part is based on the mixing
length model with a viscous damping correction devised by van Driest (1956). The
outer portion is built on the defect layer scaling by Clauser (1956) and the intermittent
function by Klebanoff (1955). In incompressible applications, the algebraic models can
faithfully reproduce mean velocity profiles and skin friction for attached boundary layers,
though they become unreliable when subject to strong pressure gradient and separation
(Wilcox 2006). Furthermore, the CS and BL models can attain comparable accuracy
levels. The latter is more commonly considered for complex flows since it avoids
directly using the boundary layer thickness. When extended to compressible flows, no
special compressibility correction was considered in early investigations, observing the
insensitivity of classical mixing length to the Mach number Ma (Maise & McDonald
1968; Baldwin & Lomax 1978). To close the problem, κt in the energy equation is related
to μt through a prescribed turbulent Prandtl number Prt. The resulting compressible
models can reproduce well the mean flows in high-speed adiabatic flows with minor
pressure gradients, but they deteriorate under diabatic walls (with surface heat transfer;
(Maise & McDonald 1968; Shang, Hankey & Dwoyer 1973; York & Knight 1985)).
As one improvement, the wall viscous unit for the inner layer scaling can be replaced
by the semilocal one (though not in this terminology originally) based upon local
density and viscosity (Gupta et al. 1990; Cheatwood & Thompson 1993). Dilley &
McClinton (2001) showed that this modification in BL largely improved the mean flows
in hypersonic cold-wall cases, and the predicted surface friction and heat flux agreed well
with experiments. Further improvements for complex three-dimensional boundary layers
were contributed by, for example, Degani & Schiff (1983) and Panaras (1997), among
others. Consequently, the BL models are extensively adopted in high-speed applications

987 A7-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

38
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.383


An improved Baldwin–Lomax wall model for high-speed flows

and numerous commercial solvers (Cheatwood & Thompson 1993; Srinivasan, Bittner &
Bobskill 1993; Rumsey, Biedron & Thomas 1997; Townend et al. 1999; Candler et al.
2015).

On the other hand, recently accumulated direct numerical simulation (DNS) data
for high-speed canonical flows provides a chance to reassess the behaviour of the BL
model. As analysed by Hendrickson et al. (2023), and as will be shown below, even for
zero-pressure-gradient (ZPG) flat-plate boundary layers, there are clear disparities in mean
profiles between BL and DNS under diabatic conditions, especially for the temperature.
Also, there is room for improvement in adiabatic flows. Therefore, the objective of this
work is to improve the velocity and temperature prediction by the BL model for canonical
supersonic/hypersonic boundary layers, based on recently advanced knowledge of mean
flow properties.

The established relations of mean velocity and temperature in compressible
wall-bounded turbulence are briefly reviewed, to set the grounds for later discussions.
First, the hypothesis of Morkovin (1962) earns wide support, which states that at moderate
free stream Mach numbers (Ma∞ � 5), the dilatation effect is small, so any differences
from incompressible turbulence can be accounted for by variations of mean properties
(Coleman, Kim & Moser 1995; Pirozzoli, Grasso & Gatski 2004; Duan, Beekman &
Martín 2010; Lagha et al. 2011). As a result, velocity transformation can be built using only
mean flow variables, expecting that the transformed streamwise velocity reproduces the
incompressible law of the wall and outer-layer scalings. More attention has been paid to the
former, i.e. the compressible law of the wall. Pioneering work is the transformation by van
Driest (1951) (denoted as VD hereinafter) built upon the mixing length assumption. This
widely used transformation performs well for high-speed adiabatic flows, but deteriorates
in diabatic conditions. Trettel & Larsson (2016) designed a transformation based on
viscous stress and semilocal units (denoted as TL), which is particularly accurate for
pipe and channel flows, but can also become less accurate in diabatic boundary layers
(logarithmic region). Recently, Griffin, Fu & Moin (2021) proposed a total-stress-based
transformation (denoted as GFM), combining the advantages of the near-wall relation
by TL and a modified version of the equilibrium arguments of Zhang et al. (2012). The
GFM transformation performs remarkably well in a wide range of air flows, particularly
diabatic flows, hence successfully collapsing the channel, pipe and boundary layer cases
within and below the logarithmic region. Very recently, Hasan et al. (2023b) proposed
a transformation (termed HLPP) by introducing a correction to the TL transformation to
interpret intrinsic compressibility effects (hence questioning the validity of Morkovin’s
hypothesis), so the logarithmic scaling in diabatic flows can be reasonably formulated.
Besides, the non-air-like and supercritical flow cases can be accounted for, which can
be a challenge for the GFM transformation (Bai, Griffin & Fu 2022). On the other
hand, fewer transformations are available for the outer-layer velocity, presumably due
to the greater reliance on flow configurations. Maise & McDonald (1968) demonstrated
that a compressible law of the wake was attainable for adiabatic boundary layers (Ma∞
from 1.5 to 5) using the VD transformation. Duan, Beekman & Martín (2011) (and also
Guarini et al. (2000), Pirozzoli et al. (2004) and Wenzel et al. (2018)) suggest that the
VD-transformed velocities collapse in the outer layer for adiabatic boundary layers with
Ma∞ from 0 to 12, provided comparable Reδ2 (defined later). Pirozzoli & Bernardini
(2011) also noted that for supersonic adiabatic boundary layers, the VD-transformed defect
velocity matched the incompressible counterpart well.

In terms of temperature, the classical Crocco–Busemann relation (e.g. White 2006)
shows that, after assuming unity Prandtl numbers (Pr), the mean temperature is almost
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a quadratic function of the mean streamwise velocity. A less restrictive relation was
proposed by Walz (1969) to incorporate non-unity Pr effects by introducing the recovery
temperature. Although this relation holds in high-speed adiabatic flows, the accuracy
degrades severely in case of significant surface heat transfer. A crucial modification was
contributed by Duan & Martín (2011), who introduced a semiempirical quadratic function
of the velocity. The resulting quadratic temperature–velocity (TV) relation was shown to
be highly accurate for a wide range of boundary layer, channel and pipe flows (Zhang,
Duan & Choudhari 2018; Modesti & Pirozzoli 2019; Fu et al. 2021; Griffin, Fu & Moin
2023), even with high-enthalpy effects (using enthalpy instead; Passiatore et al. 2022).
Subsequently, Zhang et al. (2014) recast the above relation in terms of a generalized
Reynolds analogy, where the Reynolds analogy factor is present for further physical
interpretations of the closure constant.

The success of these mean flow relations makes it possible to recover the mean
velocity and temperature by solving an inverse problem, which helps improve turbulence
modelling. Pioneering work is the generalized velocity derived by van Driest (1951)
through combining the VD transformation and the quadratic TV relation throughout the
boundary layer. This framework enables efficient computation of the mean profiles and
skin friction (Huang, Bradshaw & Coakley 1993; Kumar & Larsson 2022). Owing to the
continuously increased accuracy of these mean flow relations, more and more attention
has been paid to the modelling aspect in recent years. For channel and pipe flows, the
combination of the velocity transformation and TV relation leads to ordinary differential
equations (ODEs) for the mean flow, which achieves a relatively high accuracy (Chen
et al. 2023a; Song, Zhang & Xia 2023). For ZPG boundary layers, Hasan et al. (2023a)
supplemented a Re-dependent function for Coles’ wake parameter (Coles 1956). The ODE
set for the inverse problem is thus formulated, and the results are in close agreement
with DNS. In a more general set-up, Hendrickson, Subbareddy & Candler (2022) and
Hendrickson et al. (2023) used velocity transformations to improve the inner-layer scaling
of the BL model, also for ZPG boundary layers. Although the mean profile prediction is
improved for the two cases displayed, there are still noticeable deviations in temperature
from DNS for cold-wall cases. More encouragingly, the established relations can help
improve the wall-modelled large-eddy simulations (WMLES). In a very recent work,
Griffin et al. (2023) proposed a near-wall model using the GFM transformation and the TV
relation, with the outer boundary conditions provided by large-eddy simulations (LES).
This model was shown to be significantly more accurate than the classical ODE wall model
for a wide range of canonical cases examined. Hendrickson et al. (2023) made similar
explorations, while the temperature prediction was less accurate for cold-wall boundary
layers when velocity transformations alone were taken into account.

As aforementioned, we aim to improve the compressible BL model for canonical
boundary layers using the established relations for mean velocity and temperature.
To make the improvement clean and solid, we strictly adhere to the following three
principles.

(i) First, the BL model for incompressible flows is not altered. The compressible version
is modified to achieve the same accuracy level as the incompressible one.

(ii) Second, only well-established relations are used, which have been widely verified.
We avoid introducing any new functions or coefficients fitted by ourselves.

(iii) Last, the modification is made as simple as feasible.

For a priori inspiration and a posteriori examination, wide published DNS databases for
ZPG boundary layers are employed containing 12 cases from different sources, with Ma∞
987 A7-4
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Figure 1. Schematic of the compressible flat-plate ZPG boundary layers.

ranging from 2 to 14 under adiabatic, cold and heated wall conditions. Of particular
focus are the cold-wall cases, which are ubiquitous and even unavoidable in practical
hypersonic applications. The remaining parts are organized as follows. Section 2 describes
the governing equations, DNS database and the baseline BL model. Section 3 presents how
established relations are implemented in the wall model, and provides a priori examination
using the DNS data. The resulting modified BL model is examined in § 4 for all the cases,
and the work is summarized in § 5. Although only ZPG boundary layers are considered, we
believe that the present framework is promising. The applications, limitations and future
steps are discussed in § 5.1.

2. Problem formulations and datasets

2.1. Governing equations and DNS datasets
The ZPG turbulent boundary layers are considered, as illustrated in figure 1. Assuming a
calorically perfect gas, the zero-equation RANS equations are written as

∂ρ̄

∂t
+ ∇ · (ρ̄ũ) = 0, (2.1a)

ρ̄

(
∂ũ
∂t

+ ũ · ∇ũ
)

= −∇p̄ + ∇ · [
(μ̃ + μt)

(∇ũ + ∇ũT)] − 2
3
∇ [

(μ̃ + μt)∇ · ũ
]
,

(2.1b)

ρ̄cp

(
∂T̃
∂t

+ ũ · ∇T̃
)

−
(

∂ p̄
∂t

+ ũ · ∇p̄
)

= (μ̃ + μt)
[
∇ũ :

(∇ũ + ∇ũT) − 2
3

(∇ · ũ)2
]

+ ∇ · [(κ̃ + κt) ∇T̃], (2.1c)

where ρ, u, T and p = ρRT are the fluid’s density, velocity, temperature and pressure; R
and cp are the gas constant and isobaric specific heat; μ and κ are molecular viscosity
and thermal conductivity. The Reynolds and Favre averages are denoted as φ̄ and φ̃

(fluctuations as φ′ and φ′′), respectively. The quantities μt and κt model the Reynolds stress
−ρ̄ũ′′u′′ and turbulent heat flux −ρ̄cp ˜u′′T ′′, whose formulations are described in § 2.3.
The wall is set no-slip and isothermal or adiabatic. The variables in wall viscous units
are expressed with a superscript +, as x+ = x/δν , ρ̄+ = ρ̄/ρw, ũ+ = ũ/uτ and μ̃+ =
μ̃/μw, where w represents the wall variables, δν = μw/(ρwuτ ) is the viscous length unit,
uτ = (τw/ρw)1/2 is the friction velocity, τw is the wall shear. Correspondingly, the friction
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No. Source Notation Ma∞ Tw/Tr Reθ Reτ

0-(1–5) SO M0R14–R41 0 — 1420–4060 492–1272
1-(1–4) PB M2Tw10R13–R39 2 1 2080–6040 447–1113
2-(1–2) PB M3Tw10R14–R18 3 1 3310–4340 403–502
3-(1–2) PB M4Tw10R17–R21 4 1 4710–5910 398–505
4 ZDC M2p5Tw10R17 2.50 1 2835 510
5 VBL M2Tw05R13 2.28 0.5 1250 512
6-(1–2) VBL M5Tw08R13–R23 5 0.8 3770–6980 389–685
7 ZDC M6Tw025R11 5.84 0.25 2121 450
8 ZDC M6Tw076R17 5.86 0.76 9455 453
9 ZDC M8Tw048R20 7.87 0.48 9714 480
10 ZDC M14Tw018R24 13.64 0.18 14 408 646
11 VBL M2Tw19R3 2.28 1.9 870 100
12 VBL M5Tw19R7 5 1.9 3900 176

Table 1. Parameters for the DNS datasets, where Tr is the recovery temperature (Tw = Tr for adiabatic cases).
The cases with multiple streamwise locations are labelled in the brackets of the case numbers. The abbreviations
for data sources are used hereinafter, as SO for Schlatter & Örlü (2010), PB for Pirozzoli & Bernardini (2011,
2013), ZDC for Zhang et al. (2018) and VBL for Volpiani et al. (2018, 2020). The notation expresses Ma∞,
Tw/Tr and Reδ2 (divided by 100).

Reynolds number is Reτ = δ99/δv with δ99 the nominal thickness based on streamwise
velocity. Furthermore, semilocal units are adopted, with a superscript ∗ as u∗

τ = (τw/ρ̄)1/2,
δ∗
ν = μ̃/(ρ̄u∗

τ ), so y∗ = y/δ∗
v . Most recent transformations are based on y∗, so y∗ as the

inner scaling can be used to classify different layers, in analogy to y+ in incompressible
flows. Besides, two commonly used Reynolds numbers are Reθ = ρ∞U∞θ/μ∞ and
Reδ2 = ρ∞U∞θ/μw (Fernholz & Finley 1980), where θ is the momentum thickness and
∞ denotes free stream variables.

To comprehensively examine the modified BL model, wide elaborated DNS databases
are employed for ZPG boundary layers from different sources, with Ma∞ from 2 to
14 under adiabatic, cold and heated walls. The published data are from Pirozzoli &
Bernardini (2011, 2013), Zhang et al. (2018) and Volpiani, Bernardini & Larsson (2018,
2020), as summarized in table 1. Though Ma∞ = 14 is reached, the high-enthalpy effects
(e.g. Chen et al. 2022b) are not considered following the reference set-up. Besides, the
incompressible data from Schlatter & Örlü (2010) are included, as a reference for the
incompressible BL model. The viscous parameters in each case are computed according
to the references. The viscosity is from Sutherland’s law, the power law or the formula for
N2 (the working fluid in case ZDC-M8Tw048R20). Constant Pr = cpμ/κ are adopted for
the thermal conductivity.

Notably, (2.1) is expressed using the Favre-averaged variables (except for ρ̄) to form
a closed system (Gatski & Bonnet 2013). The difference between the Reynolds- and
Favre-averaged results cannot be accounted for using the algebraic RANS models, so we
simply use the Favre averages throughout for consistency of notation, though the DNS
data mostly adopt the Reynolds averages. This simplification will not affect the main
conclusions of this work because even for the M14Tw018R24 case of the highest Ma, there
are only slight differences between the DNS statistics from these two averages (Zhang et al.
2018).
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2.2. Solution of boundary layer equations
Based on the hypersonic interaction parameter (White 2006), the effects of
shock-boundary-layer interaction at the leading edge are evaluated to be minor on the
downstream locations for the cases in table 1. Therefore, the boundary layer equations can
be used for efficient computation of the mean flow, in the absence of impinging shock and
separation. From (2.1), the boundary layer equations are written as (e.g. White 2006)

∂(ρ̄Ũ)

∂x
+ ∂(ρ̄Ṽ)

∂y
= 0,

ρ̄

(
Ũ

∂Ũ
∂x

+ Ṽ
∂Ũ
∂y

)
= −dPe

dx
+ ∂

∂y

[
(μ̃ + μt)

∂Ũ
∂y

]
,

ρ̄cp

(
Ũ

∂T̃
∂x

+ Ṽ
∂T̃
∂y

)
= Ũ

dPe

dx
+ (μ̃ + μt)

(
∂Ũ
∂y

)2

+ ∂

∂y

[
(κ̃ + κt)

∂T̃
∂y

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)

where Ũ and Ṽ are the streamwise (x) and wall-normal (y) velocities. The pressure is
assumed invariant along the y-direction (Pe), so ρ̄ = ρeTe/T̃ is satisfied, where e denotes
values at the boundary layer edge. More general formulations accounting for geometrical
curvature, far-field shock and cross-flow can be found in Degani & Schiff (1983) and Gupta
et al. (1990).

Due to the complex formulation of μt and κt (§ 2.3), the boundary layer profiles are not
self-similar, even with ZPG. To solve the non-self-similar flow, the Mangler–Levy–Lees
transformation can be used to remove the singularity at the leading edge x = 0 (Probstein
& Elliott 1956). The transformed coordinate (ξ, η) is defined as

dξ = ρeμeUe dx, dη = ρ̄Ue√
ξ

dy. (2.3a,b)

The continuity equation is then eliminated and the transformed momentum and energy
equations are

ξ

(
F

∂F
∂ξ

− ∂F
∂η

∂Π

∂ξ

)
= C1

∂2F
∂η2 +

(
∂C1

∂η
+ Π

2

)
∂F
∂η

+ (G − F2)
ξ

Ue

dUe

dξ
, (2.4a)

ξ

(
F

∂G
∂ξ

− ∂Π

∂ξ

∂G
∂η

)
= C2

∂2G
∂η2 +

(
∂C2

∂η
+ Π

2

)
∂G
∂η

+ EceC1

(
∂F
∂η

)2

, (2.4b)

where the normalized streamwise velocity and temperature are F = Ũ/Ue and G =
T̃/Te and Π = ∫

F dη. The other parameters are C1 = ρ̄(μ̃ + μt)/(ρeμe), C2 = ρ̄(κ̃ +
κt)/(ρecpμe) and the Eckert number Ece = U2

e /(cpTe). The streamwise pressure gradient
is reflected in dUe/dξ through the Bernoulli equation, taken to be zero in the flows
considered. The wall-normal boundary conditions at the wall and in the free stream are

F = 0, G = Tw/Te (isothermal) or ∂G/∂η = 0 (adiabatic), at η = 0,

F → 1, G → 1, at η → ∞.

}
(2.5)

Equation (2.4) is solved using the streamwise marching procedure (Blottner 1963; Chen,
Wang & Fu 2021). At ξ = 0, (2.4) degenerates into two ODEs in terms of η, which
are solved using the shooting method and serve as the initial profile. Afterwards, the
solution at ξ > 0 is feasible through streamwise marching. The streamwise (ξ ) derivatives
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are discretized using the third-order finite-difference scheme. The Chebyshev collocation
method is adopted for the wall-normal direction (η), with more points clustering near the
wall. A grid number Ny = 241 is adequate to provide grid-independent results. A uniform
ξ mesh is adopted, while the grid with increasing spacing can be used for better robustness.
At each ξi, Newtonian iteration is used for quick convergence of the nonlinear equations.
Second-order convergence can be realized for laminar flows (e.g. Chen, Wang & Fu
2022a), while for turbulent flows here, the derivatives of μt and κt may not be smooth
(due to the maximum and intersection functions, see § 2.3), so the convergence is only
first order. The convergence criterion for [F, G]T is set to 10−9 and at most 50 iterations
are allowed at each streamwise location. The above procedure is substantially more
efficient than solving (2.1). For the cases in table 1, the mean flow at the target x can
be obtained within minutes on a desktop computer. The solver is verified (detailed in
Appendix A) through comparing with Hendrickson et al. (2023), who solved the full
Navier–Stokes (NS) equation with BL models using the US3D code.

It is worth mentioning that μt and κt from the BL model are zero at ξ = 0 (since y =
0), so the initial profile at ξ = 0 is exactly the laminar counterpart. Thereby, there is a
numerical (not physical) transition process downstream as μt increases. If the transition is
not desirable, the start point for marching ξ0 can be placed somewhere downstream, where
the maximum μt/μ∞ is already high and the flow is turbulent. The initial profile at ξ0 > 0
can still be obtained by solving the ODEs with the streamwise derivatives (left-hand sides
in (2.4)) artificially dropped. The regime of streamwise adjustment is short due to the
parabolic nature of (2.2), so the results downstream are not sensitive to ξ0.

2.3. Baseline BL model
As mentioned in § 1, the BL model using semilocal units for the inner layer construction
outperforms the one using wall-viscous units in high-speed applications (Dilley &
McClinton 2001). Therefore, the semilocal version is selected as the baseline BL model
for modification. For future reference, it is termed the BL-local model in this work. The
formulations are specified below, primarily following Cheatwood & Thompson (1993) for
the LAURA code. The two-layer formulation of μt in BL (and also CS) is

μt =
{
μt,i, y ≤ ymμ,

μt,o, y > ymμ,
(2.6)

where ymμ is the matching (intersection) point between the inner layer μt,i and outer layer
μt,o. The former is based on the mixing length concept, as

μt,i = ρ̄l2mix |ω̃| , lmix = κcy
[

1 − exp
(

− y∗

A+

)]
, A+ = 26√

|τ̄+| , (2.7a–c)

where ω̃ is the vorticity, lmix is the mixing length corrected by the exponential damping
function of van Driest (1956) and κc is the von Kármán constant, taken as 0.40. There are
two differences in (2.7a–c) from the original version of Baldwin & Lomax (1978). First,
y∗ is used in the exponent of lmix, instead of y+, which was also adopted in recent works on
WMLES (Yang & Lv 2018; Fu, Bose & Moin 2022; Kamogawa, Tamaki & Kawai 2023).
Second, A+ is not a constant, but dependent on the local total shear τ̄+ = τ̄/τw. For thin
layer flows, |ω̃| can be simplified to |∂Ũ///∂n|, where Ũ// is the velocity parallel to the
wall, and n is the wall-normal direction. For the configurations in figure 1, we simply have
|ω̃| = |∂Ũ/∂y|.
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An improved Baldwin–Lomax wall model for high-speed flows

The outer-layer viscosity is evaluated by the Clauser–Klebanoff formulation (Klebanoff
1955; Clauser 1956). First, Clauser reasoned that for boundary layers, the eddies
sufficiently away from the wall are no longer constrained by the wall, so their sizes
should be proportional to the overall boundary layer thickness. The resulting maximum
kinematic eddy viscosity in the outer layer is νt,max ∼ Ueδ

∗
k , or νt,max = αUeδ

∗
k , where

δ∗
k = ∫

(1 − Ũ/Ue) dy is the kinematic displacement thickness (equals the displacement
thickness in incompressible cases) and α is a closure coefficient. Farther away from the
wall, the flow becomes intermittent. An empirical intermittency factor FKleb (specified
later) was introduced by Klebanoff, to model the diminishing of νt,o with increasing
height. Consequently, μt,o is computed as ρ̄νt,maxFKleb, which leads to the prevailing
CS model. To avoid determining the boundary layer thicknesses, which is beneficial for
complex flows, Ueδ

∗
k in νt,max is replaced by the wake function CcpymaxFmax in the BL

model, which can be justified from the defect velocity scaling (detailed in § 3.2). Therefore,
the outer-layer μt, adopted without explicit compressible corrections, is

μt,o = ρ̄αCcpymaxFmaxFKleb, (2.8)

where the vorticity function and the intermittency function are

Fmax = 1
κc

max
y=ymax

(lmix |ω̃|) , FKleb

(
y

ymax

)
=

[
1 + 5.5

(
CKleb

y
ymax

)6]−1

. (2.9a,b)

Notably, ymax is the peak position of the vorticity function following common usage, not
the height of the computational domain. Compared with the CS model, the boundary layer
thickness in FKleb is replaced by ymax/CKleb. For more general flows, μt,o can be further
restricted by a wake relation designed for free shear flows (see Wilcox 2006). It is inactive
in the present wall-bounded cases, thus not displayed for conciseness.

Besides κc and A+, there are three closure coefficients α, Ccp and CKleb in the baseline
model. Some works (e.g. Gupta et al. 1990) suggest their Ma dependence, but following
the principles in § 1, we adopt the original constant values, α = 0.0168, Ccp = 1.6 and
CKleb = 0.3. After the numerical discretization, the intersection and maximum operations
in (2.6) and (2.9a,b) are conducted after a third-order interpolation on adjacent grid
points, to ensure smoothness and accuracy. After obtaining μt, κt = cpμt/Prt is calculated
through a prescribed Prt. Although Prt can be designed as a function of the wall-normal
height (Subbareddy & Candler 2012), the simplest choice of a constant Prt is adopted,
equal to 0.9 as a common choice. The effects of Prt variations will be discussed in § 3.3.

Two cases are employed to demonstrate the behaviour of the baseline BL-local model.
First is an incompressible case from SO (Ma∞ set to 0.01 in our solver). The mean velocity
and eddy viscosity are compared with the DNS data at Reθ = 2540 in figure 2. Note that
μt from DNS is evaluated by definition as μt = −ρ̄ũ′′v′′/(∂Ũ/∂y); μt near the boundary
layer edge is not displayed since both the numerator and denominator tend to zero. The
predicted streamwise velocity is basically in line with DNS, showing the good capability
of BL for incompressible flows. In the inner layer, μ+

t faithfully follows the incompressible
scaling by Johnson & King (1985) as

ν+
t,i = κcy+

[
1 − exp

(
−y+

17

)]2

, (2.10)

where the last multiplier is termed the damping function. Note that (2.10) is
more convenient than (2.7a–c) for comparisons between cases because ω̃ does not
explicitly appear. Away from the wall, the damping function is nearly unity, so the
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Figure 2. (a,c) Eddy viscosity and (b,d) mean streamwise velocity and temperature (only compressible case)
from the baseline BL-local model and DNS for the (a,b) incompressible SO-M0R25 case and (c,d) hypersonic
ZDC-M8Tw048R20 case.

logarithmic scaling is formulated. In the outer layer, the peak value μt,max = ρ̄νt,max from
the BL model is also close to the DNS (note that ρ̄ is invariant), so the matching point
y+

mμ = 152 (ymμ = 0.18δ99) is near the upper bound of the logarithmic region, above
which the outer-layer scaling is formulated. Although μt,o damps (by FKleb) more slowly
than the DNS in the intermittent region, only a minor difference in Ũ appears due to the
diminishing ∂Ũ/∂y.

For the hypersonic cold-wall case M8Tw048R20 from ZDC, however, Ũ and T̃ from
the BL-local model have clear deviations from the DNS data, especially for T̃ , as shown
in figure 2(d). The discrepancy can be explained from figure 2(c). Compared with DNS,
μt,o is severely underestimated, so the matching point y∗

mμ = 67 (ymμ = 0.09δ99) is quite
low. Consequently, the region 67 < y∗ � 300 (0.09 < ymμ/δ99 � 0.27) is not formulated
by the logarithmic scaling in (2.7a), leading to the errors in Ũ and T̃ there. Meanwhile, T̃
around the temperature peak (y∗ ∼ 7) is over-predicted, possibly due to the inaccurate Prt
there (specified in § 3.3).
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An improved Baldwin–Lomax wall model for high-speed flows

In the following, the inner and outer-layer scalings of μt and κt are investigated
separately using the DNS data. Three targeted modifications are proposed based on
established relations.

3. Established relations and a priori examination

3.1. Inner-layer scaling
First, we demonstrate that the formulation of μt,i in the BL-local model is equivalent to
applying the TL transformation. Analogous derivation was presented by Yang & Lv (2018)
within the WMLES framework. Using the definition of μt and (2.7a–c), the mixing-length
relation can be expressed, in wall-viscous units, as

−ρ̄+
˜u′′+v′′+ = ρ̄+l+2

mix

∣∣∣∣∂Ũ+

∂y+

∣∣∣∣2

= ρ̄+
∣∣∣∣∂Ũ+

∂y+

∣∣∣∣2

κ2
c y+2

[
1 − exp

(
− y∗

A+

)]2

. (3.1)

The left-hand side, −ρ̄+ ˜u′′+v′′+ = −ρ̄ũ′′v′′/τw = − ˜u′′∗v′′∗, is the density-weighted or
semilocal Reynolds shear stress (Morkovin’s scaling), which is known to well match the
incompressible counterpart in the inner layer in terms of y∗ (Coleman et al. 1995; Pirozzoli
& Bernardini 2011; Zhang et al. 2018; Hirai, Pecnik & Kawai 2021; Cheng & Fu 2022;
Cogo et al. 2022; Bai et al. 2023). Meanwhile, it is recognized that the right-hand side
is related to the TL transformation, U+

TL(y∗) = ∫
μ̄+(∂y∗/∂y+) dŪ+. The resulting form,

under the notation of Favre averages, is

−ρ̄+
˜u′′+v′′+ =

∣∣∣∣∂U+
TL

∂y∗

∣∣∣∣2

κ2
c y∗2

[
1 − exp

(
− y∗

A+

)]2

. (3.2)

The left-hand side and right-hand side are both functions of y∗, so if the transformed
inner layer shear well matches the incompressible counterpart, then (2.7a) will be a highly
accurate modelling of μt,i. For diagnostic purposes, a semilocal eddy viscosity is defined
as

μ∗
t,TL(y∗) = −ρ̄+ ˜u′′+v′′+

∂U+
TL/∂y∗ = μt

μ̃
, (3.3)

which is expected to match the incompressible μt,i (or νt,i). Equation (3.3) is examined in
figure 3(a) using all the DNS data in table 1. Since we are concerned with the inner layer
part, μ∗

t,TL is plotted in dotted lines after reaching its maximum. The reference line is the
counterpart of (2.10) with y+ replaced by y∗ (Yang & Lv 2018), as

μ∗
t,i = κcy∗

[
1 − exp

(
−y∗

17

)]2

. (3.4)

There is only a small scattering of μ∗
t,TL(y∗) within and below the buffer layer, showing

the accuracy of the TL transformation for that region. This also explains the well-predicted
surface quantities in the BL-local model for hypersonic cases (Dilley & McClinton 2001).
In the logarithmic region, μ∗

t,TL tends to be lower than (3.4), especially for diabatic cases,
suggesting an underestimated μt,i in BL-local. This is consistent with the behaviour
of U+

TL, which can lead to over-prediction in the logarithmic region in diabatic cases.
Nevertheless, figure 2(c) indicates that μt,i in the BL-local model is somewhat higher
than DNS, rather than lower. This inconsistency is due to the discrepancy in T̃ , on which
the variables for constructing the semilocal units (ρ̄ and μ̃) are dependent.
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Figure 3. Semilocal eddy viscosity using the (a) TL (as in the BL-local model) and (b) GFM transformations
from the DNS datasets. The legends for panels (a,b) are the same, separately shown in the two boxes.

As an alternative, we employ the GFM transformation to construct μt,i, a thought
recently implemented by Griffin et al. (2023) and Hendrickson et al. (2023) for model
improvement. The results using the very recent HLPP transformation will be discussed in
Appendix B. The GFM is shown to have better overall performances than TL for canonical
air flows, particularly diabatic boundary layers in the logarithmic layer, though it can
degrade for supercritical or non-air-like flows (Bai et al. 2022; Hasan et al. 2023b). This
transformation is defined as

U+
GFM(y∗) =

∫ y∗

0
S+

t dy∗, S+
t = S+

eq

1 + S+
eq − S+

TL
=

1
μ̃+

∂Ũ+

∂y∗

1 + 1
μ̃+

∂Ũ+

∂y∗ − μ̃+ ∂Ũ+

∂y+

,

(3.5a,b)

where S+
TL is the TL transformation kernel defined above, and S+

eq results from the
approximate balance of turbulence production and dissipation in the logarithmic region,
as a modification to the arguments of Zhang et al. (2012). Similar to (3.2), the GFM-based
mixing length relation in the semilocal coordinate takes the form of

−ρ̄+
˜u′′+v′′+ =

∣∣∣∣∂U+
GFM

∂y∗

∣∣∣∣2

κ2
c y∗2

[
1 − exp

(
− y∗

A+

)]2

. (3.6)

Accordingly, the semilocal eddy viscosity using GFM is

μ∗
t,GFM(y∗) = −ρ̄+ ˜u′′+v′′+

∂U+
GFM/∂y∗ = μt

μ̃

∂U+
TL/∂y

∂U+
GFM/∂y

. (3.7)

As shown in figure 3(b), μ∗
t,GFM experiences smaller scattering than μ∗

t,TL at y∗ � 70.
Also, μ∗

t,GFM in the logarithmic region follows (3.4) more closely, demonstrating better
robustness for modelling μt,i than (2.7a). For practical use, the incompressible analogy
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An improved Baldwin–Lomax wall model for high-speed flows

μ∗
t,GFM is computed first using (3.6), based on y∗ and ∂U+

GFM/∂y∗; afterward, μt,i is
obtained from (3.7).

Notably, the GFM and TL transformations are designed only for the region within and
below the logarithmic layer, so their accuracy for the outer region is not guaranteed.
Consequently, they may not be directly used to modify the outer-layer μt. Our exploration
to improve the μt,o modelling is presented below.

3.2. Outer-layer scaling
The derivation of the outer-layer scaling in the baseline BL model is briefly reviewed first,
to set the grounds for possible modifications.

The crucial part of modelling μt,o is the estimation of its peak value, as learned
from figure 2. In (2.8), the peak value νt,max is estimated first, then μt,o is formed as
ρ̄νt,max before the diminishing by FKleb. Consequently, μt,o can continue to increase
at y > ymμ due to the rising ρ̄ (see figure 2c), rather than monotonically decreasing
as in incompressible cases. Therefore, it is first a question whether νt,max (then μt,o =
ρ̄νt,maxFKleb, as in BL-local) or μt,max (the maximum μt, then μt,o = μt,maxFKleb which
monotonically decreases with y) should be modelled. In hypersonic cases, ρ̄ can vary
considerably in the outer region, so the two strategies can lead to significant differences.
From existing works, the scaling for μt,max is scarce while that for νt,max is prevailing, so
the following investigation is mainly on νt,max. As mentioned in § 2.3, Cebeci & Smith
(1974) argued that νt,max was proportional to the boundary layer thickness, and suggested
two scalings,

νt,max = αUeδ
∗
k = ανeReδ∗

k
and νt,max = α2uτ δ99 = α2νwReτ , (3.8a,b)

which also hold in compressible flows. The first closure constant α has been introduced
in § 2.3, and the second one α2 is 0.06–0.075. Although widely used, (3.8) is re-examined
here using the DNS data for future reference. The ratios α2,DNS = νt,max/(uτ δ99) and
αDNS = νt,max/(Ueδ

∗
k ) for all cases are shown in figure 4(a,b), as functions of the

corresponding Reynolds numbers. For incompressible cases, α2,DNS varies more slightly
than αDNS with increasing Re. When compressible cases are included, however, α2,DNS is
the less robust one. In particular, α2,DNS varies more than twice between the diabatic cases,
which is not surprising due to its higher sensitivity to wall quantities by definition.

For incompressible flows, the well-known velocity defect law provides another way
to estimate νt,max without using the boundary layer thicknesses, as adopted in the BL
model. Specifically, the Clauser defect law reads U+

e − Ũ+ = U+
df (η), where U+

df is the
defect velocity and the outer scale η = y/Δ is based on the Rotta–Clauser boundary
layer thickness Δ = U+

e δ∗
k = ∫

(U+
e − Ũ+) dy (note that η is no longer the transformed

coordinate defined in § 2.2). Consequently, a collapse of the following function is
suggested as

−η
dU+

df

dη
= η

∂Ũ+

∂η
= y

∂Ũ+

∂y
≈ lmix

κc

∂Ũ+

∂y
= lmix |ω̃|

κcuτ

, (3.9)

where the approximation holds in the outer layer where y∗ 
 A+ (see (2.7c)). The last
term is the scaled vorticity function in (2.9a), and the first three terms are the diagnostic
function commonly used to evaluate κc, though the main focus here is on the outer
layer. For a quantitative evaluation of (3.9) and then ymaxFmax, the semiempirical relation
by Monkewitz, Chauhan & Nagib (2007) for incompressible boundary layers in the
large-Re limit is employed, which gives one explicit expression of U+

df (η). As a result,
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Figure 4. Maximum kinematic eddy viscosity scaled by different variables (see (3.8a,b) and (3.11)) from the
DNS data. The diamonds are for incompressible cases, and the cycles and triangles are for adiabatic and diabatic
ones, respectively. The symbol colours follow the usage in figure 3.

the outer-layer maximum of y∂Ũ+/∂y is equal to 5.55 at η = 0.155. Therefore, the ratio
of νt,max to ymaxFmax using (3.8a), i.e.

νt,max

αymaxFmax
= Ueδ

∗
k

0.155U+
e δ∗

k × 5.55uτ

= 1
0.155 × 5.55

, (3.10)

is a constant (namely Ccp, though not exactly the same value), which leads to (2.8) directly
used in the compressible baseline BL model. Analogously, if νt,max is from (3.8b), then the
constant in (3.10) can be obtained from another form of incompressible defect law U+

e −
Ũ+ = U+

df (y/δ99). Inspired by (3.9) and (3.10), the compressible defect velocity scalings
and their derivatives are examined below, to explore possible compressible corrections to
(2.8).

As introduced in § 1, most of the existing compressible defect velocity scalings are
based on the VD transformation. The VD is built upon the mixing length assumption
for the region within and below the logarithmic layer, so the outer layer is not the targeted
region for it to work, like other transformations (TL, GFM, etc.). Nevertheless, previous
investigations actively support its usage for compressible defect velocity scalings (Maise &
McDonald 1968; Fernholz & Finley 1980; Guarini et al. 2000; Pirozzoli et al. 2004; Duan
et al. 2011; Pirozzoli & Bernardini 2011; Wenzel et al. 2018), suggesting its fundamentality
in transforming compressible flows, though the diabatic cases are somewhat insufficiently
examined. Therefore, the VD transformation is considered until future reports of more
advanced ones. Following the incompressible procedures above, a VD-based displacement
thickness can be defined, following Smits & Dussauge (2006), as

δ∗
VD =

∫ ∞

0

(
1 − UVD

UVD,e

)
dy, where U+

VD(y+) =
∫ Ũ+

0

√
ρ̄+ dŨ+. (3.11)

The corresponding outer scale is ηVD = y/ΔVD, where the transformed Rotta–Clauser
thickness is ΔVD = U+

VD,eδ
∗
VD = ∫

(U+
VD,e − U+

VD) dy. Since VD may not be accurate
enough in the inner layer, the transformed displacement thickness can be alternatively
defined in a mixed manner, δ∗

mix, where the integrand in the inner region (say y < 0.15δ99)
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is replaced by the TL- or GFM-based defect velocity. Taking GFM as an example,
the difference between δ∗

mix and δ∗
VD turns out to be less than 2.5 % and 4.5 % for the

supersonic and hypersonic cases, respectively. Since δ∗
VD is not finally used in the new

model but to inform modification, we employ δ∗
VD instead of δ∗

mix hereafter for simplicity
and consistency. Similar to (3.8), νt,max can be evaluated as νt,max = αVDUeδ

∗
VD =

αVDνeReδ∗
VD

, which is examined in figure 4(c) by computing αVD,DNS = νt,max/(Ueδ
∗
VD)

for all cases. The ratio αVD,DNS experiences a comparably small variation with αDNS.
Besides, there is generally a decreasing trend of αVD,DNS with Reδ∗

VD
rising, which awaits

future examination using higher-Re data. Notably, the diabatic cases exhibit no larger
departure than the incompressible and adiabatic cases, though the VD transformation tends
to deteriorate. A possible reason is that (3.11) is defined in an integral manner, allowing
error cancellation.

Afterwards, the compressible defect velocity scalings are studied, to establish
connections with the vorticity function. The form examined by Pirozzoli & Bernardini
(2011) for supersonic adiabatic boundary layers is (UVD,e − UVD)/UVD,e = g1(y/δ99),
where g1 is a universal function. This function is computed in figure 5(c) for all the
DNS cases, and the results before the VD transformation are plotted in figure 5(a) for
comparison. As can be seen, g1 for diabatic cases deviates more significantly from the
incompressible counterpart. As an alternative to g1, the VD-based analogy to the Clauser
defect law takes the form of U+

VD,e − U+
VD = g2(ηVD), which is examined in figure 5(b)

between cases. For the present datasets, g2 tends to achieve a somewhat better collapse
than g1. We proceed to study the derivatives of these defect velocities, to connect with the
diagnostic function and then the vorticity function. The diagnostic function used in (2.8)
is displayed in figure 5(d), where a few strongly oscillating curves are not shown. Note
that y∂Ũ+/∂y is plotted instead of y∂Ũ/∂y for direct connection with νt,max (see (3.10),
there is a factor uτ in (3.8) or Δ). The main focus is on the outer layer, so the region
y < 0.15δ99 is plotted in dotted lines. If the outer-layer peaks of y∂Ũ+/∂y are collapsed
between cases, then the ratio νt,max/(ymaxFmax) would be nearly invariant, which would
then provide a robust modelling for μt,o, as derived in (3.10) for incompressible cases.
First, the incompressible cases in figure 5(d) suggest a rough outer-layer similarity at
this Re range (Reτ � 400, Reδ2 � 1400), though the collapse is not as close to perfect
as in the large-Re limit (Nagib, Chauhan & Monkewitz 2007). For the compressible cases,
the peak locations in figure 5(d) all concentrate around 0.7δ99, but the maximums vary
considerably, especially for some cold-wall cases, even if the low-Re cases are excluded.
Consequently, μt,o can be severely under-predicted, as is observed in figure 2(c). For the
VD-based defect velocity g2(ηVD), the outer-layer relation analogous to (3.9) is derived as

−ηVD
dg2

dηVD
= y

∂U+
VD

∂y
=

√
ρ̄+y

∂Ũ+

∂y
≈

√
ρ̄+ lmix |ω̃|

κcuτ

, where y∗ 
 A+. (3.12)

As noted by Smits & Dussauge (2006), (3.12) indicates a proper velocity scale in the
outer layer to be uτ /

√
ρ̄+, which can be used to extend Coles’ law of the wake (Maise

& McDonald 1968; Huang et al. 1993; Hasan et al. 2023a). Furthermore, the factor
√

ρ̄+
turns out to be fundamental to account for compressibility effects, and was suggested by
Catris & Aupoix (2000) and Otero Rodriguez et al. (2018) to improve the eddy viscosity
and diffusivity in sophisticated RANS models. The transformed function y∂U+

VD/∂y
is plotted in figure 5(e) in terms of ηVD. Although obvious scattering in peak values
and locations is still observable, better collapse is attained compared with figure 5(d),
demonstrating the effectiveness of the VD density weighting.

987 A7-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

38
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.383


X. Chen, J. Gan and L. Fu

0 0.4 0.8 1.2

0

0.25

0.50

0.75 SO-M0R14

SO-M0R20

SO-M0R25

SO-M0R33

SO-M0R41

PB-M2Tw10R13

PB-M2Tw10R18

PB-M2Tw10R30

PB-M2Tw10R39

0 0.1 0.2 0.3

0

6

12

18 PB-M3Tw10R14

PB-M3Tw10R18

PB-M4Tw10R17

PB-M4Tw10R21

ZDC-M2p5Tw10R17

VBL-M2Tw05R13

VBL-M5Tw08R13

VBL-M5Tw08R23

0 0.4 0.8 1.2

0

0.25

0.50

0.75 ZDC-M6Tw025R11

ZDC-M6Tw076R17

ZDC-M8Tw048R20

ZDC-M14Tw018R24

VBL-M2Tw19R3

VBL-M5Tw19R7

0 0.4

y/∂99 y/∂99ηVD
0.8 1.2

0

1

2

3

4

5

6

7

0 0.1 0.2 0.3

0

1

2

3

4

5

6

7

0 0.4 0.8 1.2

0

1

2

3

4

5

6

7

Ũ
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Figure 5. Different forms of (a–c) defect velocities and (d–f ) diagnostic functions for all cases. The reference
lines in panels (d–f ) are from (3.10). The legends for all the panels are the same, separately shown in the three
boxes.

Therefore, it is suggested that the VD-based vorticity function can be utilized in the
outer layer scaling of the BL model, to replace the original one without compressible
corrections. From (3.12), the vorticity function in (2.9a) is modified by simply adding a
factor

√
ρ̄+ as

FVD,max = 1
κc

max
y=yVD,max

(
√

ρ̄lmix |ω̃|). (3.13)

Here, the denominator
√

ρw has been moved out of this function to combine with other
factors in μt,o, which does not affect the value of yVD,max. Consequently, (2.8) is modified
to be

μt,o = ρ̄√
ρ̄

αCcpyVD,maxFVD,maxFKleb =
√

ρ̄αCcpyVD,maxFVD,maxFKleb. (3.14)

Here, the denominator
√

ρ̄ can be interpreted as a compensation to the amplified vorticity
function (3.13). The final form also turns out to reach a compromise between the modelling
of νt,max and μt,max, so μt,o ∼ ρ̄1/2FKleb and νt,o ∼ ρ̄−1/2FKleb. As a natural consequence,
(3.14) produces the same results as (2.8) for incompressible flows with constant density.

The empirical function FKleb(y/yVD,max) remains unmodified as in (2.9b) before
acquiring more theoretical guidance. Also, the closure constants α, Ccp and CKleb
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Figure 6. (a) Turbulent Prandtl numbers in different DNS cases from ZDC and (b) the mean temperature
using the BL-local model with different Prt for case M8Tw048R20.

remain unaltered, consistent with the incompressible version. Finally, since the quantity
yVD,max/CKleb used in FKleb represents an estimation of the boundary layer thickness, its
relation to δ99 is examined in figure 5( f ) by plotting the transformed function in terms of
y/δ99. For most cases, yVD,max/δ99 is within 0.6–0.8, but it seems closer to the boundary
layer edge than ymax/δ99, suggesting slower damping of μt,o in the intermittent region.

3.3. The TV relation
As stated in § 2.3, the eddy diffusivity in RANS models for temperature prediction is
obtained mostly through a specified Prt, whose one common definition is

Prt = ũ′′v′′(∂T̃/∂y)
˜v′′T ′′(∂Ũ/∂y)

. (3.15)

It is widely shown that Prt is within 0.7–1.1 in most regions above the buffer layer and is
typically equal to 0.85 in the logarithmic region, insensitive to Ma, Re and wall cooling
(Huang, Coleman & Bradshaw 1995; Duan et al. 2010; Pirozzoli & Bernardini 2011;
Lusher & Coleman 2022). However, Prt can experience complicated variations within
and below the buffer layer, especially in cold-wall boundary layers, which is illustrated
in figure 6(a) using the DNS data from ZDC. At y∗ � 25, three Prt are quite close to
each other, slowly decreasing towards the boundary layer edge. Near the temperature peak,
however, ∂T̃/∂y and ˜v′′T ′′ both change signs, so Prt can be negative or even singular. This
singularity is also observable in the adiabatic case M2p5Tw10R17, though very close to
the wall (y∗ ≈ 2). Meanwhile, Prt between the singular point and the wall is generally
lower than 0.5 for the three cases. The rapid variation of Prt can lead to prediction
errors for the temperature peak, as discussed for figure 2(d). For further demonstration,
figure 6(b) compares between three cases with different Prt using the BL-local model (case
M8Tw048R20). At y∗ � 100, T̃ is quite insensitive to Prt but at y∗ � 100, a continuous
decrease of T̃ is observed with the drop of Prt due to enhanced turbulent heat flux.
The case Prt = 0.8 seems to best predict the temperature peak. For the colder-wall case
M6Tw025R11, an even lower Prt = 0.6 is required in a similar test (not shown) to capture
reasonably the peak temperature. Therefore, accurate modelling of Prt is significant for
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near-wall temperature prediction. A constant Prt = 0.9 can lead to an over-predicted peak
temperature for cold-wall cases.

Besides constancy, Prt can be modelled as a function of the wall-normal height (Abe
& Antonia 2017; Huang, Duan & Choudhari 2022; Huang et al. 2023); for example, the
expression by Subbareddy & Candler (2012) for boundary layers is Prt = 1 − 0.25y/δ99.
This formula is also examined in figure 6(b) within the BL model. The resulting
temperature is close to the Prt = 1 case and thus inaccurate for near-wall temperature
prediction. Other available Prt formulae are expected to have analogous behaviours
because Prt are all designed to monotonically decrease away from the wall, though most
of the formulae are modelled based on channel flows. As discussed above, capturing
the non-monotonic and singular behaviour of Prt near the wall is crucial, but it seems
difficult to summarize a universal expression of Prt in the near-wall region. The location
of the singular point may correlate with the temperature peak, but the Prt farther below
towards the wall also differs considerably from case to case. Ad hoc fitting of Prt for each
case is plausible, but no universality is guaranteed. Consequently, we seek alternatives to
specifying Prt. As mentioned in § 1, the algebraic TV relation by Duan & Martín (2011)
and Zhang et al. (2014) is remarkably accurate for adiabatic and diabatic boundary layers,
and channel and pipe flows. It is thus incorporated for efficient and accurate temperature
prediction in several recent works within the frameworks of ODE solvers and WMLES
(Chen et al. 2023a; Griffin et al. 2023; Hasan et al. 2023a; Song et al. 2023). Thereby, the
TV relation is utilized to improve the temperature prediction in the BL model.

The quadratic algebraic relation is written as

T̃ = Tw + CT(Tr − Tw)

(
1 − Ũ

Ũδ

)
Ũ

Ũδ

+
(

T̃δ − Tw

)(
Ũ

Ũδ

)2

, (3.16)

where Ũδ and T̃δ are the values at the boundary-layer edge δ (specified later), and
Tr = T∞(1 + rEc∞/2) is the recovery temperature with r = Pr1/3 the recovery factor.
The closure constant CT is determined to be 0.8259 by Duan & Martín (2011) and is
recast as sPr by Zhang et al. (2014), where the Reynolds analogy factor s is 1.14 following
convention. The examination of (3.16) for the deployed DNS datasets is not presented since
it has been extensively verified (e.g. Zhang et al. 2018; Modesti & Pirozzoli 2019; Fu et al.
2021; Zhang et al. 2022; Griffin et al. 2023). Its implementation into the model is discussed
below. In the works of Song et al. (2023), Chen et al. (2023a) and Hasan et al. (2023a),
(3.16) is used throughout the boundary layer. In comparison, Griffin et al. (2023) adopt
it only in the near-wall region with the upper boundary condition matched by LES. The
latter strategy is preferred for two reasons. First, T̃ in the outer layer is already insensitive
to Prt and Prt also varies mildly. Second, by solving the original energy (2.1c) in the
outer layer, more flow information is retained, which is more applicable to general flows.
To realize the multilayer formulation, a matching location ymT < δ within the boundary
layer is required, above which (2.1c) is solved and below which (3.16) is enforced. The
resulting temperature formulation is also a two-layer structure, analogous to μt in (2.6).
The outer boundary condition for (3.16) is now the temperature sample at ymT . To enforce
the matching temperature T̃m at ymT , the original outer boundary condition T̃|y=δ = T̃δ is
relaxed, and (3.16) is rewritten, following Griffin et al. (2023), to be

T̃ = Tw + CT(Tr − Tw)

(
1 − Ũ

Ũm

)
Ũ

Ũδ

+
(

T̃m − Tw

)(
Ũ

Ũm

)2

, at y < ymT , (3.17)

where Ũm is the velocity sample at ymT . Within the framework in § 2.2, the energy equation
(2.4b) with constant Prt is solved first throughout the boundary layer. As a second step,
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(3.17) is used to update T̃ at y < ymT once within each iteration, based on the quantities
at ymT and δ. If solving the full RANS equation (2.1), then (3.17) can be directly imposed
during the temporal stepping subject to an appropriate initial field.

Note that only a zero-order continuity of T̃ at ymT is guaranteed by (3.17). Actually,
such a high-order discontinuity also exists in μt at ymμ (see figure 2). Numerical results
prove negligible effects of the discontinuities on the mean profiles after the computation
converges. Inspired by figure 6(b), y∗

mT is fixed at 100 throughout. A sensitivity study of
y∗

mT is conducted in Appendix A, suggesting minor differences in the mean temperature
with y∗

mT varied from 50 to 150. In the spirit of the BL model, the explicit determination
of the boundary layer edge, required by Ũδ and T̃δ , should be avoided. Consistent with
(2.9a), δ is set to ymax/CKleb (yVD,max/CKleb if using (3.14)), and the final results turn
out to be quite insensitive to δ. As a final remark, (3.17) is designed for fully developed
turbulence and becomes invalid for laminar flows (however, see the recent results of Mo
& Gao (2024)), so the numerical transition process mentioned in § 2.2 should be avoided;
in other words, the initial profile should be placed downstream in the turbulent regime.

3.4. Modification summary
As described in §§ 3.1–3.3, three well-established mean flow relations are employed to
modify the BL-local model. Two modifications are made to the two-layer μt in (2.6).
To be specific, the GFM transformation is utilized for the inner layer μt,i (3.7), and
the VD transformation is adopted for the outer-layer μt,o (3.14). This version, without
modifying the temperature relation, is termed the BL-GFM-VD model. Furthermore, one
modification is made to the inner layer temperature. The algebraic TV relation (i.e. (3.17))
is enforced at y < ymT , instead of specifying Prt and solving the energy equation. This
final version is called the BL-GFM-VD-TV model. For incompressible flows with constant
thermodynamic properties, the two modified models (and also BL-local) degenerate to the
original version by Baldwin & Lomax (1978).

4. Results of the modified BL models

The two modified BL models are comprehensively evaluated using the 12 DNS cases. The
primary quantities of interest are the mean profiles, and the wall and integral quantities.
The fluctuation statistics are not expected to agree well with DNS considering the great
simplicity in RANS.

The cold-wall Ma8Tw048R20 case from ZDC is focused on first, as examined in
figure 2. The mean streamwise velocity and temperature predicted by the three BL models
are shown in figure 7 in the inner scale. The distributions of μt and Prt are also displayed
for diagnostic purposes. As mentioned above, the BL-local model underestimates the
outer-layer μt for this case, leading to a smaller uτ and an upward tilting of Ũ+ in the
outer region, compared with the DNS data. This tilting of Ũ+ suggests an under-predicted
Ũ/U∞ = Ũ+/U+∞ in the logarithmic region, as displayed in figure 2(d). A notable
improvement for the outer-layer Ũ+ is observed in the BL-GFM-VD model, and as a
step forward, Ũ+ (and also Ũ/U∞ in the outer scale) from BL-GFM-VD-TV is closely
in line with DNS. From figure 7(c), the matching point y∗

mμ = 242 (ymμ = 0.24δ99) is
much higher than that in BL-local (y∗

mμ = 67 in figure 2c), owing to the lifted μt,o after
utilizing the VD transformation. Consequently, the region y∗ � 242 obeys the logarithmic
scaling formulated by the GFM transformation. In tandem with the more accurate Ũ, clear
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Figure 7. (a) Mean streamwise velocity, (b) mean temperature, (c) eddy viscosity and (d) turbulent Prandtl
number from different BL models and DNS for case ZDC-Ma8Tw048R20 (cold wall).

improvement in predicting T̃ is observed in figure 7(b) from BL-local to BL-GFM-VD.
Nevertheless, the predicted peak temperature and that in the logarithmic region are
still higher than DNS. Further improvement coinciding with DNS is realized in the
BL-GFM-VD-TV model, where the inner layer T̃ is formulated by (3.17). The excellent
agreement of T̃ in the BL-GFM-VD-TV model can be explained from a posteriori
diagnosis of Prt, which is computed by substituting the BL results back to the energy
equation (2.1c) or (2.4b). As shown in figure 7(d), Prt at y∗ > y∗

mT is 0.9 by construction.
At y∗ < y∗

mT , Prt is not a constant but varies in a qualitatively consistent manner with DNS;
a singular point also appears at y∗ ≈ 8. The slight discontinuity in Prt around y∗

mT is due
to the matching procedure, as noted in § 3.3. In short, by employing the TV relation, the
intricate variation of Prt near the wall can be modelled, leading to an accurate temperature
prediction combined with an appropriate μt.

Similar intermodel comparisons are made for the remaining DNS cases. For
conciseness, we demonstrate below the mean-flow profiles of three representative cases
from different sources: one cold-wall case from ZDC (M6Tw025R11); one adiabatic-wall
case from PB (M4Tw10R21); one heated-wall case from VBL (M2Tw19R3). Afterwards,
more attention will be paid to diabatic cases, and the prediction errors of the remaining
cases will be summarized collectively.
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Figure 8. Mean (a,b) streamwise velocity and (c,d) temperature in the (a,c) inner and (b,d) outer scales from
different BL models for case ZDC-M6Tw025R11 (cold wall).

The results of the cold-wall M6Tw025R11 case are shown in figure 8 in both the
inner and outer scales. The velocity prediction from the BL-GFM-VD model is close
to BL-GFM-VD-TV, especially in the outer scale, so the former is not displayed. The
model comparisons for velocity exhibit different features in the inner and outer scales.
Both models tend to under-predict uτ , thus leading to higher Ũ+ in the outer region; Ũ+
by BL-GFM-VD-TV tends to deviate more. If expressed in the outer scale, nevertheless,
Ũ by BL-GFM-VD-TV follows the DNS trend more closely, especially in the logarithmic
region due to the elevated μt,o and hence a higher ymμ (y∗

mμ rises from 80 in BL-local to
224). The reversed trends in the inner and outer scales will be revisited later, along with
more quantitative measurements of the prediction errors. The temperature predictions of
the three BL models strongly resemble those in figure 7. The BL-local model severely
over-predicts T̃ in most regions (y < 0.7δ99) within the boundary layer, especially when
expressed in the outer scale (figure 8d). Though the error in the logarithmic region is
reduced in the BL-GFM-VD model owing to the improved logarithmic scaling, clear
over-prediction still exists due to the overrated Prt in the near-wall region. After employing
the TV relation, excellent agreement with DNS is obtained in the BL-GFM-VD-TV model.

The adiabatic case M4Tw10R21 is considered in figure 9. As extensively examined in
previous works (see § 1), the BL-local model well reproduces the mean velocity, but T̃ in
the logarithmic region is over-estimated. After using BL-GFM-VD and BL-GFM-VD-TV,
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Figure 9. Same as figure 8 except for case PB-M4Tw10R21 (adiabatic wall).

the high accuracy for the velocity is retained with even a better prediction for Ũ+, and the
prediction for T̃ is significantly improved. Again, this is attributed to the elevated μt,o and
ymμ, so the logarithmic scaling in (3.6) is more strictly followed up to y∗

mμ = 210 for this
case. The TV relation is of limited help for this adiabatic case because the singular point
of Prt, if it exists, is down to the viscous layer (see figure 6a), where κ is dominant over
κt. Away from the singular point, Prt varies moderately and can be well approximated by a
constant. For the heated-wall case in figure 10, the same conclusion as for figures 8 and 9 is
drawn. Good agreement with DNS is realized for Ũ and T̃ in the BL-GFM-VD-TV model.
The improvement for velocity is more obvious when expressed in the outer scale. The mild
under-prediction in uτ is presumably related to the relatively low Reδ2 in the M2Tw19R3
and also M6Tw025R11 cases, so the outer-layer similarity of the defect velocity diminishes
(see figure 5).

More attention is paid to the diabatic cases considering their ubiquity in hypersonic
applications and difficulty in prediction by the baseline model. The temperature
predictions for four more diabatic cases (VBL-M2Tw05R13, VBL-M5Tw19R7,
ZDC-M6Tw076R17 and ZDC-M14Tw018R24) are shown in figure 11, covering the lowest
and highest Ma∞ in the dataset. In addition to the same conclusions as for figures 8–10,
two more points are concluded. For the heated and moderately cooled wall cases
(figure 11b,c, Tw/Tr > 0.5), abundant improvement in T̃ is achieved by BL-GFM-VD, over
the BL-local model. For the highly cooled wall cases (figures 11a,d and 8c, Tw/Tr ≤ 0.5),
however, modifying only μt is insufficient due to the intricate variation of Prt near the
wall. The TV relation should be further incorporated for accurate temperature prediction.
As demonstrated in figure 11(e, f ), the Prt profiles from BL-GFM-VD-TV well match the
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Figure 10. Same as figure 8 except for case VBL-M2Tw19R3 (heated wall).

DNS trends for these highly cooled wall cases, so the non-monotonic behaviour and the
singularity of Prt can be reasonably modelled. For reference, the velocity predictions for
the four diabatic cases are also demonstrated in figure 12. In both the inner and outer
scales, the velocities by the BL-GFM-VD-TV model are in good agreement with the DNS
data.

Quantitative measurements of the prediction accuracy are presented using two types of
relative errors to DNS, which are defined in terms of the inner-scale logarithmic coordinate
and the outer-scale normal coordinate, respectively, as

εlg,U =

∫ lg y∗
up

0

∣∣Ũ+
BL − Ũ+

DNS

∣∣ d lg y∗

∫ lg y∗
up

0
Ũ+

DNS d lg y∗
, εn,U =

∫ yup

0

∣∣ŨBL − ŨDNS
∣∣ dy∫ yup

0
ŨDNS dy

. (4.1a,b)

The two errors for temperature, εlg,T and εn,T , are defined likewise. The upper limits
of the integral yup for all four ε are fixed at 1.1δ99. The four errors for all cases are
displayed in figure 13 in the order of case numbers. Note that the algebraic averaged
errors between locations are displayed for the cases with multiple streamwise locations.
As mentioned above, the BL-local model satisfactorily reproduces Ũ for the adiabatic
cases (numbers 1–4), with εlg,U < 1.0 % and εn,U < 1.6 % for all examined. These are
also the accuracy levels of the incompressible BL model. In the presence of surface
heat transfer, the two εU rise a bit, and εn,U reaches over 3 % for the four hypersonic
cases. Meanwhile, the temperature prediction has poor performance, where εn,T exceeds
10 % for the five hypersonic diabatic cases and even surpasses 20 % for case 12 with
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Figure 11. (a–d) Mean temperature and (e–f ) turbulent Prandtl number profiles from different BL models
for cases (a) VBL-M2Tw05R13 (cold wall), (b) VBL-M5Tw19R7 (heated wall), (c) ZDC-M6Tw076R17
(cold wall) and (d) ZDC-M14Tw018R24 (cold wall). Panels (e, f ) are for the two highly cooled wall cases
ZDC-M6Tw025R11 and M14Tw018R24.

a heated wall. In comparison, the velocity prediction is moderately improved using the
BL-GFM-VD-TV model. The mean εlg,U for all cases is reduced from 1.2 % to 0.7 %, and
the mean εn,U is from 2.5 % to 1.3 %. More importantly, the two εU from BL-GFM-VD-TV
do not exhibit an obviously increasing trend with Ma lifted or wall-cooling strengthened,
indicating enhanced model robustness by employing established relations. It is worth
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Figure 12. Same as figure 11 except for the mean streamwise velocity (four diabatic cases). (a) M2Tw05R13,
(b) M5Tw19R7, (c) M6Tw076R17, (d) M14Tw018R24.

mentioning that case 7 (M6Tw025R11) is the only one where εlg,U is not improved,
as discussed for figure 8. This is acceptable considering the imperfect collapse of the
outer-layer scaling in figure 5 due to compressibility and low-Re effects. Compared with
the velocity counterpart, a more significant improvement is realized in the temperature
prediction. After deploying BL-GFM-VD-TV, εlg,T and εn,T for all cases are notably
decreased. As an overall measure, the mean εlg,T is reduced from 1.4 % to 0.4 %, and
the mean εn,T is reduced from 8.8 % to 3.4 %. Moreover, we plot in figure 13(b) the εlg,T
from BL-GFM-VD. It is between the errors of BL-local and BL-GFM-VD-TV for each
case, demonstrating that the improved temperature prediction is jointly contributed by the
velocity transformations and the TV relation.

Besides the mean profiles, the wall and integral quantities are also of interest in RANS.
The comparison between the BL models and DNS is listed in table 2 for the five ZDC
cases at specific Reτ , where H is the shape factor, and Cf and Bq are the non-dimensional
surface friction and heat flux. First, much better predictions for integral quantities, such
as H, are realized in the BL-GFM-VD-TV model, attributed to the overall improvement
in mean profile shapes. Regarding the wall quantities, the BL-local model employs the
TL transformation for the inner layer μt (see § 3.1). Since TL provides accurate scaling
in the viscous layer, the wall quantities can be well predicted by the BL-local model
including diabatic cases, as demonstrated by Dilley & McClinton (2001). After using
BL-GFM-VD-TV, some improvements for the wall quantities can be observed, especially
for uτ and Cf . Nevertheless, not all the cases are improved at the specific limited
streamwise locations, in particular the M6Tw025R11 case of relatively low Reδ2 . A more
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Figure 13. Relative errors of different BL models to DNS for the mean (a,c) streamwise velocity and
(b,d) temperature, measured in terms of (a,b) logarithmic and (c,d) normal coordinates, respectively,
where (a) εlg,U , (b) εlg,T , (c) εn,U , (d) εn,T . The horizontal lines are their average errors. For reference, the
Ma∞ and Tw/Tr in each case are plotted in panels (e, f ). Cases 1–4 are adiabatic walls, 5–10 are cold walls and
11–12 are heated walls, as categorized in shaded areas.

comprehensive evaluation of the wall quantities is anticipated based on the data at a set of
locations in each case.

5. Discussions and summary

5.1. Discussions
The present work is designed for ZPG boundary layers, so its applications and limitations
are further discussed. First, we demonstrate a promising framework of how to incorporate
well-established mean flow relations to improve the BL wall model. The module-style
modification allows direct substitutions of more accurate relations in the future. Second,
a highly efficient and accurate mean-flow solver is feasible using the modified BL model,
which can be further combined with, for example, the resolvent analysis to obtain the
fluctuation characteristics over a wide parameter space (Ma, Re, wall cooling, etc.), as
done by Cossu, Pujals & Depardon (2009) for incompressible boundary layers and by
Chen et al. (2023a,b) for compressible channels. Third, the two modified models can be
applied to high-speed channel and pipe flows, though we anticipate that the improvement
over the BL-local model will not be as large as that for the boundary layer cases. Two
possible reasons are that for channel and pipe flows, the TL transformation used for the
inner layer is particularly accurate, and Prt has no singularities in the near-wall region (e.g.
Huang et al. 1995; Cheng & Fu 2023).
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Case Solver Reτ Reθ H δν (µm) uτ (m s−1) −Bq Cf × 103

M2p5Tw10R17 DNS 510 2835 4.1 15.0 40.6 0 2.31
BL-local 3026 4.29 15.5 38.6 0 2.07

GFM-VD-TV 2939 4.17 15.3 39.1 0 2.13
M6Tw025R11 DNS 450 2121 8.4 8.0 33.8 0.14 1.70

BL-local 2181 8.96 8.4 32.2 0.132 1.55
GFM-VD-TV 2198 8.35 8.5 31.9 0.128 1.52

M6Tw076R17 DNS 453 9455 13.6 52.6 45.1 0.02 1.00
BL-local 10 325 14.4 55.1 41.6 0.018 0.85

GFM-VD-TV 9492 13.7 51.6 44.4 0.019 0.97
M8Tw048R20 DNS 480 9714 17.4 73.5 54.3 0.06 0.77

BL-local 9942 20.1 71.7 50.2 0.056 0.66
GFM-VD-TV 9200 19.0 66.9 53.8 0.059 0.76

M14Tw018R24 DNS 646 14 408 37.6 102.4 67.6 0.19 0.40
BL-local 13 721 43.8 109.0 62.5 0.173 0.35

GFM-VD-TV 13 451 40.9 103.6 65.8 0.179 0.39

Table 2. Some wall and integral quantities from different BL models and DNS for the ZDC cases. The
significant figures of the DNS data are the same as in the reference. Note that Cf was not listed in the reference,
so it is inferred here using ρw and uτ .

As discussed in § 3, the present modifications are limited to attached thin-layer flows
(then |ω̃| = |∂Ũ///∂n| or |∂Ũ/∂y|), so it becomes inapplicable when other components
of ω̃ are non-negligible. In this sense, the modified BL model is less general than the
baseline one. On the one hand, it is known that computing the attached thin-layer flow is
the strength of the BL model (and other algebraic ones) over other more sophisticated
turbulence models, so the present modifications to the BL model can help maximize
its strength. On the other hand, further extensions to more general flows with pressure
gradients, separation, etc., are under investigation and will be reported separately. Taking
the pressure gradient effects as an example, model improvement is anticipated owing to
the following evidence. A valuable DNS database was elaborated by Wenzel et al. (2019)
for supersonic boundary layers (Mach 2) under both favourable and adverse pressure
gradients. Their results, and also those of Bai et al. (2022), actively support the usage of
various velocity transformations for the inner layer. With rising adverse pressure gradient
strength, the VD transformation increasingly underestimates the velocity in the outer
region, but it significantly reduces the compressibility effects. Moreover, Gibis et al.
(2019) suggested appropriate compressible scalings for the outer-layer self-similarity under
pressure gradients, which could, for example, improve the Rotta–Clauser parameter used
in the CS model. Nevertheless, more non-ZPG DNS databases are highly desired in a
range of Ma and wall-cooling conditions.

5.2. Summary
Different forms of mean-flow relations for high-speed wall-bounded turbulence, including
the velocity transformation and algebraic TV relation, have been established in previous
works with increasing accuracy. The combination of these relations enables an efficient
and accurate recovery of the mean flow as an inverse problem, which is a solid mean
to accommodate compressibility effects. This thought is utilized in this work, and the
core idea is to systematically improve the BL wall model for ZPG boundary layers using
various established scalings. The objective is that BL can achieve comparable accuracy
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with the incompressible counterpart. Only well-established relations are adopted, and we
avoid introducing any new functions or coefficients fitted by ourselves. Twelve published
DNS datasets are employed for a priori inspiration and a posteriori examination. A large
parameter space is covered, with Ma∞ ranging from 2 to 14 under adiabatic, cold and
heated wall conditions (Tw/Tr from 0.18 to 1.9).

The baseline BL-local model is the classical one widely used in numerous commercial
solvers, which uses semilocal units in the inner-layer damping function, and assumes
a prescribed Prt distribution. The baseline model can well reproduce the velocity
for adiabatic cases, but deteriorates subject to surface heat transfer. Meanwhile, the
temperature prediction has obvious deviations from DNS in both adiabatic and diabatic
cases.

Three modifications are made to the formulations of μt and T̃ , corresponding to the
three shortcomings of the BL-local model. First, we show that the inner-layer scaling
of μt in BL-local is equivalent to applying the TL transformation, which degrades
in the logarithmic region in diabatic boundary layers. Therefore, we adopt the GFM
transformation instead, for improved logarithmic scaling of μt. Second, the outer-layer
μt and thus the matching location can be severely underestimated (y∗

mμ down to 40–60) in
BL-local, so the logarithmic scaling above this low y∗

mμ is not followed. For improvement,
we adopt the VD transformation in the outer layer based on the compressible defect
velocity scaling. Third, the inner layer temperature in cold-wall cases is quite sensitive
to Prt, and Prt varies considerably near the wall and exhibits a singularity around the
temperature peak. Since there lacks a unified modelling of Prt near the wall, we design a
novel two-layer formulation of T̃ . The energy equation with constant Prt is only solved in
the outer layer (y > ymT ), and the inner layer (y < ymT ) temperature is formulated by the
algebraic quadratic TV relation. The modified model is termed BL-GFM-VD-TV, where
the latter three acronyms denote the three modifications, respectively; see § 3.4.

Numerical results between all the DNS cases demonstrate that the three modifications
take effect as expected. For the mean streamwise velocity, the high accuracy of
the BL-local model for adiabatic cases is retained, while that for diabatic cases is
improved, especially in the logarithmic region. Meanwhile, significant improvement for
the temperature is realized for both adiabatic and diabatic cases, that T̃ is in close
agreement with DNS in most cases, which has not been realized before. The mean relative
errors of T̃ to DNS for all cases are down to 0.4 % measured in the logarithmic wall-normal
coordinate and 3.4 % in the outer coordinate, only around one-third of those in the baseline
model. Furthermore, a posteriori diagnosis suggests that the non-monotonic and singular
behaviours of Prt in cold-wall cases can be modelled. We emphasize that modifying only
μt is insufficient for an accurate temperature prediction in highly cooled wall cases. The
TV relation should be further incorporated in the near-wall region.

Future works will be on possible extensions of the modified models to more complex
configurations, and their behaviours in the flows with moderate pressure gradients.
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solver.
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Appendix A. Solver verification and sensitivity study

To ensure the validity of the boundary layer equations and verify our solver, we first
compare the mean flow results with Hendrickson et al. (2023), who solved the full
NS equation with BL models using the US3D code. The ZDC-M6Tw025R11 case is
computed using the standard BL model. The results are shown in figure 14(a), and
close agreement with the reference is obtained. As discussed in § 2.2, the M14Tw018R24
case is most susceptible to shock-boundary-layer interaction at the leading edge. For
further validation of the boundary layer equations at such a high Ma, we additionally
implement a second-order shock-capturing RANS simulation (Chen & Fu 2020) on a
Nx × Ny = 300 × 163 mesh for this case. The comparisons of the velocity and temperature
profiles are displayed in figure 14(b), where good agreement is demonstrated.

Next, a sensitivity study of y∗
mT is conducted. Three y∗

mT = 50, 100, 150 are selected, and
the BL-GFM-VD-TV results for two hypersonic cases are displayed in figure 15. Basically,
there is a minor difference in T̃ with varying y∗

mT . A higher y∗
mT tends to provide closer

results to DNS near the temperature peak. On the other hand, a lower y∗
mT can enhance

the computational robustness, especially at the first few streamwise locations. Thereby, a
moderate y∗

mT = 100 is used throughout.
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Figure 16. Transformed streamwise velocity using (a) TL, (b) GFM and (c) HLPP for all cases. The black
dashed and dotted lines are the incompressible DNS data from Sillero, Jiménez & Moser (2013) and Lee &
Moser (2015), respectively. The subpanels display the relative errors to DNS as described in Griffin et al.
(2021) and Hasan et al. (2023b). The legends are the same as in figure 5 (pentacles represent the legends
without symbols).

Appendix B. Results of the HLPP transformation

The very recent transformation of Hasan et al. (2023b) incorporates intrinsic
compressibility effects by introducing a correction to the TL transformation,
as

U+
HLPP(y∗) =

∫ y∗

0

1 + κcy∗Dc

1 + κcy∗Di μ̄
+ ∂y∗

∂y+ dŪ+, Dc ≡
[

1 − exp
( −y∗

17 + f (Maτ )

)]2

.

(B1a,b)

Here, Di is the classical damping function as in (3.4) representing the incompressible
counterpart, and Dc is the modified damping function to interpret intrinsic compressibility,
where the correction function f (Maτ ) = 19.3Maτ and Maτ is the friction Mach number.
The transformed velocities U+

tsf using TL, GFM and HLPP are shown in figure 16 for all
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the DNS cases (Reynolds-averaged values), and the relative errors to DNS are displayed
as a function of Maτ , following Hasan et al. (2023b). The mean errors (also defined based
on Reynolds averages) of GFM and HLPP between all cases are approximately the same,
equal to 2.2 % and 2.4 %, respectively. Note that the errors in figure 16 are somewhat
differently defined from Hasan et al. (2023b) (their figure 2) because the present errors are
based on the absolute value of the velocity difference, hence non-negative by definition
(see equation (8) in Griffin et al. (2021) and (4.1a,b) above).

The HLPP transformation can also be employed, following the procedures in § 3.1, to
improve the inner-layer scaling in the BL-local model. After incorporating VD for the
outer layer and the TV relation, the final model can be termed BL-HLPP-VD-TV. We have
also implemented this model and find that the mean relative errors in predicting velocity
and temperature are comparable with BL-GFM-VD-TV, as expected from figure 16.
Specifically, the four mean errors are εlg,U = 0.6 %, εlg,T = 0.4 %, εn,U = 1.3 % and
εn,T = 3.5 %.
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