REMARKS ON THE UPPER CENTRAL SERIES OF A GROUP
by D. H. McLAIN
(Received, 10th November, 1955)

1. Introduction. Following, for example, Kuro3 [8], we define the (transfinite) upper
central series of a group @ to be the series
1=2,<2,<%,< ... <Z,< ...
such that Z,,,/Z, is the centre of G/Z,, and if B is a limit ordinal, then Zg= U Z,. If « is the

a<f

least ordinal for which Z,=Z,,, =..., then we say that the upper central series has length «,
and that Z_= H is the hypercentre of G. As usual, we call @ nilpotent if Z,, = @ for some finite #.

By replacing the concept central element of G (i.e., one with only one conjugate in @) by the
concept FC-element of @ (i.e., one with only a finite number of conjugates in &), Haimo [5] has
defined the upper FC-series of @ to be the series

1=F,<F,<F,<..<F,<..

where F_,,[F is the set of all FC-elements of G/F,, and if Bis a limit ordinal, then Fg= U F,,

IfF,=F_,,=..., then we will call F, =F the hyper-FC-subgroup of G. o<

It is clear that F_>Z, for all «. In § 2, we investigate further the connection between the
two series. The main result is

THEOREM 1. If the centre Z, of G s torsion-free, then F, ~ H=2, for all «.

(A group is said to be torsion-free if it contains no elements of finite order, other than 1.)

Now it is well known that H is locally nilpotent, but that not every locally nilpotent
group coincides with its hypercentre. This leads us to consider the upper central series and
upper FC.series of locally nilpotent groups. We find that in a locally nilpotent group, the
hypercentre and hyper-FC-subgroup coincide, and hence deduce

CorOLLARY 1. If the centre of a locally nilpotent group G is torsion-free, then F,=Z, for
all «.

In § 3 we investigate the hypercentre H and the hyper-FC-subgroup ¥ of G under certain
finiteness conditions. These include : F@, the property of being finitely generated ; Max,
the maximal condition for subgroups ; Max-G, the maximal condition for subgroups which are
normal in @ ; and the corresponding minimal conditions Min and Min-G. Baer [1] has shown
that for H, the properties FG, Max and Max-@ are equivalent ; this is also true for ¥ (Theorem
2). The corresponding result for the minimal conditions, that H satisfies Min-G only if H
satisfies Min, does not hold, but the stronger condition that @ satisfies Min-G is sufficient to
imply that both H and F satisfy Min (Theorem 3). The results for the hyper-FC-subgroup
are generalisations of some of the results on FC-nilpotent groups (groups for which F, =@ for
some finite n) in Duguid and McLain [4]. We may remark that examples of groups which
coincide with their hyper-FC-subgroups are given by the infinite supersoluble groups defined
by Baer [2]. Indeed, Theorems 1 and 2 of Baer’s paper are both simple corollaries of our
Theorem 2.  Mal’cev [9] has proved the existence of groups with lower central series of
arbitrary length. In §4 we do the same for the upper central series. Explicitly, for any
ordinal «, there exists a group @ with upper central series of length «, terminating in G.t

t Added in proof. This has also been proved by V. M. Gludkov, Mat. Sb., 31 (1952), 491496, and by
S. Moran (to appear). I am grateful to Dr. K. A. Hirsch for these references.
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2. The upper central and upper FC-series.

LevmMa 1. If x belongs to the hypercentre, but not to the centre of G, and z" belongs to some
term of the upper central series to which x does not belong, then there is an element g of G such that
y =[x, g] and y™ also belong to different terms of the upper central series.

(Here, [z, g] denotes, as usual, the commutator z—1g—lzg.)

Proof: If 2" #1, let « be the least ordinal for which z"¢Z,. Then « is not a limit ordinal,
and so x"¢Z,_,. If2"=1, welet a=1.

In each case the hypothesis asserts that z¢Z,. Hence there exists geG' such that
y=[x,9]¢Z,_,. Now y belongs to some term in the upper central series (since z does), so
there exists a least ordinal 8 such that yeZg. Then B is not a limit ordinal, and y¢Z, ;. Now y
belongs to Z,, but not to Z,_;, so B>« —1. Therefore 8>«, and z"<Z;. Thus both y =[z, g]
and z" belong to Zg, and this is the centre of @ modulo Z;_,. Hence

yr =[xz, g]*=[2",g]l=1 mod Z,_,.
So y does not belong to Zg_,, but y™ does. This completes the proof of the lemma.
This lemma implies that Z,_,/Z, can contain an element of order n only if Z, contains an
element, not 1, of order dividing #. In particular,

LemMA 2. If the centre Z, of a group is torsion-free, then so is every factor group Z, ,/Z, of
the upper central series.

Proof : If the lemma is false, let « be the least ordinal such that Z, ., /Z, contains & periodic
element zZ,, not the identity. Then zeZ_,,, 2¢Z, and z"eZ, for some integer n. Let y=[z, ¢]
be chosen as in Lemma 1, so that, if g8 is the least ordinal for which yeZg, then 8 is not a limit
ordinal, y¢Zs_, but y"eZyz_,. Therefore Zg/Zg_, contains a periodic element yZg_,. Clearly
az=f>pB -1, and this contradicts the definition of «. Therefore the lemma is true.

Proof of Theorem 1 : We use transfinite induction, and assume that Fg~H =Z; for all
ordinals 8 less than «. (The assertion is trivial when 8=0, since Fy=2Z,=1.)

If « is a limit ordinal, then

=U Z= U (Fﬂr\H)= U FgnH=F,~H.
B<a B<a

If «=B+1 for some B, let  be an arbitrary element of F, ~ H, and suppose that z¢Z,.
Then there exists an element g of @ such that [z, gl¢Z;. Now [z, g] belongs to H, since z does,
so there exists an ordinal y such that [z, gleZ, and [x, g]¢Z,_;. Clearly y>p, s0 Z,_=>Z,.

Now z has only a finite number of conjugates mod F,, so among the elements g—"xzg",
(n=0,1,2,...), two must be conjugate mod Fz. Therefore x =g-"29" mod Fj, for some n>0.
Hence [z, g"] =x~1g~"2g"eFy. But xeH, so [z, g*JeH. Therefore

[x, 9" e Fg ~n H=24<2,_,.
But [z, ¢] lies in the centre of G mod Z,_,. Hence
[z, ¢9]" =[x, g"]=1 mod Z,_,.

Thus we find that {z, g] belongs to Z, but not to Z,_,, and [z, g]" belongs to Z,_;. This contra-
dicts the result of Lemma 2, that Z,/Z,_, is torsion-free.
Therefore zeZ,, and so Z,>F, ~ H. But inany group, Z,<F, ~ H,s0 Z,=F, ~ H, and the
proof of Theorem 1 is complete.
LeMma 3. If G is a locally nilpotent group, and x 13 an FC-element of G, then x belongs to
Z,, for some finite n.
Proof : Let x==,, z,, ..., Z,, be the conjugates of x in G. Any inner automorphism of ¢
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permutes the {z;}, so there is a finite number (at most m!) of elements g, ..., g, of G such that
any element g of G permutes the {z;} in the same way as one of the g;.

Let K =Gp{z, 9;, ..., g,}. K is finitely generated, and hence nilpotent : Z,(K)=K for
some n.

If X =Gpg{x}=Gp{z,, ..., x,} is the least normal subgroup of & containing z, then we
will prove by induction that Z,>X ~ Z,(K), (k=1, 2, ...). Thisis true if k=0, so we assume
that

Zk—1>X m Zk—l(K)
and that y=z22? ... 2¢ is an arbitrary element of X ~ Z,(K). Let ge@, and let g, permute
the {X;} in the same way as g. Since yeZ,(K), it commutes with g, mod Z,_,(K). Hence
[y, 91=[y 9;] € Ze1(K).
Also, [y, gleX, so [y, g] belongs to X ~ Z,_,(K), and hence to Z,_,. As this is true for all
geG, y belongs to Z,. Hence
Z,=>X~Z(K) (k=1,23,...).
In particular, xe X ~ Z,(K))<Z,, and the lemma is proved.

LeEmma 4. If G is locally nilpotent, then 2, < F,<Z,, for all «. (Here w denotes the first
limit ordinal.)

This follows from Lemma 3 by transfinite induction. We omit the details.

Corollary 1, stated in the introduction, follows immediately, since if @ is locally nilpotent,
then F,< H by Lemma 4,80 F, =F, ~ H,and if the centre of G is torsion-free, then Theorem 1
states that F, ~ H=2Z,.

3. The finiteness conditions.

THEOREM 2. The following properties of the hyper-FC-subgroup F of G are equivalent :

(@) F satisfies Max-Q,

(b) F satisfies Max,

(c) Fis FG,

(d) F is a finite extension of an FG nilpotent group.

Proof : . If F satisfies Max-@, let K be a normal subgroup of G, maximal among those
which are contained in F and which satisfy Max, and suppose that K #F. Now F/K contains
an element z, K # K which is FC in G/K ; let its conjugates be z,K, z,K, ..., 2, K. Then

L =Gpx,, ..., z,, K}
is a normal subgroup of G, and F>L>K. Now L/K is an FG, FC-group, and so satisfies Max
(for example, [4]). Since Max is a poly property (see P. Hall [7]), L satisfies Max, and this
contradicts the definition of K. Thus (a) implies (b), so (a) and (b) are equivalent.

Now (b) implies (c) in any group, and (d) implies (b), since every FG nilpotent group
satisfies Max, and, as we noted above, Max is a poly property.

To prove that (c) implies (d), we use a result in [4] that every finitely generated FC-nilpotent
group is a finite extension of a finitely generated nilpotent group. Hence we have only to
prove that a FG group with upper FC-series

1=F<F <..<F,=@
actually has F, =@ for some finite n. Let S={g,, ..., g} be the set of generators of G and
their inverses, and let = be one of the g,eS. We define a finite get X, <G inductively. Let X,
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contain only z. If we have defined X,, let «, be the least ordinal such that X,gF,r. If
F, #1, then «, is not a limit ordinal (since X, is finite). Hence X, is FC in G mod a1
Therefore there is a finite set X*>X, such that, for any yeX¥ and g,eS, there is an element
yreX)¥ for which g, =y;'9; 'Y€l 1. If we define X, , to be the set of all these y,;, then
X,y i8 finite.

Now «), a, ..., «,, ... i8 & set of ordinals with the property that if «, #0 then a,>ea,.,.
Hence «, =0 for some n. Thus X,=X*=1=F,.

Assume now that X} <F, If X¥ | ={y,..., ¥} then for any y,eX* . _,, g.eS, there
exists a y,eX¥ | such that

Y5 97 g € X <X <F,.

Hence g7 1y,9, =y, mod F,, for some k. Since any element of G is expressible as a product of
elements of S, this shows that X*___, is a complete set of conjugates mod F,, and hence that
any y.eX¥ . is FCmod F,. Therefore X} _,<F,,. By induction, this is true for all r.
In particular,

z=X,<X¥<F, ;.

Thus each element g, of § belongs to F, for some finite 7, and therefore G =F,.

This completes the proof of the theorem.

The corresponding result for the minimal conditions, that if F (or even H) satisfies Min-@
then it satisfies Min, is not true, as the following example shows.

Example. Let H be the direct product of the cyclic groups of order a prime p,

H={z}x{z} x... .
Let G, =Gp{H, g} (=2, 3, ...), where g; commutes with all of the z, except z,, and
g,-_lzigi=z-‘—1zi-

Now let G be the free product of the groups G;, amalgamating the subgroup H.
It is clear that the 7th term of the upper central series of @ is given by

Z,={z} x{z} x ... x{2,},

and that H is the hypercentre. (It is also the hyper-FC-subgroup of @.) Now the only sub-
groups of H which are normal in @ are the Z,, since if a normal subgroup N of G contains
x=2725" ... 2%, r,#0, then it contains [z, g,] =2,%, and consequently {z,_,}, {Z,_s}, ---, {1},
and therefore also {27} ={z,}, i.e., N>Z,. Since the Z, form a well ordered chain, H satisfies
Min-G. But H, being an infinite direct product, does not satisfy Min.

TBEOREM 3. If G satisfies Min-Q (the minimal condition for normal subgroups), then H and
F both satisfy Min.

Proof : Since F contains H, it is sufficient to show that F satisfies Min.

We use the lemma proved in McLain [10}, that if @ satisfies Min-@ and K is the {unique)
minimal normal subgroup of finite index in G, then Z,(K) satisfies Min, and Z,(K)=Z,(KX).

Suppose that F ~ K is not contained in Z,(K). Let « be the least ordinal for which there
exists an z ¢ ¥, ~ K such that z¢ Z,(K). Then « is not a limit ordinal, and z has only a finite
number, say r, of conjugates mod F,_,. Clearly, z has only r conjugates mod F,_, ~ K, and
hence has at most » conjugates mod Z,(K). Therefore the centraliser of z in & mod Z,(K)
has index at most r in G, and so contains K. (Any subgroup of finite index in & contains K.)
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Thus z belongs to the second centre Z,(K) of K and so to Z,(K). This contradiction proves
that

F ~ K< Z,(K).
Hence F ~ K satisfies Min. But F/(F ~ K)= KF|K which is & subgroup of the finite group
GQ/K. Hence F/(F ~ K) is finite and since Min is also a poly property, F satisfies Min.

CoroLLARY 2. If @ satisfies Min-G, then the upper central series has length less than w2,
and the upper FC-series has length at most 2.

Proof : P. Hall’s strict inclusion theorem for the finite upper central series of a group [6]
may be easily extended to the transfinite case to read : If N is a normal subgroup of G, and
NAZ,=N~2Z, ,then N~ Zg=N~Zg,, forall B>a. (Detailed proofisnot given. We may
remark that the corresponding result for the FC-geries is also true, but will not be re-
quired.)

Since Z,(K) is the direct product of a finite number of groups of type (p®) with a finite
group, any element x of H ~ K< F ~ K< Z,(K)is contained in a finite characteristic subgroup
X of Z,(K). X is normal in @, so we can apply the strict inclusion theorem. Thus, if X is
not contained in Z,, then X ~ Z,>X ~ Z,_,>...>X ~ Z,=1, s0, since X is finite, X< Z, for
some finiter. Hence H ~ K =H ~ Z(K)<Z,, and so H|Z, is finite. Therefore H=2,,, for
some finite ».

The centraliser of Z,(K) containsg K, and so has finite index » in G. Hence any element of
Z,(K) has at most n conjugates in &, and so Z,(K)<<¥,. Thus we can sharpen the equation
F ~ K< Z(K) to the equation F;, ~ K =Z,(K). Therefore F/F, is finite, and so F =F,,

4. A group with transfinite upper central series.

Construction : Let A={A, u, v, ...} be a partially ordered set (henceforth a ‘‘ poset '), and
let L be the set of all pairs (u, v) for which u<<v. Denote by G, the set of all elements of the
form g=1+ Za,,e,,, where each (s, v)eL, the a,, belong to a field X and only a finite number
are different from zero. G becomes a multiplicative group if we define multiplication by

oo Lt if A=p,
«“w =10 otherwise.

We call a subset S of L a normal partition if, for every (u, »)eS, S also contains each («, A)
with «<<p<v<<A. For such an §, let G denote the set of all elements of Gy such that
a,, #0 only if (i, v)eS. It is easy to see that Gy is a subgroup of Gy, and is generated by the
set of all 1 +ae,,, ae¥, (uv)eS. (The details are omitted.) In particular,

G, =Gp{l +ae,,, acK, (uv)eL}.

uv?

If (u,v)eS, (x,A)eL, then
1 +abe,, if v=rx,

1+be,]=< 1-abe, if A=p, 5, v (1)
1 otherwise

[1+ae,,
and belongs to Gy in each case. Hence Gy is a normal subgroup of Gy. _

The group @, is a generalisation of the case when A is a chain of n elements. G, is then
the well known group of all # x » unitriangular matrices over X, and the normal partition
subgroups are the normal partition subgroups as defined by Weir [11].

Lemwma 5. The centre of Gy, modulo the normal partition group Gg ts the normal partition
group Gy, where T is the set of all (A, p)eL such that k<< X implies (k, p)eS and p<v implies
(A, v)eS.
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Proof : By equation (1), the generators of @ and Gy commute mod Gy, so G is contained
in the centre of Gz mod Gg.

Let g=1+ Za,.e,, be in the centre of Gy, mod Gy, and let (£, {)eL. Then the coefficient
of e, in h=[g, 1 —e,] is a;,. Since heGy, this implies that if @,, #0 and k<A, then (k, u)eS.
Similarly, if a,, #0 and v>p, then (A, v)eS. Hence geGr, and the proof of the lemma is com-
plete.

Now the union of a tower of normal partition subgroups is itself a normal partition
subgroup, so all the terms of the upper central series of Gy, are normal partition groups. If
Z(G1) =Gp, then we donote 7' by S=.

THEOREM 4. For any transfinite ordinal o, there exists a poset A=A, such that Z,(Gr) =Gy,
but ZB(GL) # GL ’Lf ﬁ< o.

Proof : If a is finite, we can take /, a chain of « +1 elements. Gy, is then nilpotent of
class «. We use transfinite induction, and assume that, for all 8<«, there is a poset A, such
that

(@) S§=Ly, but 8y +Lg if y<8B,

(b) Ag satisfies the ascending and descending chain conditions,

(c} if B is a limit ordinal, then /g is the cardinal sum of all the 4,, y<f (see Birkhoff
[3], p. 7, for the definition of the cardinal sum of posets), and

(d) if 8=y +1, then there exists a unique minimal element ¢ of 4,, and another element
ey for which (£, A)¢.Sy.

Case 1. If o is a limit ordinal, we take A=/, as the cardinal sum of the /g, f<a. G
is the direct product of the Gz, and the induction hypotheses are satisfied.

We now require two lemmas.

LevmMa 6. If A, and A, are two posets (A, py)elq, (Ag, po)eL, and there is a one-one, order-
preserving mapping between the sections of the A; less than A; and between the sections greater than
s then (Ay, 1y)eS2 of and only if (A, po)eSe.

This follows immediately from Lemma 5.

LemMma 7. If A, satisfies (a), ..., (d), and A, is formed by the addition of one element ¢ less
than every element of A, then (u, v)eS3 implies (n, v)eS3*1.

Proof, by transfinite induction : The lemma is true when o« =1, so assume that it holds
for all B< & and that (u, v)eSs.

If « is a limit ordinal, then (u, v)eS? for some S<«, and so (i, v)eSE+HI << Sy+1.

If =B +1, suppose that (u, »)¢S3+1. Then, by Lemma 5, there is either a (v, p)eL, with
(1, p)¢S5, or else a (A, p)eLy with (A, v)¢Sz. In the first case, and in the second case if A# £, the
induction hypothesis asserts that (u, p) or (A, v)¢Sf. Hence, by Lemma 5, (g, v)¢S5+1, which
is a contradiction. In the second case if A =, we may assume that p is a minimal element of
A, (otherwise the previous argument holds). Applying Lemma 6, (£, v)¢S; implies that
(1, »)¢83. This is a contradiction, and Lemma 7 is proved.

Case 2. If a=B+1, where B is a limit ordinal, we form A=A, by adding two elements
€< { less than /. )

Suppose first that (¢, {)eSB. Then (¢, {)eS” for some y<pB, and so (¢, u)eS? for all
pedg. For any ued, ), let A be the minimal element of 4,,;,. We can apply Lemma 6 to
(A, p) in 4,,, and (¢, p) in 4, to find that (A, n)eSy ;. This contradicts property (d) of 4,,;.
Hence (¢, {)¢S°.
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For any (A, peLy, (A, n)eSE for some y<<B; so, applying Lemma 7 twice,
(A, p)eSr+2< SB,

Also (¢, ) and (¢, p) belong to 87+2, as this is a normal partition. If A is a minimal element
of Ag, then Aed,, for some y<< B, and the above argument shows that, for any u>2, (£, p)eS7+2.
Then, by Lemma 5, (£, A)eS*+3 and (£, A)eSv+4.

Thus (¢, {) is the only element of L not in S?, so, by Lemma 5, SF+1 =L, and A satisfies
@), ..., ().

Case 3. If a=B+2 for some B, we form A=A, by adding one element ¢ less than Ag,;.

Let A be the minimal element of Ag,,, and (A, u)¢S5_ ;. By Lemma 6, (£, u)¢S?. Therefore

(Lemma, 5) (£, A)¢S#+1. Now for any pedg,y, p#A, (A, p)eSEE1. So, by Lemma 6, (¢, p)eSPHL.

Also, if p<o <7 all belong to 4g,,, then (p, 1)5:5'5 1 (otherwise, by Lemma 5, (p, o) would not

belong to S511), and so, by Lemma 7, (p, 7)eSP+1.

Thus §#+2 contains every element of L except (£, A), and possibly some (p, 7)ely,, for
which there exists no element oe/g,, such that p<< o< 7. By Lemma 5, §5+2 must be the whole
of L. Hence A satisfies conditions (a), ..., (d).

This completes the proof of Theorem 4.

Remark. Ifkhasprime characteristic p, then Gy, is a locally finite p-group. If ¥ has zero
characteristic, then Gy, is torsion-free. In the latter case, by Theorem 1, the upper FC-series
of G, coincides with the upper central series, and so has length «.

Added in proof. Another group with upper FC-series of arbitrary length has recently
been constructed by A. M. Duguid.
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