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Abstract

The flow caused by a point sink immersed in an otherwise stationary fluid is in-
vestigated. Low Froude number solutions are sought, in which the flow is radially
symmetric and possesses a stagnation point at the surface, directly above the sink,
A small-Froude-number expansion is derived and compared with the results of a
numerical solution to the fully nonlinear problem. It is found that solutions of this
type exist for all Froude numbers less than some maximum value, at which a sec-
ondary circular stagnation line is formed at the surface. The nonlinear solutions
are reasonably well predicted by the small-Froude-number expansion, except for
Froude numbers close to this maximum.

1. Introduction

This paper is concerned with the steady flow induced by a stationary point
sink fixed beneath the free surface of an otherwise quiescent fluid of infinite
depth. The fluid will be assumed to be ideal, in the sense that it is incompress-
ible and inviscid and flows irrotationally. A surprising and counter-intuitive
consequence of this assumption is that there is now no mechanism for dis-
tinguishing between the effects of a sink or a source submerged beneath the
surface; the streamlines are identical in each case as is the shape of the free
surface, and it is only the direction of flow along the streamlines which is
affected. It is therefore possible that (at least) two solution types might ex-
ist to this problem, with one type perhaps corresponding to flow produced
by a sink, and the other caused by a submerged source. In that case, some
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additional information concerning the flow type sought might need to be
provided, before the solution can be commenced.

There is available some experimental evidence for the existence of two
different flow types produced by a submerged sink or source. Imberger [9]
identified a low-Froude-number type in which a stagnation point was present
on the surface directly above the sink, and a high-Froude-number solution
type in which the free surface was drawn downwards by the sink to form
a cusp. His experiments apparently indicated that, at some critical value
of the Froude number, the flow observed in the laboratory flume “jumped”
from one solution type to the other. However, the experiments do not iden-
tify one solution type with a submerged source and the other with a sink,
suggesting that the lack of distinction between a source or a sink evident in
the mathematical model may actually be a feature of the physical problem.

In the case of two dimensional flow, in which the disturbance is a sub-
merged line source or sink, there has been some recent success in computing
solutions of the second type, where a vertical cusp is present at the surface.
Tuck and Vanden-Broeck [16] obtained a numerical solution with a cusped
free surface at a unique value of the Froude number, in the case when a line
sink is present beneath the surface of a fluid of infinite depth. Their work
was extended by Hocking [7] and Vanden-Broeck and Keller [17] to flows in
the presence of either a flat or a sloping bottom boundary, and Collings [3],
Vanden-Broeck and Keller [17], Hocking [8]) and King and Bloor [10] have
obtained closed-form solutions for cusped flow due to a submerged line sink
at infinite Froude number (corresponding to the acceleration of gravity being
exactly zero).

Rather less success has been achieved in the attempted computation of two-
dimensional solutions of the first type, in which a stagnation point is present
at the surface immediately above the submerged line sink. The problem
seems first to have been addressed by Peregrine [14], who sought a solution
in the form of a perturbation series in the Froude number based on the source
strength and its submergence depth. He obtained plausible-looking solutions
having the anticipated free-surface stagnation point, and noted that as the
Froude number was increased, waves appeared near the stagnation point.
The existence of a maximum Froude number was postulated, beyond which
solutions of this type would not be possible. Peregrine’s solution was re-
examined by Vanden-Broeck, Schwartz and Tuck [18] in a somewhat more
general context, and it was shown that the perturbation series in powers of the
Froude number is in fact divergent everywhere, so that the solution obtained
by Peregrine can at best only serve as an asymptotic approximation to the true
solution (if one exists). Tuck and Vanden-Broeck [16] refer briefly to these
solutions at the beginning of their paper, and describe preliminary results of
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their numerical computations, which again indicated the presence of small
waves near the stagnation point and suggested that such solutions only existed
for Froude numbers less than about two.

In this article we present numerical solutions of the first type, having a
free-surface stagnation point, for the three dimensional problem involving
a submerged point sink or source. In addition, we derive a low-Froude-
number solution in Section 3, which is the three-dimensional counterpart to
Peregrine’s expansion.

Unlike the corresponding two dimensional problem described above, in
which solutions with a stagnation point are evidently difficult to obtain, the
numerical method to be detailed here has generated reliable axisymmetric
solutions in a relatively straightforward manner, apparently for the first time.
It is found that there exists a maximum Froude number beyond which it
is apparently not possible to compute nonlinear solutions of this type; this
breakdown of the numerical scheme is examined in Section 6, with reference
to the experimental work of Lawrence and Imberger [12] and some recent
numerical work by Blake and Kucera [2].

2. The governing equations

Consider a stationary fluid of density p acted upon by the downward
acceleration of gravity g and having infinite depth. Locate a Cartesian co-
ordinate system such that the z-axis points vertically, and the x — y plane
is coincident with the plane of the undisturbed surface of the fluid. It is
assumed that the fluid is both incompressible and inviscid.

Suppose a point sink is now located a distance H beneath the origin of
the Cartesian coordinate system. The sink has strength m/4z, so that it
produces a total flux m (fluid volume per unit time). After waiting for
transients to die away, a steady-state response will be achieved, in which the
free surface of the fluid no longer occupies the plane z = 0, but instead
will have some other shape to be determined. For the branch of solutions
sought here, the free surface will possess a stagnation point at the origin of
the coordinate system,

It is convenient to define dimensionless variables immediately, and these
will be used exclusively from now on. All lengths are made dimensionless
with respect to the submergence depth H of the source beneath the origin,
and velocities are referred to the scale m /H2 . Because the fluid is assumed
to be ideal, it may be taken to flow irrotationally, and so the fluid velocity
vector may be written as the gradient of a velocity potential ® ; this function
is non-dimensionalised with respect to the quantity m/H . It is apparent that
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solutions to this problem depend only on the single dimensionless parameter
FP=m’/gH’, 2.1)

which is the square of the Froude number F .

The anticipated solution to this problem is required to possess axial sym-
metry, and for this reason it is natural to introduce cylindrical polar coordi-
nates (r, 6, z) at this stage. These are related to the Cartesian coordinates
x and y by the usual formulae x = rcosf, y = rsinf. The incompress-
ibility of the fluid leads at once to the requirement that the velocity potential
®(r, z) satisfy Laplace’s equation

Vo=0, +(1/r)®, +®,, =0 (2.2)

in which the subscript variables denote differentiation with respect to that
variable. Equation (2.2) holds everywhere within the fluid region, except at
the submerged sink where @ becomes singular according to

1 1
47 [r? +(z + 1)?]

Let the shape of the free surface be given by z = {(r) ; then the statement that
the fluid is not free to cross its own surface leads to the kinematic condition

® =0  onz={((r). (2.4)

In addition, Bernoulli’s equation within the fluid coupled with the require-
ment that the pressure on the surface be everywhere equal to atmospheric
pressure gives rise to the dynamic free-surface condition

%Fz(d-"f +0)+z=0 onz={(r), (2.5)

where F is the Froude number defined in (2.1). The system of equations
(2.2)-(2.5) coupled with the statement that @ and its first derivatives vanish
at infinity represents the complete mathematical model of the phenomenon.
As explained in the introduction, however, such a model may not possess a
unique solution,

We now derive an integral equation for the velocity potential ¢ at the
free surface. Let point Q on the free surface of the fluid be a fixed point
with coordinates (x, y, {(x,y)) in the Cartesian system and (r, 6, {(r))
in cylindrical polars. Define a second point P which is free to move about
within the volume V shown in Figure 1; in Cartesians, P has coordinates
(¢, n, u) and in cylindrical polars, it is represented as P(p, B, u), where the
usual relations £ = pcos B, n= psin § apply. The volume V encompasses
the entire fluid region, with the exception of the surface point Q which is
excluded by a small hemispherical surface SQ centred at Q. The sink at the

7z as (r, z) = (0, —1). (2.3)
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Z A

FIGURE 1. Volume V and its bounding surfaces used in the derivation of the integral
equation.

point (x, y, z) =(0, 0, —1) is also excluded from volume V by the small
spherical surface S, which is centered at this point. If the distance between
points P and Q is written R PO then the function

1 1

Rpp  [(x-&*+(—n’+(z - wh'?
1
[P+ 97 = 2rpoos(B — 8) + (z — p)*1' 2
is thus harmonic within the volume ¥ shown in Figure 1. Therefore, by
Green’s second identity, we may write

0 1 1 0
I, o3 () - w52 as=o. @)

where n denotes the unit normal to the boundary surface 9V of volume
V', chosen to point out of the fluid region. The closed boundary surface 8V
may be written

(2.6)

OV =8 +S8,+S,+S5,, (2.8)

in which S, denotes the entire fluid free surface with a small circular disc
about the point Q excluded, SQ is a small hemispherical surface centred
at Q, S, is a small spherical surface centred at the sink point and S, isa
hemispherical surface of arbitrarily large radius centred at the origin of the
Cartesian coordinate system. These surfaces are all displayed in Figure 1.

It is necessary to evaluate the contribution to the integral in (2.7) from
each of the surfaces in (2.8). Far away from the point sink, the velocity
potential must behave like the function 1/27R as R — oo, which follows
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from (2.3) and the method of images, since we are seeking a solution with
a free surface stagnation point. Accordingly, the contribution from surface

S, becomes
1 1 1 1
—_ =]+ = —= y
2nR (RZ) R (anZ)J

which is zero. A similar argument shows that, as the hemispherical surface
SQ is allowed to shrink to the point @, the contribution to the integral
from this surface becomes 2n®(Q), and that the contribution from surface
S, becomes —[r2 +(z+ 1)2]_1/ 2 a5 the radius of this surface is allowed to
approach zero. This then leads to the desired integral equation for @ at the
free surface, in the form

1
270(0) = +(z+l 7 // an,,( PQ) s,,  (2.9)

in which the kinematic surface condition (2.4) has been used to set the quan-
tity 0®/dn to zero, on the punctured free surface S .

It is convenient at this stage to remove the singularity in the integrand of
the integral appearing in (2.9). This is done in the usual way, by adding and
subtracting a term which has the same degree of singularity as that already
present in the integrand. Thus the integral on the right hand side of (2.9) is
re-written in the form

o [ 1 1
/ [ ey (m—) ds, / [D(P) - DQ)] 5 ( RPQ) ds,
+¢(Q)// ( ) ds,. (2.10)

A straightforward Taylor expansion shows that the integrand of the first
integral on the right hand side of (2.10) is now nonsingular, as intended.
The second integral may be evaluated in closed form, using a device based
upon Gauss’ flux theorem and apparently first proposed by Landweber and
Macagno [11]. Since the function 1/R PO defined in (2.6) is harmonic within
the volume V shown in Figure 1, we have

a 1
— | =—1]dS,=0, 2.11
./\/B‘V 3"p (RPQ) d ( )

in which the boundary surface 8V is made up of the four component sur-
faces given in (2.8). The contribution from each of these surfaces to the
integral in (2.11) must again be evaluated. Proceeding as before, we find that
the surfaces S_ and SQ contribute amounts —2n and 27 respectively, as

lim 27R>
R— o0
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might be expected on physical grounds, and that the surface S, gives a zero
contribution to the integral. Thus (2.11) shows that the integral over surface
Sy is zero, so that the second integral on the right hand side of (2.10) may
be deleted. This method of treating the singular integrals arising in a more
general three-dimensional free-surface calculation has also been employed
recently by Forbes [6].

In view of the fact that the integral in (2.9) has now been rendered nonsin-
gular, the domain of integration may be taken to be the whole free surface,
instead of the punctured surface S,.. The surface integral is then evaluated
using the familiar result

_dcdn _ pdpdp
In.K| nk| °’

ds,

in which the upward-pointing normal n to the free surface is given in cylin-
drical polar coordinates as

i —C'(p)e, +k
[1+ (L' (p))1?

and the symbol e » denotes the unit vector in the radial direction p. After
a little algebra, the integral equation (2.9) is obtained in the form

1
TP+ (z+ AP

where the kernel is given by

27d(Q) /(;oo[d)(P) -P(Q)K(a, b, c,d)dp, (2.12a)

a—bcos(f -6)
[c —dcos(B — 6)]3/2
and we have defined auxiliary functions

a=pl,(P) - (L(P)-L(Q), b=rl,(P),
c=p +r+(L(P)-CL(Q), d=2rp. (2.12¢)

]K(a,b,c,d)=p/2n dp (2.12b)
0

We show in the appendix that the kernel defined in (2.12b) may be re-written
in a form more convenient for numerical computation as

4y 2d ad — bc 2d
o, 6red) = 5 e () 1 e (2 )y

where K and E are the complete elliptic integrals of the first and second
kinds respectively, as defined by Abramowitz and Stegun [1, page 590].

The numerical solution of this problem is accomplished most efficiently
by associating with the surface point Q an arclength s along the surface,
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as described by Miksis, Vanden-Broeck and Keller [13] and Forbes [5]. We
assume that s =0 at r =0, and define s according to the relation

(g-;)l (%)2 1 (2.14)

A surface velocity potential ¢ is now defined as ¢(r(s)) = ®(r, {(r)), and
it follows at once from the chain rule of calculus that

¢

a¢ =0 (r, () +O,(r, c)d (2.15)

The kinematic condition (2.4) is used to eliminate the velocity @, from the
Bernoulli equation (2.5) and the relation (2.15), which are then combined to
give a single condition

EF (z‘f) +{(s)=0 (2.16)
to be applied along the free surface. The final form of the integral equation
(2.12) in terms of arclength is

1
[7*(s) + (¢(s) + 1)

2n(s) = - [ 0(0) - 6K, B, C. D)do,

(2.17a)
where o is the arclength associated with surface point P and

A=r(0)'(0) - rF(ONLe) =),  B=r(s)¢ (o),
C =r(0) +r3(s) + (L(0) = ()}, D=2r(s)r(g). (2.17b)

Equations (2.14), (2.16) and (2.17) thus represent a complete statement of
the problem to be solved.

3. Small-Froude-number expansion

An asymptotic approximation valid for small Froude numbers is derived
after the fashion of Peregrine [14], assuming the regular expansion in powers
of the Froude number

@(r, z) = y(r, z) + F'®,(r, z) + O(F")
¢(r) = F*Z,(r) + F*Z,(r) + O(F®). (3.1)

The expansions (3.1) are substituted into the system of equations (2.2)-(2.5)
and at the first order, it is found that the potential @, satisfies the Laplace
equation (2.2) and the normal-derivative condition d9,/3z = 0 on the plane
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z = 0. The method of images, subject to the condition (2.3), at once yields
the solution for @, in the form

1 1 1
D, (r,z)=— + , 3.2
and the first-order approximation to Bernoulli’s equation gives
2
1.2 r
Z(N=—=0,(r,0)= ——5———. 3.3
()= =39, 0=~ g s (33)

At the second order, the potential function @, is again found to satisfy the
Laplace equation (2.2) in the lower half-space z < 0, and the approximation
to the kinematic condition (2.4) at this order becomes

r2( 4 — 5r2)
16732 + 1712
It is clear that the solution of Laplace’s equation with radial symmetry must
involve the Hankel transform of order zero, in the form

@, (r,0) = Z{(N®, (r, 0) = Z,(NP,_(r,0)= (3.4)

®,(r, 2) = /0 ” M) Iy (k) dk, (3.5)

where J; denotes the Bessel function of order zero and M (k) is a function
to be determined. When (3.5) is substituted into (3.4), there results the
equation

r2(4 - 5r2)
162°(r% + 11'1/%°
from which M(k) may be determined immediately, using the fact that the
Hankel transform and its inverse are symmetric. Therefore,

1 [ 5 14
Mk =—~/ rl- +
(k) 1673 Jo [ irr+ 1777 1 +1)°2

/ > kM (k)J,(kr)dk = (3.6)
0

9
where partial fraction decomposition of the right-hand side of (3.6) has been
employed. It turns out that each of the integrals in (3.7) may be evaluated in
closed form using Prudnikov et al. [15, page 179 formula 29), for example.
The result involves modified Bessel functions of the second kind of negative

half-integer order, but since these are elementary functions, some algebra
yields the final solution

Jolkrydr, (3.7)

_eTM @k ek — kY
16807° ’

M(k) (3.8)
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The solution for @, is given by (3.5) and (3.8), and may be written

1 ® 2 3 4, —k(l1—z)
®\(r, 2) = —— /0 (47 + 4% — Kl ™D 1 kryak. (3.9
Each integral in this expression can again be evaluated in closed form, using
Erdélyi et al. [4, page 182 formula 9], for example, and involves Legendre
functions of the first kind of integer order. Since these functions are sim-
ply polynomials in this case, the solution may again be written in terms of
elementary functions after some algebra, according to

1 4 12(1-2zP2-36(1-2z)—9
@(r, 2) = 3| 3 T ( ) s( )
1680n Rl Rl
3 2 4
L 60(1 - 2) +790(1—z) _ 105(19—2) (3.10)
Rl Rl

where we have defined R, = [r2 +(1- 2)2]1/ 2 for convenience.

The second-order approximation to Bernoulli’s equation (2.5) becomes
Zz(r) = _¢0’(r9 O)(Dl’(r, 0),
from which it is possible to compute the second-order term in the expansion

for the surface elevation in a straightforward manner. Inserting the result
into (3.1) gives the surface profile

F2r2
= - 87t2(r2 +1)3
L _F¥ 4 55 350 315
11207 | (P +D*  (P+1)° 2+ 1% P+ 1)
+ O(F®). (3.11)

It will be seen later that (3.11) provides a good estimate of the surface shape
over much of the interval of values of F for which solutions of this type can
be found.

4. Numerical methods

This section gives a brief summary of the numerical method used to solve
the nonlinear system of equations (2.14), (2.16) and (2.17). The domain
0 < s < oo of the independent variable s is truncated to some finite interval
over which N equally-spaced numerical grid-points s, =0, s,, ..., sy are
placed, separated by uniform point spacing /4. The dependent variables are
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represented by a set of discrete values at these grid points. At the first grid
point, the condition r, =0 at s =5, is imposed.

An initial guess is now made for the unknown values of the surface veloc-
ity potential, ¢,, ¢,, ..., ¢, at each free-surface grid point, and these will
eventually be updated by a Newtonian iteration scheme. All the other depen-
dent variables are next computed, on the basis of this guess for the function
¢ . The derivatives ¢, ¢,, ..., ¢y are obtained by exact differentiation of
a cubic spline fitted through the assumed values for ¢, and the surface con-
dition (2.16) then yields the surface elevations ¢, {,, ..., {5 . Notice that
there is no special treatment given to the first grid point s = 5, in spite of the
fact that a stagnation point is expected there. For this reason, the present nu-
merical method is not restricted just to solutions involving stagnation points,
and should be capable of detecting other solution branches, if these exist.

The surface elevation values thus obtained are differentiated using cubic

splines to give |, {;, ..., {y, and (2.14) provides an immediate means for
the calculation of r{, ry, ..., ry. Finally, a cubic spline is fitted through
these values and integrated exactly to generate the quantities r,, ..., Iy

using the additional requirement r, = 0 as an initial condition.

The initial estimate for the values of the surface velocity potential ¢ is
now updated iteratively, using Newton’s method to enforce the satisfaction
of the integral equation (2.17a) at each of the mesh points s5,,s,, ...,y
The integral in (2.17a) is evaluated numerically by first truncating its domain
of integration to the finite interval 0 < s < s, and then approximating
the resulting proper integral using exact integration of a cubic spline which
interpolates values of the integrand at the grid points. Since the singularity
has been removed from the integrand in {2.17a), using the device described
in (2.10), no difficulty is therefore encountered when ¢ = s in (2.17a). In
fact, the kernel function K has a logarithmic singularity in the limit ¢ — s,
but this is multiplied by the quantity ¢(g) — ¢(s), so that the value of the
integrand at ¢ = s is zero. The integral equation (2.17) thus leads to a
system of N equations in the N unknowns ¢ i j=1,2,..., N, whichis
solved by the damped Newtonian algorithm described by Forbes [5].

5. Presentation of results

There is a one-parameter family of solutions to this problem, dependent
only upon the Froude number F defined in (2.1). We have obtained nu-
merical solutions for many different Froude numbers, and three of these are
presented in Figure 2. Here, surface profiles are shown for the three Froude
numbers F =4, F =5 and F = 6.4. These profiles show the presence

https://doi.org/10.1017/50334270000008456 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000008456

242 Lawrence K. Forbes and Graeme C. Hocking [12}

0.1 —
Z
2 4 )
° R\ L--_--_-v-.r-.r ] I I
R L :
W', -
\. !
\\\,l’
-0.1
02 “—

FiGURE 2. Three nonlinear solutions obtained numerically, for Froude numbers F = 4
(dotted line), F = 5 (dashed line) and F = 6.4 (solid line).

of the stagnation point at r = 0, and each possesses a local minimum at
about r = 1, with an asymptotic return to the plane z =0 as r — oo, as
expected. When F = 4, the nonlinear solution is in excellent agreement with
the predictions of the low-Froude-number expansion of Section 3, except for
a small region near r = 1, in which a very small wavelet appears in the
nonlinear profile. At F = 5, this subsidiary wavelet has grown in amplitude,
and the agreement between the low-Froude-number expansion and the non-
linear solution is only moderate. As the Froude number F is increased, the
amplitude of this secondary wavelet increases substantially, until the value
F = 6.4 is reached, at which point the crest of the secondary wave is very
close to the maximum value z = 0 allowed by Bernoulli’s equation (2.5).
Thus the solution shown in Figure 2 for F = 6.4 is evidently close to some
limiting configuration, and represents the largest value of F for which the
numerical scheme of Section 4 was capable of yielding a converged solution.

Figure 2 shows that steady solutions of this type, in which a stagnation
point is present at the surface at r = 0, are only possible in the approximate
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interval 0 < F < 6.4. The physical significance of this result seems clear,
since for the limiting profile obtained with F = 6.4, there is a subsidiary
wave crest at about r = 1.4 at the maximum elevation z = 0. By Bernoulli’s
equation (2.5), the fluid must therefore form a circular stagnation line at
about r = 1.4, where the fluid speed becomes zero. Any attempt to increase

the Froude number beyond this maximum would presumably give rise to a
circular breaking wave crest at about r = 1.4, which is an inherently unsteady
phenomenon unable to be described by the present steady equations.

It is necessary to comment upon the effects of numerical error in the so-
lution profiles shown in Figure 2. For moderate Froude numbers in the
approximate interval 0 < F < §, the numerical method gives results of great
accuracy over the entire computational domain. When the interval 0 < s < 6
is chosen as the computational window, as in Figure 2, solutions obtained
with N = 61 grid points typically agree to three significant figures with so-
lutions obtained with N = 121 points, and these in turn typically agree to
at least four significant figures with solutions obtained with N = 241 mesh
points. At the very large Froude numbers close to the maximum, this high
level of accuracy persists over most of the computational domain, except
in a small region about the minimum surface elevation, where small waves
appear at this surface trough. Similar waves were reported by Tuck and
Vanden-Broeck [16] in the attempted numerical solution of the correspond-
ing two-dimensional problem. However, it is clear in the present problem
that these small waves near the trough have no physical significance, and
their amplitude may be made arbitrarily small by decreasing the numerical
grid spacing. For the solution shown in Figure 2 at the maximum Froude
number F = 6.4, it was found necessary to employ N = 241 grid points
to suppress these numerically-produced wavelets, although some evidence of
them may still be visible near the trough in Figure 2.

In Figure 3, the solution obtained at the maximum Froude number F =
6.4 (drawn with a solid line) is contrasted with the surface profile predicted
by the low-Froude-number expansion in (3.11) (sketched with a dashed line).
For this extreme case, the agreement between the two sets of results is not
good, in particular since the low-Froude-number expansion is not capable
of predicting the subsidiary stagnation line formed at about r = 1.4 in the
nonlinear profile. Nevertheless, the approximate solution (3.11) is clearly
still accurate away from the submerged point sink, in the approximate region
r > 2, even for this limiting case. We therefore conclude that the low-
Froude-number expansion of Section 3 predicts the true nonlinear solution
very well for Froude numbers in the interval 0 < F < 4, and indeed gives an
accurate approximation to the region away from the submerged point sink
for all Froude numbers at which solutions of this type may be found.
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FIGURE 3. Comparison of the free-surface elevation predicted by the approximate solution
(3.11) (shown with a dashed line) with the fully nonlinear solution (solid line), for the case
F=64.

A perspective view of the axi-symmetric fluid surface is given in Figure
4, for the limiting case F = 6.4. Here, we have amplified the vertical z
scale by a factor of 20, for ease of viewing. In addition, portions of the
surface hidden from view have not been drawn, to avoid the figure becoming
excessively cluttered. Only the portion 0 < 5 < 2 of the numerical solution
shown in Figures 2 and 3 has been shown, in order to focus attention on
the region of interest near the submerged point sink. The primary stagnation
point at the origin is clearly visible, as is the secondary stagnation line formed
at about r = 1.4.
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DO

FIGURE 4. Perspective view of a portion of the surface, for the case F = 6.4. The vertical
scale has been amplified by a factor of 20.

6.

Summary and discussion

The flow produced in an otherwise stationary ideal fluid by a submerged
point sink must surely represent one of the simplest of all free-surface prob-
lems, and yet its solution possesses a complicated nonlinear limiting be-
haviour. We have formulated the problem in terms of an integral equation,
and presented a successful numerical method for its solution. In addition, an
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approximate solution has been derived in terms of elementary functions, that
nevertheless gives good agreement with the nonlinear results for most Froude
numbers, except those close to the maximum which occurs at about F = 6.4,
This limiting Froude number is evidently associated with the formation of
a circular line of stagnant fluid at the maximum elevation z = 0, at about
r=1.4.

Whether or not steady solutions exist for Froude numbers beyond F = 6.4
remains an open question. In the corresponding two-dimensional problem, in
which a /ine sink is submerged beneath the surface, a second steady solution
type is known at large Froude number. It possesses a vertical cusp at the
surface, above the submerged sink; such solution types have even been found
at infinite Froude number, as discussed in the introduction. In the present
three-dimensional problem, however, solutions of this type have not been
detected, even although the numerical method of Section 4 should be capable
of computing them if they exist.

It may be the case that steady solutions possessing a cusped free surface
do in fact exist for F > 6.4, although they have not yet been found with the
present numerical solution scheme. In fact, Blake and Kucera [2] have re-
cently computed solutions of this general type in a somewhat similar problem
arising in the study of oil reservoirs. In that case, it might be expected that an
experiment in which the Froude number was continuously increased through
the value F = 6.4 would show a sudden “jump” from the solutions found
in this paper to this other branch having a cuspoid at the free surface. Such
behaviour is expected in the corresponding two-dimensional problem, as the
pilot experiments of Imberger [9] indicate. This argument suggests that the
value F = 6.4 is associated with a sudden transition from one stable steady
solution branch to some other branch, similar to the “jump phenomenon”
familiar from the study of dynamical systems. Such a proposition could be
tested experimentally by seeking the value of the Froude number at which a
particular solution type breaks down. This has been attempted by Lawrence
and Imberger [12] using a system of two fluid layers of different density. They
measured the Froude number at which a withdrawal type solution failed, so
that the interface between the fluid layers was drawn into the sink, along with
fluid from each fluid layer. Seven experiments were performed, from which
we have computed the value of the critical Froude number, and we find it
to lie between 2.3 and 4.3, with wide scatter in the results. These results are
clearly inconclusive, due at least in part to the influence of finite interface
thickness upon the experimental values; however, these results by no means
invalidate the above proposition, and further experimental work is indicated.

Of course, unsteady solutions are always a possibility for F > 6.4. Indeed,
the results of the present investigation suggest that one such unsteady type
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involves a circular breaking wave at about r = 1.4. Another possibility is
that the surface may be drawn down into the sink in an unsteady manner. In
the present problem, it is unclear whether this unsteady type of withdrawal
flow is the only permissible outcome for large Froude number, in contrast to
the corresponding two-dimensional problem described in the introduction.
Work is currently in progress to compute both steady and unsteady solutions
of the withdrawal type, having a cuspoid at the free surface, and the results
will be reported elsewhere.
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Appendix—transformation of the kernel integral

We show here that the kernel given by the integral (2.12b) may be expressed
in terms of complete elliptic integrals according to (2.13). To begin, the argu-
ment B — @ of the cosine function may be replaced simply with g, because
of the 2z-periodicity of this trigonometric function. This formally elimi-
nates the dependence on the angle &, as expected from the axi-symmetric
assumption. Since the integrand is now even, we have

™ a-bcosp

K(a,b,c,d)=2 _
( ) g 0 [c—dcosﬂ]3/2

dp. (A-1)

The change of integration variable u* = ¢ — dcos§ in (A-1) gives the form
K(a ’ b » €y d) = 4p[b11 ([p ’ q) + (ad - bc)12(p ) q)]/d s (A-2)
where
a du
1e.0)= [
‘ p [(g* ')’ - p*)'/2

g du
Lp,q)= /
’ » Wlg - )’ - p")'?

and we have defined p2 =c¢-d and q2 = ¢ +d for convenience.
In the first integral in (A-3), the change of variable * = (¢° - u?)/(¢° - p?)
easily yields the result

(A-3)

22
I(p,q) = éK ("—qzi) , (A-4)

in which K denotes the complete elliptic integral of the first kind as defined
by Abramowitz and Stegun [1, page 590]. The substitution

?=uld W - )@’ - 1)
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in the second integral in (A-3) gives, after some algebra, the simplification

1 2_p2

Lp,q) = 5E (" ' ) : (A-5)
D q q

where the complete elliptic integral of the second kind is denoted by the

symbol E. Equation (2.13) in the text now follows from (A-2), (A-4) and

(A-5), after the intermediate functions p and ¢ are eliminated in favour of

cand d.
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