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Abstract
We develop the theory and algorithms necessary to be able to verify the strong Birch–Swinnerton-Dyer Conjecture
for absolutely simple modular abelian varieties over Q. We apply our methods to all 28 Atkin–Lehner quotients of
𝑋0 (𝑁) of genus 2, all 97 genus 2 curves from the LMFDB whose Jacobian is of this type and six further curves
originally found by Wang. We are able to verify the strong BSD Conjecture unconditionally and exactly in all these
cases; this is the first time that strong BSD has been confirmed for absolutely simple abelian varieties of dimension
at least 2. We also give an example where we verify that the order of the Tate–Shafarevich group is 72 and agrees
with the order predicted by the BSD Conjecture.
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1. Introduction

1.1. Background

The Conjecture of Birch and Swinnerton-Dyer (‘BSD’ for short), originally formulated based on exten-
sive computations by Birch and Swinnerton-Dyer [8] in the 1960s for elliptic curves over Q, is one of
the most important open conjectures in number theory. For example, it is one of the seven ‘Millennium
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Problems’, for whose solution the Clay Foundation is offering a million dollars each. It relates in a sur-
prising way analytic invariants of an elliptic curve E, which are obtained via its L-series from its local
properties (essentially the number of points modulo p on E, for all prime numbers p), to global arith-
metic invariants like the rank of the Mordell–Weil group 𝐸 (Q), its regulator, and the rather mysterious
Tate–Shafarevich group X(𝐸/Q). The conjecture has been generalized to cover all abelian varieties
over all algebraic number fields. It consists of two parts, which we will explain for the case of an abelian
variety A of dimension g over Q.

One attaches to A its L-function 𝐿(𝐴/Q, 𝑠), which is defined by an Euler product over all prime
numbers p. If A is the Jacobian variety of a curve X of genus g, the Euler factor at p for a prime p of good
reduction is determined by the number of F𝑝𝑛 -points on the mod p reduction of X for 𝑛 ≤ 𝑔. It follows
from the Weil conjectures for varieties over finite fields that the Euler product converges for Re(𝑠) > 3

2
to a holomorphic function. A standard conjecture predicts that 𝐿(𝐴/Q, 𝑠) extends to an entire function;
this is known when A is modular (i.e., occurs as an isogeny factor of the Jacobian 𝐽0 (𝑁) of one of the
modular curves 𝑋0(𝑁)). By the Modularity Theorem of Wiles and others [15, 114, 116], this is always
the case when A is an elliptic curve over Q (this is now a special case of Serre’s Modularity Conjecture
[61]).

We now introduce the relevant global invariants of A. By the Mordell–Weil Theorem, the abelian
group 𝐴(Q) of rational points on A is finitely generated, so it splits as 𝐴(Q) � 𝐴(Q)tors ⊕ Z𝑟 , where
𝐴(Q)tors is the finite torsion subgroup and r is a nonnegative integer, the rank of 𝐴(Q). There is a natural
positive definite quadratic form ℎ̂ on 𝐴(Q) ⊗Z R � R𝑟 , the canonical height, turning 𝐴(Q)/𝐴(Q)tors into
a lattice in a euclidean vector space. The squared covolume of this lattice (equivalently, the determinant
of the Gram matrix of ℎ̂ with respect to a lattice basis) is the regulator Reg𝐴/Q. The final global
arithmetic invariant of A that we need is the Tate–Shafarevich group X(𝐴/Q). It can be defined as the
localization kernel

X(𝐴/Q) = ker
(
H1 (Q, 𝐴) →

⊕
𝑣

H1 (Q𝑣 , 𝐴)
)

in Galois cohomology; here, Q𝑣 denotes the completion of Q with respect to a place v, and the direct
sum is over all places of Q. Geometrically, X(𝐴/Q) is the group of equivalence classes of everywhere
locally trivial 𝐴/Q-torsors. This group is conjectured to be finite, but this is not known in general; for
example, it is not known for a single elliptic curve with (algebraic or analytic) rank at least 2.

We also need some local invariants. To each prime p, one associates the Tamagawa number 𝑐𝑝 (𝐴);
this is the number of connected components of the special fiber at p of the Néron model 𝒜/Z of A that
are fixed by Frobenius and equals 1 for all primes of good reduction. Let (𝜔1, . . . , 𝜔𝑔) be the pullback
to H0 (𝐴,Ω1) of a basis of the free Z-module H0(𝒜,Ω1) of rank g. Then the real period of A is the
volume of 𝐴(R) measured using |𝜔1 ∧ · · · ∧ 𝜔𝑔 |: Ω𝐴 =

∫
𝐴(R) |𝜔1 ∧ · · · ∧ 𝜔𝑔 |.

The weak BSD or BSD rank conjecture says that 𝐿(𝐴/Q, 𝑠) has an analytic continuation to a
neighborhood of 𝑠 = 1 and

𝑟an := ord𝑠=1 𝐿(𝐴/Q, 𝑠) = 𝑟.

The order of vanishing of 𝐿(𝐴/Q, 𝑠) at 𝑠 = 1 is also called the analytic rank of 𝐴/Q.
We will from now on assume that A is principally polarized – for example, the Jacobian variety of

a curve. In particular, 𝐴 � 𝐴∨, where 𝐴∨ is the dual abelian variety. Then the strong BSD conjecture
says that in addition X(𝐴/Q) is finite and

𝐿∗(𝐴/Q, 1) := lim
𝑠→1

(𝑠 − 1)−𝑟 𝐿(𝐴/Q, 𝑠) =
Ω𝐴

∏
𝑝 𝑐𝑝 (𝐴) · Reg𝐴/Q #X(𝐴/Q)

(#𝐴(Q)tors)2 .
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Since all the other invariants of A can (usually) be computed at least numerically, we define the
analytic order of Sha to be

#X(𝐴/Q)an :=
𝐿∗(𝐴/Q, 1)
Ω𝐴 Reg𝐴/Q

· (#𝐴(Q)tors)2∏
𝑝 𝑐𝑝 (𝐴) .

Assuming the BSD rank conjecture, strong BSD can then be phrased as ‘X(𝐴/Q) is finite and
#X(𝐴/Q) = #X(𝐴/Q)an’,

Even the weak BSD conjecture for elliptic curves over Q is wide open in general (this is the Clay
Millennium Problem mentioned above). However, the strong BSD conjecture has been verified for
many ‘small’ elliptic curves; see below. In this article, we verify the strong BSD conjecture for the
first time in dimension greater than 1 – namely, for a number of abelian surfaces 𝐴/Q, in a situation
where it cannot be reduced to BSD for some elliptic curves. Concretely, this means that A is absolutely
simple.

Recall that an abelian variety A of positive dimension over Q is absolutely simple if 𝐴Q is not
isogenous to a product of at least two abelian varieties of positive dimension. An abelian variety of
dimension g whose endomorphism ring EndQ(𝐴) is isomorphic to an order O in a totally real number
field F of degree [𝐹 : Q] = 𝑔 is said to have real multiplication (RM).

Absolutely simple abelian varieties with real multiplication over Q are modular (see theorem 2.1 for
references). This means that A can be obtained as an isogeny factor of some 𝐽0(𝑁), where 𝐽0(𝑁) denotes
the Jacobian variety of the modular curve 𝑋0 (𝑁). These isogeny factors correspond to (Galois orbits of)
newforms in 𝑆2 (Γ0(𝑁)); see theorem 2.1 below. (Note that we reserve the term ‘modular’ for GL2-type
abelian varieties here as opposed to the more general property of being ‘automorphic’; see [14, §9.1].)

1.2. General results

While the BSD conjecture is wide open in general, there are some cases where parts of it are known to be
true. Assume that 𝐴/Q is an absolutely simple abelian variety of dimension g with real multiplication
by an order O in a totally real number field of degree g. Then A is of GL2-type; in particular, for
each prime ideal 𝔭 of O, the common kernel 𝐴[𝔭] of all elements of 𝔭 acting on A is a 2-dimensional
vector space over O/𝔭, and hence induces a Galois representation into GL2(O/𝔭). In this situation,
there is a newform f of weight 2 and some level N with q-expansion coefficients that generate an order
commensurable with O and such that A is an isogeny factor of 𝐽0(𝑁); furthermore,

𝐿(𝐴/Q, 𝑠) =
∏

𝜎 : O↩→R
𝐿( 𝑓 𝜎 , 𝑠),

where 𝜎 acts on the q-expansion coefficients. Since it is known that 𝐿( 𝑓 𝜎 , 𝑠) is an entire function,
the same is true for 𝐿(𝐴/Q, 𝑠). So for 𝐴/Q with RM, we can at least speak of the analytic rank 𝑟an
and the leading coefficient 𝐿∗(𝐴/Q, 1) of the L-function at 𝑠 = 1. The parity of the order of vanishing
of 𝐿( 𝑓 𝜎 , 𝑠) at 𝑠 = 1 does not depend on 𝜎 (it is determined by the eigenvalue 𝜀𝑁 of 𝑓 𝜎 under the
Fricke involution, which is the same for all 𝑓 𝜎), and the order of vanishing itself does not depend on
𝜎 when ord𝑠=1𝐿( 𝑓 𝜎 , 𝑠) ≤ 1 for some 𝜎, so in this case, we have that 𝑟an = 𝑔 · ord𝑠=1𝐿( 𝑓 , 𝑠), where
ord𝑠=1𝐿( 𝑓 , 𝑠) := ord𝑠=1𝐿( 𝑓 𝜎 , 𝑠) for any 𝜎; see [52, Cor. V.1.3]. We call ord𝑠=1𝐿( 𝑓 , 𝑠) the L-rank of A
in this case and abbreviate it as 𝐿-rk 𝐴. If the BSD rank conjecture holds for A, then the L-rank of A is
the same as the rank of 𝐴(Q) as an O-module.

Based on work of Gross–Zagier [52] relating the canonical height of Heegner points to 𝐿 (𝑔) (𝐴/𝐾, 1)
for suitable imaginary quadratic fields K, Kolyvagin [63] (for modular elliptic curves) and Kolyvagin–
Logachëv [64] (for modular abelian varieties in general) were able to show that the BSD rank conjecture
holds under the assumption that the L-rank is 0 or 1, that in this case, X(𝐴/Q) is finite (this is the only
case where we know finiteness), and that #X(𝐴/Q)an is a rational number.
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The rational number #X(𝐴/Q)an can be computed when A is an elliptic curve, and we show in this
paper how to do that when A is a modular abelian surface. To complete the verification of the strong
BSD Conjecture for A, it remains to determine #X(𝐴/Q) and to check that the two numbers agree.

This involves showing that X(𝐴/Q) [𝑝] is trivial for all primes 𝑝 ∉ 𝑆, where S is an explicit finite
set of primes, and then determining #X(𝐴/Q) [𝑝∞] for the finitely many 𝑝 ∈ 𝑆. When A is an elliptic
curve, a suitable set S (or even an explicit annihilator of X(𝐴/Q)) can be extracted from Kolyvagin’s
work and subsequent refinements; see below. We show in this paper how to obtain a suitable set S when
A is a modular abelian surface.

The remaining task is to determine X(𝐴/Q) [𝑝∞] for a given prime p. This is always possible in
theory (assuming that X(𝐴/Q) [𝑝∞] is finite), since one can compute the 𝑝𝑛-Selmer group of A for
𝑛 = 1, 2, . . ., which is defined as

Sel𝑝𝑛 (𝐴/Q) = ker
(
H1 (Q, 𝐴[𝑝𝑛]) →

⊕
𝑣

H1(Q𝑣 , 𝐴)
)

and sits in an exact sequence

0 −→ 𝐴(Q)/𝑝𝑛𝐴(Q) −→ Sel𝑝𝑛 (𝐴/Q) −→ X(𝐴/Q) [𝑝𝑛] −→ 0 .

Since we know 𝐴(Q), this gives us X(𝐴/Q) [𝑝𝑛], and as soon as X(𝐴/Q) [𝑝𝑛] = X(𝐴/Q) [𝑝𝑛+1],
we have determined X(𝐴/Q) [𝑝∞] = X(𝐴/Q) [𝑝𝑛] (and if X(𝐴/Q) [𝑝] = 0, then X(𝐴/Q) [𝑝∞] = 0
as well). For the computability of the Selmer group in theory, see [110] for elliptic curves and [16] in
general. In practice, there are fairly tight limits on 𝑝𝑛, since the computation requires the knowledge
of the class and unit groups of number fields of degree growing quickly with 𝑝𝑛, for which no really
efficient algorithms are available so far.

If one has a conjecturally tight bound on #X(𝐴/Q) [𝑝∞], then another approach is to try and get a
lower bound that agrees with the upper bound. If the upper bound is nontrivial, this involves showing the
existence of nontrivial elements of X(𝐴/Q) in some way. One possibility for this is ‘visibility’, which
uses another related abelian variety B, for which one can construct a nontrivial map 𝐵(Q) → H1(Q, 𝐴),
whose image one can show to contain nontrivial elements of X(𝐴/Q) under suitable conditions. This
is used for the example in Appendix A.

We now give a short overview of what has been done so far regarding the verification of the strong
BSD Conjecture in concrete cases.

1.3. Exact verification of strong BSD for elliptic curves

In the case of elliptic curves, the various ingredients mentioned above have been worked out, made
explicit and been improved to an extent that it was possible to verify the strong BSD conjecture for all
elliptic curves E over Q of rank ≤ 1 and conductor 𝑁 < 5000; see [34, 50, 67, 74, 75].

An explicit finite set S of primes such that X(𝐸/Q) [𝑝] = 0 for 𝑝 ∉ 𝑆 can be obtained using
Kolyvagin’s work and refinements building on it [23, 56]. The size of X(𝐸/Q) [𝑝∞] for 𝑝 ∈ 𝑆 can be
obtained by several methods – for example, using Iwasawa theory and p-adic L-functions [109] or by
performing descents [16, 27, 28, 29, 31, 33, 34, 75, 93, 110].

1.4. Numerical verification of strong BSD for higher-dimensional abelian varieties

Compared to the case of elliptic curves, considerably less has been done regarding the verification of
the BSD conjectures for higher-dimensional abelian varieties A over Q. If A is not absolutely simple,
then A splits up to isogeny (and possibly after base-change to an algebraic number field) as a product of
abelian varieties of lower dimension. Since the validity of strong BSD is invariant under isogenies [113]
and Weil restriction [77], this reduces the verification of strong BSD for A to cases of lower dimension.
We will therefore assume that A is absolutely simple in the following.
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In [45], all factors in the BSD formula except for the order of the Tate–Shafarevich group (only its
2-torsion is computed) and the analytic order of Sha are determined exactly in the L-rank 0 cases and
numerically to high precision in the L-rank 1 cases for the Jacobian varieties of 29 genus 2 curves over
Q such that the Jacobians are absolutely simple, of GL2-type and have level 𝑁 ≤ 200. This work also
includes results on three curves whose Jacobians are Weil restrictions of elliptic curves over Q(

√
−3).

More recently, van Bommel [11] has done computations similar to those in [45] for various (in
general non-modular) Jacobians of hyperelliptic curves of genus ≤ 5. He did not provably compute the
regulator or the torsion subgroup, which means that the approximate value of #X(𝐴)an that he computes
may be off by a square rational factor. Van Bommel also provides an algorithm for the computation of
the real period, which corrects the version described in [45] in the case when some of the special fibers
of a minimal regular model of the curve have multiple components.

However, it was still an open problem to provably compute #X(𝐴/Q)an as an exact rational number
when A has positive rank and to determine #X(𝐴/Q). See, for example, William Stein’s blog post
[108] for the former.

We now verify the strong BSD Conjecture unconditionally and exactly for all the curves in [45] with
absolutely simple Jacobian and all genus 2 curves in the LMFDB [68] with absolutely simple modular
Jacobian.

1.5. New general results in this paper

We note that, compared to elliptic curves, a number of additional difficulties show up when trying
to verify strong BSD for higher-dimensional modular abelian varieties. By the Modularity Theorem,
every elliptic curve E over Q of conductor N is the target of a nontrivial morphism 𝑋0 (𝑁) → 𝐸 .
This makes it fairly easy to compute Heegner points on E. Also, elliptic curves are given explicitly
by a Weierstrass equation, and a variety of algorithms are available for them. There is no comparable
explicit representation of a general (modular) abelian variety of higher dimension. We can, however,
work with curves X and their Jacobians. In particular, for hyperelliptic curves, a variety of algorithms
exist. However, in general, there is only a dominant homomorphism from 𝐽0 (𝑁) to the Jacobian in
question and no nontrivial morphism from 𝑋0(𝑁) to the curve X. When there is such a morphism, the
relevant computations are much simpler; we have dealt with this case for surfaces first, and the results
are described in [59]. In the other cases, the required arguments are much more subtle; for example, it
is quite nontrivial to obtain a formula for the canonical height of a Heegner point on the Jacobian J of
X from the Gross–Zagier formula.

In this paper, we overcome these difficulties and devise general methods to verify strong BSD exactly
for absolutely simple modular Jacobians 𝐽/Q of L-rank 0 and 1 and apply them to several examples.
Many of our results and algorithms apply to any dimension or at least to hyperelliptic Jacobians. We
note that an abelian variety (assumed to be absolutely simple) is automatically a Jacobian when it is
principally polarized and its dimension is 2 or 3.

More specifically, given such a Jacobian J and/or an attached newform f, we do the following. (The
numbers link to the corresponding sections.)

(2) We determine the (projective) images of the associated mod-𝔭 Galois representations for all maximal
ideals 𝔭 of the endomorphism ring; in particular, we determine which of them are reducible.

(3) We develop an efficient algorithm for the computation of Heegner points, their canonical heights
and Heegner indices. This involves the computation of Petersson norms of newforms of weight
2. We also provide the refined information of the Heegner index as a characteristic ideal of the
endomorphism ring.

(4) We derive explicit formulas for #X(𝐽/Q)an and #X(𝐽/𝐾)an (where K is a Heegner field). When
the L-rank is 1, this involves some fairly nontrivial arguments.

(5) We give an explicit upper bound for the set of primes dividing #X(𝐽/Q) and for the primes dividing
#X(𝐽/𝐾), where K is a Heegner field.
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(6) We perform 𝔭-isogeny descents in some cases where the mod-𝔭 Galois representation is reducible
to get an upper bound on the 𝔭-Selmer group and thus show that X(𝐽/Q) [𝔭] = 0.

(7) We provide a feasible algorithm for the computation of p-adic L-functions in our setting.
(8) We provide an algorithm that, combining the above algorithms, verifies strong BSD for the Jacobian

J (absolutely simple and modular) of a given genus 2 curve X of level N or returns at least a small
finite set of primes 𝔭 for which X(𝐽/Q) [𝔭∞] needs to be computed to finish the verification.

We also improve van Bommel’s algorithm for the determination of the real period so that it does not
rely on a gcd computation with real numbers; see lemma 3.7.

Our methods and algorithms generalize to RM abelian varieties over Q of arbitrary dimension,
provided one can compute Mordell–Weil groups and canonical heights and one has an analogue of
algorithm 2.44. In joint work in progress with Pip Goodman and John Voight, we are planning to treat
modular abelian varieties over totally real number fields.

We then use the algorithms we developed to verify strong BSD exactly for the first time for a number
of absolutely simple abelian surfaces. The specific examples are described below.

1.6. Examples

All computations were carried out with Magma [13]. The code to reproduce our computations can be
found at

https://github.com/TimoKellerMath/strongBSDgenus2.

The README.md file contains short descriptions of the Magma files and which sections in this paper
they belong to.

Using the methods and algorithms developed in this paper, we verified strong BSD completely for the
Jacobians of the following genus 2 curves over Q (whose Jacobians are modular and absolutely simple).

(a) The LMFDB [68] currently (as of September 2024) lists exactly 97 genus 2 curves with absolutely
simple Jacobian of GL2-type; they all have level ≤ 1000. By their completeness statement, this
comprises all such examples with absolute value of their discriminant at most 106 and ‘small’
coefficients. We will refer to these as the LMFDB examples. Note that there are more newforms of
weight 2 with real quadratic coefficients of level ≤ 1000 contained in the LMFDB; our algorithms
would at least give an upper bound on the size of the Tate–Shafarevich group of their associated
modular abelian variety given a Jacobian in their isogeny class. Some of the examples mentioned
below provide such a Jacobian for additional newforms.

(b) The 28 ‘Hasegawa curves’ from [54] that have absolutely simple Jacobian. These are all quotients
of 𝑋0 (𝑁) by a subgroup of Atkin–Lehner involutions. Because of this, these examples are easier to
deal with (compare corollary 3.17, which shows that the computation of Heegner points is simpler
in this case), which is why we treated them first, before extending the theory and algorithms to the
general case. See [59] for an overview of the results. Note that 𝑋0 (161)/〈𝑤7, 𝑤23〉 is the only curve
on this list whose Jacobian is not isogenous to the Jacobian of one of the LMFDB examples. (We
check this by comparing the associated newforms.) Hence, strong BSD for the other 27 Hasegawa
curves follows from isogeny invariance and the validity of strong BSD for the LMFDB examples.

(c) The four ‘Wang curves’ from [45] that are neither Hasegawa curves nor have Jacobian isogenous to
that of a curve in the LMFDB. They are the curves labeled 65A, 117B, 125B and 175 in [45].

(d) Sam Frengley’s example of a curve with 𝑁 = 3200 and #X(𝐽/Q) = 72.

Note that there is some overlap between the first two sets: 21 of the Hasegawa curves are in the LMFDB.
In total, the LMFDB, Hasegawa, and Wang examples comprise the Jacobians of 108 isomorphism
classes of curves, whose Jacobians fall into 95 distinct isogeny classes. Including the last example, we
therefore have verified the strong BSD conjecture completely for 96 isogeny classes of absolutely simple
modular abelian surfaces. The distribution of the L-ranks in our examples is as follows:
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(a) There are 36 isomorphism classes of L-rank 0 and 61 of L-rank 1. These belong to 31 and 59 isogeny
classes, respectively.

(b) There are 6 isomorphism classes of L-rank 0 and 22 of L-rank 1. Out of the 7 Hasegawa non-
LMFDB examples, there are 4 isomorphism classes of L-rank 0 and 3 of L-rank 1. The latter
include the single isogeny class not represented by LMFDB curves. All these examples belong to
distinct isogeny classes. The abundance of L-rank 1 examples is explained by the fact that one often
quotients out by the Fricke involution 𝑤𝑁 ; hence, the sign in the functional equation shows that the
L-rank is odd.

(c) All 4 isogeny classes have L-rank 0.

In total, there are 44 isomorphism classes and 35 isogeny classes of L-rank 0 and 64 isomorphism
classes and 60 isogeny classes of L-rank 1.

Completeness of our data

We consider all the Hasegawa examples (already contained in [59]) and all Wang-only examples from
[45]. The LMFDB examples comprise all absolutely simple modular genus 2 Jacobians of curves with
‘small’ coefficients and of level 𝑁 ≤ 1000. The smallest level for which there exists a pair of conjugate
newforms that is not related to one of these examples is 43. There is an ongoing project that attempts to
produce, for a given weight 2 newform f with real quadratic coefficients, a genus-2 curve over Q with
Jacobian isogenous to 𝐴 𝑓 . Our code can prove strong BSD for many of these examples automatically,
especially by using [60] to skip many descent computations.

1.7. Structure of the paper

We give an overview of the paper; more details are given at the beginning of each section. In Section 2,
we give algorithms to determine whether the residual Galois representations attached to f are irreducible
or not. In Section 3, we compute (a multiple of) the Heegner index, which is used in the following two
sections: In Section 4, we compute #X(𝐽/Q)an ∈ Q>0 exactly. In Section 5, we give a description
of a finite set S of prime ideals 𝔭 such that X(𝐽/Q) [𝔭] = 0 for 𝔭 ∉ 𝑆; this strongly depends on the
determination of the residual Galois representations and the Heegner index. In Section 6, we perform
isogeny descents to prove X(𝐽/Q) [𝔭] = 0 for several 𝔭 ∈ 𝑆. In Section 7, we show how results
from Iwasawa theory and the computation of p-adic L-functions can be used to prove an upper bound
on #X(𝐽/Q) [𝔭∞]. In Appendix A, we prove strong BSD for an example of Sam Frengley, where
#X(𝐽/Q) = 72. In all our other examples, #X(𝐽/Q) ∈ {1, 2, 4}. We also exhibit examples 𝐽/Q for
which 𝑝2 | X(𝐽/Q)an with 𝑝 ∈ {3, 5, 7} and prove the ℓ-part of strong BSD for them except for
ℓ ∈ {2, 𝑝}, where we only get an upper bound. These examples are obtained as quadratic twists 𝐽𝐾 of
some of our main examples, where K is a suitable Heegner field.

1.8. Terms and notation

We denote canonical isomorphisms by � and arbitrary, not necessarily canonical isomorphisms by �.
We fix an embedding Q ↩→ C once and for all.

We use boldface 𝝅 to denote the area of the unit disk to avoid confusion with our use of the letter 𝜋
to denote an isogeny in most of the paper.

2. Computation of the residual Galois representations

The purpose of this section is to generalize several results on the image of mod-p Galois representations
of elliptic curves over Q (mainly from [98] and [26]) to modular abelian varieties over Q of higher
dimension.
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Let A be an abelian variety of dimension 𝑔 ≥ 1. Let O be an order in a totally real number field
F of degree g over Q. Recall that A has real multiplication by O over Q if EndQ(𝐴) � O, where
EndQ(𝐴) denotes the ring of Q-defined endomorphisms of A. Then A is of GL2-type in the following
sense. Let 𝔭 be a nonzero prime ideal of O lying above a rational prime p. We denote its finite residue
field O/𝔭 by F𝔭 and call [F𝔭 : F𝑝] the degree deg𝔭 of 𝔭; F𝔭 is isomorphic to F𝑝deg𝔭 . If 𝔭 is regular –
that is, its local ring is a discrete valuation ring, or equivalently, 𝔭 does not divide the conductor ideal
𝔣(O𝐹/O) = {𝑎 ∈ O : 𝑎O𝐹 ⊆ O} of O in O𝐹 – then 𝐴[𝔭𝑛] (Q) is free of rank 2 over O/𝔭𝑛 for all 𝑛 ≥ 1.

We then obtain 2-dimensional Galois representations

𝜌𝔭𝑛 ,𝐴 : Gal(Q|Q) → AutO/𝔭𝑛 (𝐴[𝔭𝑛] (Q)) � GL2(O/𝔭𝑛) .

In a similar way, we have 2𝑔-dimensional Galois representations

𝜌𝑝𝑛 ,𝐴 : Gal(Q|Q) → AutZ/𝑝𝑛Z (𝐴[𝑝𝑛] (Q)) � GL2𝑔 (Z/𝑝𝑛Z) .

Since the Galois action preserves the Weil pairing, the image of 𝜌𝑝,𝐴 lies in the general symplectic
group GSp2𝑔 (F𝑝).

We define the 𝔭-adic Tate module 𝑇𝔭𝐴 := lim←−−𝑛
𝐴[𝔭𝑛] (Q); it is free of rank 2 over the completion

O𝔭. We also define 𝑉𝔭𝐴 = 𝐹𝔭 ⊗O𝔭 𝑇𝔭𝐴; this is a 2-dimensional vector space over 𝐹𝔭. There is also the
standard p-adic Tate-module 𝑇𝑝𝐴, which is a free module of rank 2𝑔 over Z𝑝 and the associated vector
space 𝑉𝑝𝐴 = Q𝑝 ⊗Z𝑝 𝑇𝑝𝐴. We obtain the 𝔭-adic Galois representation

𝜌𝔭∞ ,𝐴 : Gal(Q|Q) → Aut𝐹𝔭 (𝑉𝔭𝐴) � GL2(𝐹𝔭)

and the p-adic Galois representation

𝜌𝑝∞ ,𝐴 : Gal(Q|Q) → AutQ𝑝 (𝑉𝑝𝐴) � GL2𝑔 (Q𝑝) .

As before, the image of 𝜌𝑝∞ ,𝐴 is contained in GSp2𝑔 (Q𝑝).
If A is understood, we omit it from the notation and write 𝜌𝔭 etc.
We heavily exploit that we can work with 2-dimensional Galois representations instead of 2𝑔-

dimensional ones in the following. For example, there is an easy classification of (maximal) subgroups
of GL2(F𝔭), whereas the subgroups of GSp2𝑔 (F𝑝) are more complicated.

The goal of this section is to determine the image 𝐺𝔭 of the mod-𝔭 Galois representation

𝜌𝔭 : Gal(Q|Q) → GLO/𝔭 (𝐴[𝔭] (Q)) � GL2(F𝔭)

in the case when 𝑔 = 2, so O is an order in a real quadratic number field. In particular, we want to decide
whether 𝜌𝔭 is irreducible as an F𝔭 [Gal(Q|Q)]- or F𝑝 [Gal(Q|Q)]-representation and whether its image
in GL2(F𝔭) is as large as allowed by the extra endomorphisms coming from O.

We will state our results for general g if this is easily possible, but in some cases, we assume 𝑔 = 2
to simplify the statements and algorithms.

Let 𝑓 ∈ 𝑆2 (Γ0(𝑁)) be a newform (i.e., a normalized eigenform for the action of the Hecke algebra
TZ on the new subspace of 𝑆2 (Γ0(𝑁))). The Fourier coefficients of f generate an order Z[ 𝑓 ] in a totally
real number field Q( 𝑓 ). Let 𝐼 𝑓 := AnnTZ ( 𝑓 ) be the annihilator of f ; then TZ/𝐼 𝑓 � Z[ 𝑓 ], where the
Hecke operator 𝑇𝑛 is mapped to the Fourier coefficient 𝑎𝑛 ( 𝑓 ). The Hecke algebra also acts via Q-defined
endomorphisms on 𝐽0(𝑁), and so we can define an abelian variety 𝐴 𝑓 over Q as 𝐴 𝑓 := 𝐽0(𝑁)/𝐼 𝑓 𝐽0 (𝑁).
Then dim 𝐴 𝑓 = [Q( 𝑓 ) : Q] and EndQ(𝐴 𝑓 ) � TZ/𝐼 𝑓 � Z[ 𝑓 ]. Acting by Gal(Q|Q) on the Fourier
coefficients of f, we obtain a Galois orbit of conjugate newforms 𝑓 𝜎 , which has size [Q( 𝑓 ) : Q]. More
generally, if 𝛼 : Z[ 𝑓 ] ↩→ R is an embedding of Z[ 𝑓 ] into R, then 𝑓 𝛼 denotes the newform with (real)
coefficients 𝛼(𝑎𝑛 ( 𝑓 )). The abelian variety 𝐴 𝑓 only depends on the Galois orbit of f.
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We give a short summary of the contents of this section. After recalling basic results about modular
abelian varieties and their Galois representations in Section 2.1, we determine the maximal possible
image of 𝜌𝔭 in Section 2.3 and state the classification of its maximal subgroups in Section 2.4. This is
eventually used to show that 𝜌𝔭 has maximal image for all 𝔭 outside an explicit finite set by excluding
the possibility that the image is contained in one of the maximal subgroups. For fixed 𝔭, we give
an algorithm that returns a set of types of maximal subgroups that could contain the image of 𝜌𝔭 in
Section 2.5. In Section 2.6, we show how 𝜌𝔭 can be determined explicitly for a given prime ideal 𝔭. We
then give some criteria for when the image of the decomposition group at p is contained in a Cartan
subgroup in Section 2.7. Together with some results on the image of inertia at primes ℓ ≠ 𝑝, which
we recall in Section 2.8, this provides the input for an algorithm that determines a (small and explicit)
finite set S of prime ideals 𝔭 such that 𝜌𝔭 is irreducible for all 𝔭 ∉ 𝑆 in Section 2.9. To approach the
goal of determining an analogous set with respect to 𝜌𝔭 with maximal image, we first describe a method
that allows us to eliminate two further types of maximal subgroups (other than Borel subgroups, which
correspond to reducible representations) in Section 2.10. To deal with maximal images, we need to
exclude that the given newform f has complex multiplication, so we provide an algorithm that checks
that in Section 2.11. We then derive an algorithm that computes a small explicit finite set of prime ideals
𝔭 such that 𝜌𝔭 has maximal image for all 𝔭 not in this set in Section 2.12. Finally, we provide a table
giving the types of all representations 𝜌𝔭 attached to our LMFDB examples.

2.1. Preliminaries

We begin by stating the correspondence between (absolutely simple) abelian varieties with real multi-
plication over Q and weight-2 newforms for Γ0(𝑁).

Recall that 𝐿(𝐴/Q, 𝑠) denotes the L-series of A and 𝐿( 𝑓 , 𝑠) denotes the L-series of f and that
𝐿(𝐴/Q, 𝑠) is defined as

𝐿(𝐴/Q, 𝑠) =
∏
𝑝

1
det(1 − Frob−1

𝑝 𝑝−𝑠 | H1
ét (𝐴 ⊗ Q, Qℓ)𝐼𝑝 )

,

where for each Euler factor at p, one chooses a prime ℓ ≠ 𝑝 for the ℓ-adic cohomology group; this is
well-defined because the Euler factors are independent of ℓ. The product converges for Re(𝑠) > 3

2 to a
holomorphic function. The L-function associated to 𝑓 =

∑
𝑛 𝑎𝑛𝑞

𝑛 with coefficients 𝑎𝑛 ∈ C is

𝐿( 𝑓 , 𝑠) =
∑
𝑛≥1

𝑎𝑛
𝑛𝑠

=
∏
𝑝

1
1 − 𝑎𝑝 𝑝−𝑠 + 𝜀(𝑝)𝑝1−2𝑠 ,

where 𝜀(𝑝) is 1 if 𝑝 � 𝑁 and 0 otherwise. Since 𝐿( 𝑓 , 𝑠) is the Mellin transform of f and f is a cusp
form, 𝐿( 𝑓 , 𝑠) is holomorphic on the whole complex plane.
Theorem 2.1 (Characterization of modular abelian varieties over Q). Let 𝐴/Q be an absolutely simple
abelian variety. The following are equivalent.

(i) A has real multiplication over Q.
(ii) There is some N such that A is an isogeny factor of 𝐽0 (𝑁).

(iii) There is some N and a newform 𝑓 ∈ 𝑆2 (Γ0(𝑁)) such that

𝐿(𝐴/Q, 𝑠) =
∏

𝛼 : Z[ 𝑓 ]↩→R
𝐿( 𝑓 𝛼, 𝑠) .

The number N in (iii) is uniquely determined; we call it the level 𝑁𝐴 of 𝐴/Q. The statement in (ii)
holds for the same N and its multiples. If these equivalences hold, then End0

Q(𝐴) := EndQ(𝐴) ⊗Z Q is
isomorphic to Q( 𝑓 ) and the conductor of 𝐴/Q equals 𝑁dim 𝐴

𝐴 . Furthermore, A is of GL2-type (i.e., the
p-adic Tate modules 𝑉𝑝𝐴 are free modules of rank 2 over the completion of Q( 𝑓 ) at p); if 𝔭 is a prime
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ideal of Q( 𝑓 ) above the rational prime p, then 𝑉𝔭𝐴 is a vector space of dimension 2 over the completion
Q( 𝑓 )𝔭, a local field.

Proof. The equivalence of (ii) and (iii) is a well-known characterization of modular abelian varieties
following from the Eichler–Shimura relation and Faltings’ Isogeny Theorem. The equivalence of (i)
and (ii) can be found as [97, Thm. 5] as a consequence of Serre’s Modularity Conjecture for absolutely
simple 2-dimensional residual odd Galois representations (which is formulated in the same paper); this
conjecture is now a theorem [61]. See also [91]. The remaining statements are well-known. �

We will use these equivalences tacitly. Note that in the literature, sometimes more general modular
abelian varieties are considered, which are quotients of 𝐽1 (𝑁) and which can have complex multiplica-
tion.

However, when A is an absolutely simple abelian surface with CM, then A cannot be of GL2-type
over Q, as the following result shows. We thank Pip Goodman for pointing it out to us.

Proposition 2.2. Let 𝐴/Q be an absolutely simple abelian surface with CM. Then End0
Q(𝐴) = Q; in

particular, 𝐴/Q is not of GL2-type.

Proof. Let 𝐸 = End0
Q
(𝐴) = EndQ(𝐴) ⊗Z Q be the geometric endomorphism algebra of A. By [101,

Proposition 30], the minimal field over which the endomorphisms of A are defined is 𝐸∗, the reflex field
of E (note that the base field is just Q here). In particular, 𝐸∗ |Q is Galois, and the absolute Galois group
Gal(Q|Q) acts on End0

Q
(𝐴) through Gal(𝐸∗ |Q), so we obtain an embedding

𝑖 : Gal(𝐸∗ |Q) ↩→ Aut(End0
Q
(𝐴)) .

We now consult Examples 8.4 (2) in loc. cit. In Example (C), there the reflex field is not Galois, and in
Example (A), the CM-type is not primitive, which means that A is not absolutely simple. So both these
cases cannot occur, and by Example (B), it follows that 𝐸∗ = 𝐸 ; in particular, the map i above is an
isomorphism. This finally implies that

End0
Q(𝐴) = End0

Q
(𝐴)Gal(𝐸∗/Q) = 𝐸Gal(𝐸/Q) = Q .

�

Remark 2.3. In the situation of theorem 2.1, A is isogenous to 𝐴 𝑓 (by Faltings’ Isogeny Theorem),
and therefore, the Galois representations on 𝑉𝔭𝐴 and on 𝑉𝔭𝐴 𝑓 are isomorphic (similarly for 𝑉𝑝𝐴 and
𝑉𝑝𝐴 𝑓 ). When A and/or f are clear from the context, we write 𝜌𝔭∞ and 𝜌𝑝∞ for these representations,
which depend only on the Galois orbit of f. The fact that A and 𝐴 𝑓 are isogenous also implies that the
semi-simplifications of 𝜌𝔭,𝐴 and of 𝜌𝔭, 𝑓 := 𝜌𝔭,𝐴 𝑓 are isomorphic when 𝔭 is a regular prime of both
Z[ 𝑓 ] � EndQ (𝐴 𝑓 ) and EndQ (𝐴) (and similarly for 𝜌𝑝,𝐴 and 𝜌𝑝, 𝑓 ).

Note that the canonical isomorphism Z[ 𝑓 ] � TZ/𝐼 𝑓 � EndQ(𝐴 𝑓 ) induces a canonical identification
of Q( 𝑓 ) with End0

Q(𝐴 𝑓 ), which in turn is isomorphic to End0
Q(𝐴) via the isogeny between A and 𝐴 𝑓 .

Fixing the isogeny, this identifies O = EndQ(𝐴) with an order in the totally real number field Q( 𝑓 ). If
Z[ 𝑓 ] is contained in O under this identification (e.g., when O is the maximal order), then the Fourier
coefficient 𝑎𝑛 of f, which is the image of the Hecke operator 𝑇𝑛 ∈ TZ in Z[ 𝑓 ], can be interpreted as
an element of O (i.e., an endomorphism of A). We make use of this to get the correct identifications of
𝜎-isotypic components when dealing with the Gross–Zagier formula for the height of a Heegner point
in Section 3.7.

Write 𝐹 = Q( 𝑓 ) and O𝐹 for the maximal order of F, and let O ⊆ O𝐹 be any order in F. Recall the
conductor ideal of O in O𝐹 ,

𝔣(O𝐹/O) = {𝑎 ∈ O : 𝑎O𝐹 ⊆ O} ;
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it is the largest ideal of O that is also an ideal of O𝐹 . If A is an abelian variety such that EndQ(𝐴) � O,
then one can check that the isogenous abelian variety 𝐴′ := 𝐴/𝐴[𝔣(O𝐹/O)] has EndQ(𝐴′) � O𝐹 .
So by working with 𝐴′ instead of with A (or 𝐴 𝑓 ), we can assume that the endomorphism ring is the
maximal order.

Definition 2.4. Let p be a prime. We write

𝜒𝑝𝑛 : Gal(Q|Q) → Aut(𝜇𝑝𝑛 (Q)) � (Z/𝑝𝑛Z)×

for the mod-𝑝𝑛 cyclotomic character and

𝜒𝑝∞ : Gal(Q|Q) → Aut(𝜇𝑝∞ (Q)) � Z×
𝑝

for the p-adic cyclotomic character.

Definition 2.5. If𝔭 is a maximal ideal in an orderO of a number field, we write 𝑝(𝔭) for the characteristic
of the finite field F𝔭 = O/𝔭.

Theorem 2.6 (Characteristic polynomials of Frobenii of a modular Galois representation). Let 𝑓 ∈
𝑆2 (Γ0 (𝑁)) be a newform with Fourier coefficients 𝑎ℓ and coefficient field Q( 𝑓 ) a totally real field of
degree g.

Associated to f, there is a strictly compatible system of𝔭-adic Galois representations 𝜌𝔭∞ , unramified
outside 𝑁𝑝(𝔭). For all ℓ � 𝑁𝑝(𝔭), the characteristic polynomial of 𝜌𝔭∞ (Frobℓ) equals

charpol( 𝑓 , ℓ;𝑇) := det
(
𝑇 − 𝜌𝔭∞ (Frobℓ)

)
= 𝑇2 − 𝑎ℓ𝑇 + ℓ ∈ Z[ 𝑓 ] [𝑇] .

One has

det ◦𝜌𝔭∞ = 𝜒𝑝∞

for 𝔭 � 𝑁 . In particular, 𝜌𝔭∞ is odd. The determinant of the p-adic Galois representation

𝜌𝑝∞ : Gal(Q|Q) → GL2𝑔 (Z𝑝)

is 𝜒
𝑔
𝑝∞ .

Proof. This is well-known and shown more generally for weight 𝑘 ≥ 2 in [37] (and for weight 2 earlier
by Shimura). �

If 𝔭 is a regular prime of Z[ 𝑓 ] (or O) not dividing 𝑁ℓ, then we write charpol( 𝑓 , ℓ,𝔭;𝑇) for the
characteristic polynomial of the image of Frobℓ under 𝜌𝔭, 𝑓 (or 𝜌𝔭,𝐴); it is the image of charpol( 𝑓 , ℓ;𝑇)
in F𝔭 [𝑇].

Magma can compute the Fourier coefficients 𝑎ℓ of a newform f and its coefficient ring Z[ 𝑓 ]
efficiently. This will be crucial for computing the image of 𝜌𝔭, because the only access to elements of the
absolute Galois group of Q we have is via Frobenius elements, and we can reconstruct the characteristic
polynomials of the Frobenii acting on 𝐴[𝔭] (Q), which uniquely determine their semi-simple part. The
fact that we know only the characteristic polynomials also means that we do not have direct access to
the unipotent part of 𝜌𝑝 (Frobℓ) via 𝑎ℓ alone.

Let p be a prime. We fix an embedding of Q into Q𝑝; this determines a decomposition group
𝐷 𝑝 = Gal(Q𝑝 |Q𝑝) ↩→ Gal(Q|Q) and its inertia subgroup 𝐼𝑝 = Gal(Q𝑝 |Qnr

𝑝 ). The inertia subgroup
has a descending filtration by its (normal) higher ramification subgroups, the first of which is the wild
ramification subgroup 𝐼w

𝑝 , the unique (hence normal) Sylow pro-p subgroup of 𝐼𝑝 . The quotient 𝐼𝑝/𝐼w
𝑝
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is the tame inertia group 𝐼 t
𝑝 , which is canonically isomorphic to the pro-cyclic 𝑝′-group

lim←−−
NF|

F× � Ẑ(𝑝′) (1) �
∏
ℓ≠𝑝

Zℓ (1),

where the limit is taken over all finite fields F of characteristic p, the transition maps in the projective
limit are the field norms and Zℓ (1) is the Galois module lim←−−𝑛

𝜇ℓ𝑛 (Q𝑝). (See [98, §1.3]. Note that Serre
uses 𝐼𝑝 to denote 𝐼w

𝑝 , 𝐼𝑡 to denote 𝐼 t
𝑝 and I to denote 𝐼𝑝 .)

Lemma 2.7. The absolute Galois group of the residue field F𝑝 , which is canonically isomorphic to
Ẑ Frob𝑝 , acts on 𝐼 t

𝑝 via conjugation. One has

Frob𝑝 𝑥 Frob−1
𝑝 = 𝑥𝑝 for 𝑥 ∈ 𝐼 t

𝑝 .

Note that we have written 𝐼 t
𝑝 multiplicatively here.

Proof. See [81, Theorem 7.5.3]. �

See [98, §1.7] for the following definition.

Definition 2.8. Let 𝑘 ≥ 1. We define the character 𝜓𝑘 of 𝐼 t
𝑝 via the canonical projection from the

projective limit as

𝜓𝑘 : 𝐼 t
𝑝

∼−→ lim←−−
NF|

F× � F×
𝑝𝑘

.

One has NF𝑝𝑘 |F𝑝 ◦ 𝜓𝑘 = 𝜓1 = 𝜒𝑝 .
The k fundamental characters of level k are the powers 𝜓𝑝𝑛

𝑘 for 0 ≤ 𝑛 < 𝑘 (equivalently, 𝜓𝑘 followed
by the k automorphisms of F𝑝𝑘 ).

2.2. General set-up and notation

In the following, f will always denote a newform of weight 2, level N and trivial nebentypus. We let
N (𝑁) denote the set of such newforms; N (𝑁, 𝑔) denotes the subset consisting of forms whose Galois
orbit has size g. The Fourier coefficients of f will be denoted 𝑎𝑛 (or 𝑎𝑛 ( 𝑓 ) if we want to make the
dependence on f explicit); they generate the coefficient ring Z[ 𝑓 ], which is an order in a totally real
number field 𝐹 = Q( 𝑓 ) (of degree g when 𝑓 ∈ N (𝑁, 𝑔)).

Further, A will denote an abelian variety over Q that is Q-isogenous to 𝐴 𝑓 (e.g., 𝐴 = 𝐴 𝑓 or
𝐴 = 𝐴′ = 𝐴 𝑓 /𝐴 𝑓 [𝔣(O𝐹/Z[ 𝑓 ])] as in remark 2.3) and has endomorphism ring O. Let 𝔭 be a regular
prime ideal of O; then 𝔭 is a maximal ideal of O; we write F𝔭 = O/𝔭 for its residue class field and 𝑝(𝔭)
for the residue characteristic (i.e., the characteristic of F𝔭). Then 𝜌𝔭 = 𝜌𝔭,𝐴 is the Galois representation
on 𝐴[𝔭]; its semi-simplification 𝜌ss

𝔭 is independent of the choice of A (as long as 𝔭 is regular). Since
we are mostly interested in determining when 𝜌𝔭 is irreducible (or has maximal image), knowing 𝜌ss

𝔭 is
usually enough, and so we suppress the dependency on A in the notation. (Note that when 𝔭 is a prime
ideal of O𝐹 that does not correspond to a regular prime ideal of O, then 𝜌𝔭,𝐴′ will be reducible, since
there is an isogeny 𝐴′ → 𝐴 whose kernel has nontrivial intersection with 𝐴′[𝔭].)

2.3. Determination of the maximal image

One of our goals is to show that the image of 𝜌𝔭 is as large as possible for all but finitely many prime
ideals𝔭 (with a small explicit set of possible exceptions). The first step is to determine what this maximal
image is. Then we will show that it suffices to consider the image in PGL2(F𝔭).
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To show that the projective image is maximal, we have to exclude the possibility that it is contained
in one of the maximal subgroups of the maximal projective image, so we need a classification of these
maximal subgroups. This will be done in Section 2.4 below.

Definition 2.9. We write 𝐺𝔭 := 𝜌𝔭 (Gal(Q|Q)) ⊆ GL2(F𝔭) for the image of 𝜌𝔭. theorem 2.6 implies
that det(𝐺𝔭) = F×

𝑝 , since det ◦𝜌𝔭 is the mod-p cyclotomic character. We set

𝐺max
𝔭 := {𝑀 ∈ GL2(F𝔭) : det(𝑀) ∈ F×

𝑝} ;

then 𝐺𝔭 ⊆ 𝐺max
𝔭 .

Definition 2.10. We write P : GL2(F𝔭) → PGL2(F𝔭) for the canonical surjection. For a subgroup G of
GL2(F𝔭), we write P𝐺 for its image in PGL2(F𝔭). We call P𝐺 the projective image of G. We also say
that P𝐺𝔭 is the projective image of 𝜌𝔭. We write det : PGL2(F𝔭) → F×

𝔭 /F×2
𝔭 for the homomorphism

induced by the determinant.

We write PSL2 (F𝔭) := PSL2 (F𝔭) for the quotient of SL2 (F𝔭) by its center {±𝐼2}. Note that this is
not the same as the group of F𝔭-points of the algebraic group PSL2. When p is odd, PSL2(F𝔭) has index
2 in PGL2(F𝔭) and is the kernel of det.

Lemma 2.11. We have that P𝐺max
𝔭 = PGL2 (F𝔭) when deg𝔭 is odd and P𝐺max

𝔭 = PSL2 (F𝔭) when deg𝔭
is even.

Proof. The image of 𝐺max
𝔭 in PGL2 (F𝔭) consists of the elements 𝛾 ∈ PGL2(F𝔭) such that det(𝛾)

is in the image of F×
𝑝 . The latter is trivial if and only if deg𝔭 is even (or 𝑝 = 2, in which case

PSL2(F𝔭) = PGL2(F𝔭)). (See also [89, §5.2].) �

Proposition 2.12. Let 𝐺 ≤ 𝐺max
𝔭 be a subgroup such that det(𝐺) = F×

𝑝 and P𝐺 = P𝐺max
𝔭 . Then

𝐺 = 𝐺max
𝔭 .

Proof. First assume that #F𝔭 > 3 and let 𝒟𝐻 denote the derived subgroup of a group H. Since the
center of GL2 (F𝔭) is abelian, the assumption P𝐺 = P𝐺max

𝔭 implies that 𝒟𝐺 = 𝒟𝐺max
𝔭 = SL2(F𝔭), so

SL2 (F𝔭) ≤ 𝐺. The second equality follows from

SL2(F𝔭) = 𝒟 SL2(F𝔭) ≤ 𝒟𝐺max
𝔭 ≤ 𝒟GL2(F𝔭) ≤ SL2(F𝔭),

where the first equality follows from the fact that PSL2(F𝔭) is nonsolvable simple (since nonabelian
when #F𝔭 > 3) by [65, Theorem 8.4]. Since both groups map onto F×

𝑝 under the determinant, we then
have exact sequences

1 → SL2(F𝔭) → 𝐺
det→ F×

𝑝 → 1 and 1 → SL2(F𝔭) → 𝐺max
𝔭

det→ F×
𝑝 → 1,

so #𝐺 = #SL2 (F𝔭)#F×
𝑝 = #𝐺max

𝔭 , whence the claim.
The two cases F𝔭 = F2 or F3 can be checked by an easy computation. �

2.4. Classification of the maximal subgroups of P𝐺max
𝔭

By lemma 2.11, P𝐺max
𝔭 = PGL2(F𝔭) when deg𝔭 is odd, and P𝐺max

𝔭 = PSL2 (F𝔭) when deg𝔭 is even.
By proposition 2.12, we know that 𝐺𝔭 = 𝐺max

𝔭 if and only if P𝐺𝔭 = P𝐺max
𝔭 , which is equivalent to

P𝐺𝔭 � Γ for every maximal subgroup Γ of P𝐺max
𝔭 . In this section, we recall the classification of these

maximal subgroups.
We begin with the case deg𝔭 even, where P𝐺max

𝔭 = PSL2(F𝔭).

Theorem 2.13 (Maximal subgroups of P𝐺max
𝔭 , deg𝔭 even). Let p be a prime and let 𝑞 = 𝑝2𝑒 be an even

power of p. The maximal subgroups of PSL2(F𝑞) are as follows.
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(i) (Borel) The stabilizer of a point of P1(F𝑞). It has order 𝑞(𝑞 − 1)/2 when q is odd and 𝑞(𝑞 − 1)
when q is even.

(ii) (Sub-line) The stabilizer PGL2 (F𝑞′ ) ∩PSL2 (F𝑞) of a sub-line P1 (F𝑞′ ), where 𝑞 = 𝑞′ℓ with a prime
ℓ (in particular, ℓ | 2𝑒).

(iii) (Dihedral) Stabilizers of a pair of points in P1 (F𝑞) (normalizer of a split Cartan subgroup, order
𝑞 − 1 for 𝑞 ≠ 9 odd and 2(𝑞 − 1) for q even) or of a pair of F𝑞-conjugate points in P1(F𝑞2 )
(normalizer of a nonsplit Cartan subgroup, order 𝑞 + 1 for 𝑞 ≠ 9 odd and 2(𝑞 + 1) for q even).

(iv) (Exceptional) Subgroups isomorphic to 𝑆4 (when 𝑒 = 1 and 3 < 𝑝 ≡ ±3 mod 8), or 𝐴5 (when
𝑒 = 1 and 𝑝 ≡ ±3 mod 10).

Proof. See [62, Corollary 2.2], taking into account that q is an even power of p. �

When 𝑞 = 4, the sub-line and normalizer of a split Cartan case are in the same conjugacy class.
When 𝑞 = 9, the normalizers of split Cartan subgroups are contained in exceptional subgroups of type
𝐴5, and the normalizers of nonsplit Cartan subgroups are contained in sub-line stabilizers.

When deg𝔭 is odd, we have P𝐺max
𝔭 = PGL2 (F𝔭). Since det(𝐺𝔭) = F×

𝑝 contains elements of F×
𝔭 that

are non-squares in this case, we also know that P𝐺𝔭 is not contained in PSL2 (F𝔭).

Theorem 2.14 (Maximal subgroups of P𝐺max
𝔭 , deg𝔭 odd). Let 𝑝 ≠ 2 be a prime and let 𝑞 = 𝑝2𝑒+1 be

an odd power of p. The maximal subgroups of PGL2 (F𝑞) different from PSL2(F𝑞) are as follows.

(i) (Borel) The stabilizer of a point of P1(F𝑞). It has order 𝑞(𝑞 − 1).
(ii) (Sub-line) The stabilizer PGL2 (F𝑞′ ) of a sub-line P1(F𝑞′ ), where 𝑞 = 𝑞′ℓ with a prime ℓ (in

particular, ℓ | 2𝑒 + 1).
(iii) (Dihedral) Stabilizers of a pair of points in P1 (F𝑞) (normalizer of a split Cartan subgroup, order

2(𝑞 − 1), when 𝑞 > 5) or of a pair of F𝑞-conjugate points in P1(F𝑞2 ) (normalizer of a nonsplit
Cartan subgroup, order 2(𝑞 + 1)).

(iv) (Exceptional) Subgroups isomorphic to 𝑆4 (when 𝑒 = 0 and 3 < 𝑝 ≡ ±3 mod 8), and if 𝑞 = 3, 𝐴4.

Proof. See [62, Corollary 2.3], which excludes 𝑞 = 3. For 𝑞 = 3, Magma computes that PGL2 (F3) � 𝑆4
has 3 maximal subgroups, 𝑆3, 𝐷4, 𝐴4, which correspond to the Borel, normalizer of nonsplit Cartan and
exceptional maximal subgroup case, respectively. �

Definition 2.15. We say that 𝜌𝔭 or 𝐺𝔭 is Borel, sub-line, dihedral or exceptional when P𝐺𝔭 is contained
in a maximal subgroup of P𝐺max

𝔭 of the corresponding type. In the dihedral case, we distinguish between
split and nonsplit, according to the Cartan subgroup involved. We say that 𝜌𝔭 or 𝐺𝔭 is reducible or
irreducible if the action of 𝐺𝔭 on F2

𝔭 is, and we say that it is maximal if 𝐺𝔭 = 𝐺max
𝔭 .

The action of 𝐺𝔭 is reducible if and only if 𝜌𝔭 is Borel. In the sub-line case, the invariant sub-line
can be the image of a nontrivial invariant subspace of 𝐴[𝔭] considered as an F𝑝-vector space. In this
case (if 𝜌𝔭 is not also Borel), 𝜌𝔭 is irreducible as a 2-dimensional F𝔭-representation, but reducible as a
2(deg𝔭)-dimensional F𝑝-representation. See Section 2.10 below for a more detailed discussion.

2.5. Irreducibility and maximality criteria for fixed 𝔭

In this section, we collect some criteria that allow us to verify that 𝜌𝔭 is irreducible or maximal for a
given prime ideal 𝔭, using information from the characteristic polynomials of 𝜌𝔭 (Frobℓ) for ℓ � 𝑁𝑝.
Recall from theorem 2.6 that the characteristic polynomial of 𝜌𝔭 (Frobℓ) has the form

𝑇2 − �̄�ℓ𝑇 + ℓ̄,

where 𝑥 ↦→ 𝑥 denotes the reduction homomorphism Z[ 𝑓 ] → F𝔭.
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We define some invariants associated to elements of PGL2(F𝔭); see [98, §2]. For F a finite field of
odd characteristic, we define the Legendre symbol for 𝑎 ∈ F as usual:

( 𝑎

F

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 𝑎 = 0,

1 if 𝑎 = 𝑏2 for some 𝑏 ∈ F×,

−1 otherwise.

Lemma 2.16. Let F be a finite field.

(1) The function

GL2(F) → F, 𝑀 ↦→ Tr(𝑀)2

det(𝑀)

descends to a function 𝑢 : PGL2(F) → F.
(2) Assume that F has characteristic 𝑝 ≠ 2. The function

GL2 (F) → {0, 1,−1}, 𝑀 ↦→
(Tr(𝑀)2 − 4 det(𝑀)

F

)
descends to Δ : PGL2(F) → {0, 1,−1}.

Proof. Since Tr2 and det are both homogeneous of degree 2 and det(𝑀) ≠ 0, the existence of u follows.
Similarly, Tr(𝑀)2−4 det(𝑀) is well-defined up to multiplication with a nonzero square, so the Legendre
symbol is well-defined. �

We now assume that the characteristic of F is odd.
If 𝑢(𝑔) ≠ 0 (equivalently, Tr(𝑀) ≠ 0, where M is a lift of g to GL2(F)), then Δ (𝑔) =

(
𝑢 (𝑔) (𝑢 (𝑔)−4)

F

)
.

If 𝑢(𝑔) = 0, then Δ (𝑔) =
(
− det(𝑀 )

F

)
≠ 0, so Δ (𝑔) = 0 is equivalent to 𝑢(𝑔) = 4.

We note that Δ (𝑔) gives the square class of the discriminant of the characteristic polynomial of any
lift M of g to GL2(F). This implies that Δ (𝑔) ≠ 0 if and only if M has distinct eigenvalues (and hence is
semi-simple). The eigenvalues are in F when Δ (𝑔) = 1 and in the quadratic extension of F and conjugate
when Δ (𝑔) = −1. It follows that the elements of any Borel subgroup of PGL2 (F) have Δ ≠ −1. We
therefore obtain the following.

Corollary 2.17. Let 𝔭 be a prime ideal of odd residue characteristic. If Δ (𝑔) = −1 for some 𝑔 ∈ P𝐺𝔭,
then 𝜌𝔭 is irreducible.

Proof. If 𝜌𝔭 were reducible, then P𝐺𝔭 would be contained in a Borel subgroup, and soΔ (P𝐺𝔭) ⊆ {0, 1},
contradicting the assumption. �

This gives a method to prove the irreducibility of 𝜌𝔭 by computing

Δ (P𝜌𝔭 (Frobℓ)) =
( 𝑎2

ℓ − 4ℓ

F𝔭

)
for a number of primes ℓ � 𝑁𝑝(𝔭). If we obtain the value −1 for one such ℓ, this shows that 𝜌𝔭 is
irreducible.

We can use the invariant 𝑢(𝑔) to obtain information on the order of g. (See [98, §2.6 iii].)

Proposition 2.18. Let F be a finite field of characteristic p and let 𝑔 ∈ PGL2(F).

(1) g is unipotent ⇐⇒ 𝑢(𝑔) = 4 ⇐⇒ Δ (𝑔) = 0.
(2) If 𝑝 ≠ 2: ord(𝑔) = 2 ⇐⇒ 𝑢(𝑔) = 0.
(3) If 𝑝 ≠ 3: ord(𝑔) = 3 ⇐⇒ 𝑢(𝑔) = 1.
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(4) If 𝑝 ≠ 2: ord(𝑔) = 4 ⇐⇒ 𝑢(𝑔) = 2.
(5) If 𝑝 ≠ 5: ord(𝑔) = 5 ⇐⇒ 𝑢(𝑔)2 − 3𝑢(𝑔) + 1 = 0.

Proof. Let 𝑔 = P𝑀 for some 𝑀 ∈ GL2 (F). If Δ (𝑔) ≠ 0 (equivalently, 𝑢(𝑔) ≠ 4), then M is semi-simple
by the discussion above, and so, up to scaling, we can diagonalize M over F̄ as 𝑀 ∼ diag(1, 𝜁), where
𝜁 is some root of unity of order ord(𝑔). Then 𝑢(𝑔) = (1 + 𝜁)2/𝜁 = 𝜁 + 2 + 𝜁−1. Two values of u agree
if and only if the corresponding values of 𝜁 are either equal or inverses of each other. Claim (1) follows
from the discussion above, and the others follow by observing that the condition on p ensures that the
corresponding 𝑢(𝑔) is not equal to 4 and by matching roots of unity 𝜁 with u: 𝜁 = −1 ⇐⇒ 𝑢 = 0,
ord(𝜁) = 3 ⇐⇒ 𝜁 + 𝜁−1 = −1 ⇐⇒ 𝑢 = 1, ord(𝜁) = 4 ⇐⇒ 𝜁 + 𝜁−1 = 0 ⇐⇒ 𝑢 = 2, and the two
values of 𝜁 + 2 + 𝜁−1 for a fifth root of unity 𝜁 are the roots of 𝑢2 − 3𝑢 + 1. �

We can use this to show that 𝜌𝔭 is not exceptional since the elements of 𝑆4 have order at most 4 and
the elements of 𝐴5 have order 5 or at most 3. So if we can find an element 𝑔 ∈ P𝐺𝔭 of order at least 5,
then P𝐺𝔭 � 𝑆4, and if we can find an element of order 4 or at least 6, then P𝐺𝔭 � 𝐴5.

We now want to rule out the other possible maximal subgroups.
If 𝜌𝔭 is dihedral, then P𝐺𝔭 is contained in the normalizer 𝑁 (𝐶) either of a split or of a nonsplit Cartan

subgroup C. The elements of 𝑁 (𝐶) \ 𝐶 have order 2; hence, 𝑢 = 0. If C is split, then the nontrivial
elements of C have Δ = 1; if C is nonsplit, its nontrivial elements have Δ = −1. So if we find elements
in P𝐺𝔭 with Δ = 1 and 𝑢 ≠ 0 and also elements with Δ = −1 and 𝑢 ≠ 0, then P𝐺𝔭 cannot be dihedral.

For the sub-line case, we restrict to deg𝔭 ≤ 2. If 𝜌𝔭 is sub-line, we must then have deg𝔭 = 2,
and P𝐺𝔭 ⊆ PGL2(F𝑝) (up to conjugation in PGL2(F𝔭)). Since clearly 𝑢(𝑔) ∈ F𝑝 for each element
𝑔 ∈ PGL2 (F𝑝) ⊂ PSL2(F𝔭), we can exclude the sub-line case when we find an element 𝑔 ∈ P𝐺𝔭 such
that 𝑢(𝑔) ∈ F𝔭 \ F𝑝 . Without the restriction on deg𝔭, we can similarly exclude the sub-line case when
we find 𝑔 ∈ P𝐺𝔭 such that F𝑝 (𝑢(𝑔)) = F𝔭. It is also the case that the discriminant of the characteristic
polynomial of any element is in F𝑝 (up to squares in F×

𝔭 ) and therefore a square in F𝔭, so that Δ ∈ {0, 1}.
So, similar to the Borel case, this case can also be ruled out as soon as we find an element with Δ = −1.
(This last argument is specific to deg𝔭 = 2𝑛 for some n.)

Assuming that we already know that the image is not exceptional, we can therefore prove that it is
maximal by considering primes ℓ � 𝑁𝑝, computing

Δ (ℓ) := Δ (P𝜌𝔭 (Frobℓ)) =
( 𝑎2

ℓ − 4ℓ

F𝔭

)
until we have found one ℓ such that Δ (ℓ) = −1 and 𝔭 � 𝑎ℓ and another ℓ such that Δ (ℓ) = 1 and 𝔭 � 𝑎ℓ .
(Recall that 𝑢(P𝜌𝔭 (Frobℓ)) ≠ 0 ⇐⇒ 𝔭 � 𝑎ℓ).

We obtain the following algorithm that returns a set of possible types of subgroups of P𝐺max
𝔭 that

can contain P𝐺𝔭. If this set is empty, then 𝜌𝔭 has maximal image. We assume 𝑔 = 2 here since the
discussion of the sub-line case above was assuming deg𝔭 ≤ 2, and 𝑔 = 2 is our main case of interest.
The algorithm can be modified to work for general g if desired.

We use the symbols 𝑆4 and 𝐴5 to denote subgroups isomorphic to the respective groups, R
(‘reducible’) for a Borel subgroup, L for a sub-line stabilizer, and 𝑁𝑠 and 𝑁𝑛𝑠 for the normalizers
of a split or nonsplit Cartan subgroup.

Algorithm 2.19.
Input: A newform 𝑓 ∈ N (𝑁, 2). A prime ideal 𝔭 of the maximal order O of Z[ 𝑓 ]. A bound 𝐵.
Output: A subset of {𝑅, 𝐿, 𝑁𝑠 , 𝑁𝑛𝑠 , 𝑆4, 𝐴5} such that if a type is not in the set, then P𝐺𝔭 is not
contained in a maximal subgroup of P𝐺max

𝔭 of this type.

1. [Initialize] Set 𝑆 := {𝑅, 𝐿, 𝑁𝑠 , 𝑁𝑛𝑠 , 𝑆4, 𝐴5}. Set 𝑝 := 𝑝(𝔭).
2. [Degree 1] If deg𝔭 = 1:
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a. Remove 𝐿 and 𝐴5 from 𝑆.
b. If 𝑝 ∈ {2, 3}, then remove 𝑁𝑠 and 𝑆4 from 𝑆.

3. [Degree 2] If deg𝔭 = 2:
a. If 𝑝 = 2, then remove 𝑁𝑠 , 𝑆4 and 𝐴5 from 𝑆.
b. If 𝑝 = 3, then remove 𝑁𝑠 , 𝑁𝑛𝑠 and 𝑆4 from 𝑆.
c. If 𝑝 ≥ 5 and 𝑝2 � 𝑁 , then remove 𝑁𝑛𝑠 from 𝑆.
d. If 𝑝 � ±3 mod 10, then remove 𝐴5 from 𝑆.

4. [𝑆4 possible?] If 𝑝 � ±3 mod 8, then remove 𝑆4 from 𝑆.
5. [Loop over primes] For each prime ℓ ≤ 𝐵 such that ℓ � 𝑁𝑝:

a. Compute the image 𝑢(ℓ) of 𝑎2
ℓ/ℓ in F𝔭.

b. If 𝑝 ≠ 2, then compute Δ (ℓ) :=
(
𝑎2
ℓ−4ℓ
F𝔭

)
.

c. If 𝑢(ℓ) ∉ {0, 1, 2, 4}, then remove 𝑆4 from 𝑆.
d. If 𝑢(ℓ) ∉ {0, 1, 4} and 𝑢(ℓ)2 − 3𝑢(ℓ) + 1 ≠ 0, then remove 𝐴5 from 𝑆.
e. If deg𝔭 = 2 and 𝑢(ℓ) ∉ F𝑝 , then remove 𝐿 from 𝑆.
f. If 𝑝 = 2, deg𝔭 = 1 and 𝑢(ℓ) = 1, then remove 𝑅 from 𝑆.
g. If 𝑝 = 2 and deg𝔭 = 2, then remove 𝑅 from 𝑆.

If in addition 𝑢(ℓ) = 1, then remove 𝑁𝑛𝑠 from 𝑆.
h. If 𝑝 ≠ 2 and Δ (ℓ) = −1, then remove 𝑅 and 𝐿 from 𝑆.

If in addition 𝑢(ℓ) ≠ 0, then remove 𝑁𝑠 from 𝑆.
i. If 𝑝 ≠ 2, Δ (ℓ) = 1 and 𝑢(ℓ) ≠ 0, then remove 𝑁𝑛𝑠 from 𝑆.
j. If 𝑆 = ∅, then return ∅.

6. Return 𝑆.

The correctness of the algorithm follows from the classification results in Section 2.4 and the
discussion in this section. The fact that 𝑁𝑛𝑠 can be excluded when deg𝔭 = 2 in Step 3c follows from
corollary 2.24 below.

If the image is indeed maximal, then P𝐺𝔭 = P𝐺max
𝔭 contains elements with 𝑢 ≠ 0 and Δ = 1, with

𝑢 ≠ 0 and Δ = −1, of order ≥ 6 (when 𝑝 ≥ 5) and of order 4. Chebotarëv’s density theorem then
guarantees that suitable primes ℓ exist to rule out all the possible types. Using an effective version of
the density theorem would give an explicit bound B for the primes ℓ that have to be considered in the
algorithm to be able to decide whether 𝜌𝔭 has maximal image. This bound will be too large to be useful
in practice, however.

2.6. Explicit computation

When algorithm 2.19 returns a nonempty set of types, we can try to determine the image explicitly as
follows. We assume that we have given a curve X of genus 2 over Q whose Jacobian J is isogenous to
𝐴 𝑓 ; we will determine the image of 𝜌𝐽 ,𝔭 (which has the same semi-simplification as 𝜌𝔭, 𝑓 ), assuming
that 𝔭 is a regular prime of EndQ(𝐽).

We compute (using Magma, say) the big period matrix associated to J, which allows us to write
𝐽 (C) = C2/Λ for some (numerically) explicit lattice Λ. We can also determine the action of End(𝐽)
on C2, and so we can approximate numerically the points in 𝐽 (C) [𝔭]. We represent these points by
(numerical) divisors on X, which we then recognize as divisors supported in algebraic points (this will
work when the precision is sufficiently large). We then verify that the algebraic points on J we obtain
are indeed in 𝐽 [𝔭]. Knowing the points explicitly as algebraic points allows us to determine the Galois
action.

Since Magma can easily determine the torsion subgroup of 𝐽 (Q) using the algorithm described in
[111, §11], we can at least deduce that the representation associated to some prime ideal𝔭 with 𝑝(𝔭) = 𝑝
is reducible if 𝐽 (Q) [𝑝] is nontrivial.
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Examples 2.20. We give two examples for such an explicit computation.

(1) 𝐴 = 𝐽0 (125)+ with endomorphism ring the maximal order of Q(
√

5). The representation 𝜌 〈
√

5〉 is
reducible. 𝐴[

√
5] has constituents 𝜇⊗2

5 and 𝜇⊗3
5 . In this case, 5 � [Q(𝐴[

√
5]) : Q], so

𝐴[
√

5] � 𝜇⊗2
5 ⊕ 𝜇⊗3

5 .

(2) 𝐴 = 𝐽0 (147) 〈𝑤3 ,𝑤49 〉 with endomorphism ring the maximal order of Q(
√

2). There is a prime 𝔭 | 7
in End(𝐴) such that 𝜌𝔭 is reducible. We find that its irreducible constituents are 𝜇⊗3

7 and 𝜇⊗4
7 . As

[Q(𝐴[𝔭]) : Q] = 7 · (7 − 1) and 𝐴[7] (Q(
√
−7)) = 𝐴[7] (Q(𝜇⊗3

7 )) = 0, one has a nonsplit short
exact sequence of Galois modules

0 → 𝜇⊗4
7 → 𝐴[𝔭] → 𝜇⊗3

7 → 0 .

2.7. The image of inertia at p

Our next goal will be to prove that 𝜌𝔭 is irreducible (or even maximal) for all but finitely many 𝔭, with
a small explicit set of possible exceptions. To this end, we need to study the representations 𝜌𝔭 more
carefully, so that we can extract some uniform statements. We begin by considering the action of the
inertia group at the prime p. Recall the definitions and the notations 𝐼𝑝 , 𝐼w

𝑝 , 𝐼 t
𝑝 from Section 2.1. Also

recall the fundamental characters 𝜓𝑘 from definition 2.8. In the following, g is arbitrary again.
We now consider 𝜌𝔭 |𝐼𝑝 , where 𝑝 = 𝑝(𝔭) is the residue characteristic of 𝔭. We have the following

result.

Theorem 2.21. Assume 𝑝2 � 𝑁 . Exactly one of the following two statements is true.

(i) 𝜌𝔭 |𝐼𝑝 has, up to conjugation, the form (
𝜒𝑛
𝑝 ∗

0 𝜒1−𝑛
𝑝

)
for some 𝑛 ∈ {0, 1}.

(ii) After extending to the quadratic extension of F𝔭 when deg𝔭 is odd, 𝜌𝔭 |𝐼𝑝 has, up to conjugation,
the form (

𝜓2 0
0 𝜓𝑝

2

)
.

Proof. By [97, Prop. 1], the claim is true up to the exponents of the characters. (Note that according to
loc. cit., fundamental characters of level > 2 cannot occur.) By [87, Cor. 3.4.4], as extended via [66,
Lemma 4.9] to the semistable case, the characters must be among 𝜒0

𝑝 and 𝜒1
𝑝 in the first case, and among

𝜓0
2, 𝜓1

2, 𝜓𝑝
2 and 𝜓𝑝+1

2 in the second case. The condition that det ◦𝜌𝔭 = 𝜒𝑝 = 𝜓𝑝+1
2 , together with the fact

that the characters are conjugate in the second case, then fixes the exponents. See also [69, Thm. 3.6]. �

Definition 2.22. In case (i), we say that 𝜌𝔭 |𝐼𝑝 has level 1, and in case (ii), 𝜌𝔭 |𝐼𝑝 has level 2.

Corollary 2.23. Assume 𝑝2 � 𝑁 . When 𝜌𝔭 |𝐼𝑝 has level 1, then P𝜌𝔭 (𝐼𝑝) contains a cyclic subgroup of
order 𝑝 − 1 of a split Cartan subgroup. In the case of level 2, P𝜌𝔭 (𝐼𝑝) is cyclic of order 𝑝 + 1.

Proof. This follows immediately from theorem 2.21. �

Corollary 2.24. If deg𝔭 is even and 𝑝 > 3 with 𝑝2 � 𝑁 , then P𝐺𝔭 cannot be contained in the normalizer
of a nonsplit Cartan subgroup.

https://doi.org/10.1017/fms.2024.133 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.133


20 T. Keller and M. Stoll

Proof. By corollary 2.23, P𝐺𝔭 contains elements of order ≥ 𝑝−1 > 2. Since deg𝔭 is even, no quadratic
extension is necessary in theorem 2.21 in the level 2 case, so in all cases, we find elements of order > 2
in a split Cartan subgroup. Since such elements lie in a unique Cartan subgroup (which is the centralizer
of the element) and the normalizer of a nonsplit Cartan subgroup contains only one Cartan subgroup,
the claim follows. �

Lemma 2.25. Let 𝜒 : Gal(Q𝑝 |Q𝑝) → F× be a one-dimensional character of order prime to p. Then
𝜒 |𝐼𝑝 is a power of 𝜒𝑝 .

Proof. Since 𝜒 has order prime to p and 𝐼w
𝑝 is a pro-p group, its image under 𝜒 must be trivial, so 𝜒 is

at most tamely ramified. Since Qnr
𝑝 (𝜇𝑝) is the maximal abelian tamely ramified extension of Qnr

𝑝 , 𝜒 |𝐼𝑝
must factor through 𝐼𝑝 → 𝐼 t

𝑝 → F×
𝑝 , which implies the claim. �

Corollary 2.26. Let 𝔭 be a regular prime of Z[ 𝑓 ] of residue characteristic p and assume that 𝜌𝔭 is
reducible and 𝑝2 � 𝑁 . Then there is a character 𝜀 of Gal(Q|Q) with values in F×

𝔭 and conductor d such
that 𝑑2 | 𝑁 and (with respect to a suitable basis)

𝜌𝔭 =

(
𝜀𝜒𝑛

𝑝 ∗
0 𝜀−1 𝜒1−𝑛

𝑝

)
with 𝑛 = 0 or 𝑛 = 1.

Proof. The semi-simplification of 𝜌𝔭 splits as a direct sum 𝜋1 ⊕ 𝜋2 of one-dimensional characters
𝜋1, 𝜋2 : Gal(Q|Q) → F×

𝔭 . By lemma 2.25, 𝜋1 |𝐼𝑝 = 𝜒𝑛
𝑝 for some n, and so 𝜋2 |𝐼𝑝 = 𝜒1−𝑛

𝑝 . We can
therefore write 𝜋1 = 𝜀𝜒𝑛

𝑝 with some character 𝜀 that is unramified at p. Since 𝜒𝑝 = det ◦𝜌𝔭 = 𝜋1 · 𝜋2, it
follows that 𝜋2 = 𝜀−1 𝜒1−𝑛

𝑝 . We then have

𝑑2 = cond(𝜀) cond(𝜀−1) | cond(𝜌𝔭) | 𝑁 .

Since 𝑝2 � 𝑁 , we have 𝑛 ∈ {0, 1} by theorem 2.21. �

Remark 2.27. One can use this to refine algorithm 2.19 by potentially eliminating type R in more
cases. For each prime ℓ � 𝑁𝑝, compare the reduction of 𝑎ℓ mod 𝔭 with all elements of the form
𝜀(ℓ)ℓ𝑛 + 𝜀(ℓ)−1ℓ1−𝑛 for the finitely many possible characters 𝜀 and 𝑛 ∈ {0, 1}, and let 𝑆ℓ be the set of
compatible pairs (𝜀, 𝑛). Then one takes the intersection of the sets 𝑆ℓ for several ℓ. If the intersection is
empty, then 𝜌𝔭 must be irreducible.

Examples 2.28. We give two examples that illustrate corollary 2.26. In order to determine whether 𝐺𝔭

has a nontrivial unipotent part, we determine explicit generators of 𝐴[𝔭] (Q), which allows us to find
[Q(𝐴[𝔭]) : Q] (and, in fact, to determine the Galois action); see Section 2.6.

(1) 𝐴 = 𝐽0 (39)𝑤13 with endomorphism ring the maximal order of Q(
√

2). There is exactly one prime
𝔭 | 7 such that 𝜌𝔭 is reducible. Since 39 is squarefree, 𝜌ss

𝔭 � 1 ⊕ 𝜒7. We find that 𝐴[𝔭] (Q) � Z/7Z,
so we have a short exact sequence

0 → Z/7Z → 𝐴[𝔭] → 𝜇7 → 0,

which turns out to be nonsplit since [Q(𝐴[𝔭]) : Q] is divisible by 7.
(2) 𝐴 = 𝐽0 (87)𝑤29 with endomorphism ring the maximal order of Q(

√
5). The representation 𝜌 〈

√
5〉 is

reducible. Similarly as in Example (1), the constituents are Z/5Z and 𝜇5. Since 𝐴[
√

5] (Q) � Z/5Z,
we have the exact sequence

0 → Z/5Z → 𝐴[𝔭] → 𝜇5 → 0,

which is again nonsplit.
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We now consider the case that 𝜌𝔭 (Gal(Q𝑝 |Q𝑝)) is contained in the normalizer of a Cartan subgroup
of GL2(F𝔭).

Lemma 2.29. Assume 𝔭 is a regular prime ideal lying above a rational prime 𝑝 > 3 such that 𝑝2 � 𝑁
and that 𝜌𝔭 (Gal(Q𝑝 |Q𝑝)) is contained in the normalizer 𝑁 (𝐶) of a Cartan subgroup C of GL2 (F𝔭).
Then the following are equivalent:

(i) 𝜌𝔭 |𝐼𝑝 has level 1.
(ii) 𝜌𝔭 (Gal(Q𝑝 |Q𝑝)) ⊆ 𝐶.

(iii) P𝜌𝔭 (Gal(Q𝑝 |Q𝑝)) ⊆ P𝐶 has order 𝑝 − 1 and C is split.

Proof. Clearly, (iii) implies (ii) (since P−1(P𝐶) = 𝐶). If (ii) holds, then 𝜌𝔭 (Gal(Q𝑝 |Q𝑝)) is abelian of
order prime to p, so lemma 2.25 implies that 𝜌𝔭 |𝐼𝑝 has level 1.

To show that (i) implies (iii), first note that the image of the wild inertia group 𝐼w
𝑝 must be trivial since

𝐼w
𝑝 is a pro-p group and the order of 𝑁 (𝐶) is prime to p (since 𝑝 > 2). So 𝜌𝔭 |𝐼𝑝 factors through 𝐼 t

𝑝 , which
is pro-cyclic, and hence, 𝜌𝔭 (𝐼𝑝) is a cyclic group, which has order 𝑝−1 since 𝜌𝔭 |𝐼𝑝 has level 1 and 𝑝2 � 𝑁 .
Let Frob𝑝 be any lift of the p-Frobenius on F𝑝 to Gal(Q𝑝 |Q𝑝). lemma 2.7 implies that conjugating by
𝜌𝔭 (Frob𝑝) has the effect of taking pth powers on 𝜌𝔭 (𝐼𝑝). Since 𝑝 ≡ 1 mod #𝜌𝔭 (𝐼𝑝), this action is trivial,
so the image of Frob𝑝 commutes with the image of 𝐼𝑝 . This shows that 𝜌𝔭 (Gal(Q𝑝 |Q𝑝)) is abelian.
Since #𝜌𝔭 (Gal(Q𝑝 |Q𝑝)) contains elements of order 𝑝 − 1 > 3, this implies that 𝜌𝔭 (Gal(Q𝑝 |Q𝑝)) ≤ 𝐶.
(This is where we use that 𝜌𝔭 (Gal(Q𝑝 |Q𝑝)) ≤ 𝑁 (𝐶): all the abelian subgroups of 𝑁 (𝐶) containing
elements of order ≥ 3 are contained in C.) From the discussion above, it follows that P𝜌𝔭 (𝐼𝑝) has order
𝑝 − 1; both statements together imply (iii). �

Corollary 2.30. Assume 𝔭 is a regular prime ideal lying above a rational prime 𝑝 > 3 such that 𝑝2 � 𝑁
and that 𝐺𝔭 is contained in a Cartan subgroup C. Then C is split; in particular, 𝜌𝔭 is reducible.

Proof. The assumption implies that 𝜌𝔭 (Gal(Q𝑝 |Q𝑝)) ⊆ 𝐺𝔭 ⊆ 𝐶. The claim then follows from the
implication ‘(ii) ⇒ (iii)’ in lemma 2.29. �

Corollary 2.31. Assume 𝑝 > 3 and 𝑝2 � 𝑁 . If P𝐺𝔭 is dihedral, then P𝜌𝔭 (𝐼𝑝) is cyclic and contained in
the corresponding Cartan subgroup C.

Proof. The first statement follows as in the proof of lemma 2.29. The second statement follows from
the classification of 𝜌𝔭 (𝐼𝑝). �

2.8. The image of inertia at a prime ℓ ≠ 𝑝

We now consider the image 𝜌𝔭 (𝐼ℓ) of the inertia subgroup at a prime ℓ ≠ 𝑝.

Lemma 2.32. Let 𝔭 be a regular prime ideal of Z[ 𝑓 ] of residue characteristic p and let ℓ ≠ 𝑝 be a
prime. If ℓ2 � 𝑁 , then the image 𝜌𝔭 (𝐼ℓ) of the inertia subgroup at ℓ consists of unipotent elements.

Proof. If ℓ � 𝑁 , then 𝜌𝔭 is unramified at ℓ, and so the image of inertia is trivial. Otherwise, since the
prime-to-p part of the Artin conductor of 𝜌𝔭 divides the prime-to-p part of N, it follows from 𝑣ℓ (𝑁) = 1
that the image of wild inertia is trivial and that the image of inertia has a one-dimensional fixed subspace;
see [97, p. 181]. So

𝜌𝔭 |𝐼ℓ ∼
(
1 ∗
0 𝜒𝑝

)
.

Since 𝜒𝑝 is unramified at ℓ, this implies that 𝜌𝔭 (𝐼ℓ) is unipotent. (See also [90, Section 2]; note that the
definition of the conductor is purely local.) �
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Corollary 2.33. Let 𝔭 be a regular prime ideal of Z[ 𝑓 ] of residue characteristic p and assume that 𝐺𝔭

is contained in the normalizer 𝑁 (𝐶) of a Cartan subgroup C. Then 𝜌𝔭 is unramified at all primes ℓ ≠ 𝑝
such that ℓ2 � 𝑁 .
Proof. This follows from lemma 2.32 since 𝑁 (𝐶) contains no nontrivial unipotent elements. �

Corollary 2.34. Let 𝔭 be a regular prime ideal of Z[ 𝑓 ] of residue characteristic 𝑝 > 3 and assume
that 𝐺𝔭 is contained in the normalizer 𝑁 (𝐶) of a Cartan subgroup C. Since C has index 2 in 𝑁 (𝐶), we
obtain a quadratic character (which can be trivial)

𝜀𝔭 : Gal(Q|Q)
𝜌𝔭→ 𝑁 (𝐶) → 𝑁 (𝐶)/𝐶 � {±1} ;

let d be its conductor. Then the odd part of 𝑑2 divides N. Moreover, if 4 � 𝑁 , then 𝑑2 | 𝑁 .
Proof. Note that the odd part of d is squarefree. Let ℓ ≠ 𝑝 be an odd prime. If ℓ2 � 𝑁 , then 𝜌𝔭 is
unramified at ℓ by corollary 2.33, and so ℓ � 𝑑. This shows the claim except for powers of 2 or p. If
𝑝2 � 𝑁 , then 𝜌𝔭 (𝐼𝑝) ⊆ 𝐶 by corollary 2.31 (here, we use 𝑝 > 3), and so 𝜀𝔭 is unramified at p. This
takes care of the power of p. If 4 � 𝑁 , corollary 2.33 applies as well to show that 2 � 𝑑. This completes
the proof. �

Question 2.35. Can the stronger statement be extended to the case 4 | 𝑁?
Corollary 2.36. Let 𝑝 > 2 be prime and let 𝐾 |Q be an imaginary quadratic extension such that N and
𝐷𝐾 are coprime and K is not equal to Q(

√
−1), Q(

√
−2), or Q(

√
−3). If 𝜌𝔭 is irreducible, then the

restriction 𝜌𝔭 |𝐺𝐾 is still irreducible.
Proof. Suppose that 𝜌𝔭 is irreducible, but 𝜌𝔭 |𝐺𝐾 is reducible. Then the quadratic character on 𝐺Q
associated to 𝐾 |Q induces a nontrivial quadratic character 𝜀 on the image of 𝜌𝔭: 𝐺𝐾 fixes a one-
dimensional subspace V, and 𝜀 is given by the action on {𝑉, 𝜌𝔭 (𝜎)𝑉} for 𝜎 ∈ 𝐺Q \ 𝐺𝐾 . Since 𝜌𝔭 is
ramified only at primes dividing 𝑁𝑝 and 𝐾 |Q is ramified exactly at the primes dividing 𝐷𝐾 , it follows
from the condition that N and 𝐷𝐾 are coprime that the conductor |𝐷𝐾 | of 𝜀 is a power of p. Since
𝐷𝐾 ≠ −3,−4,−8, we must have 𝑝 > 3 and 𝐷𝐾 = −𝑝.

Since 𝜌𝔭 fixes an unordered pair of complementary one-dimensional subspaces but does not fix
the two subspaces individually, it must be dihedral (compare theorems 2.13 and 2.14). Then 𝜀 is the
character as in corollary 2.34, so corollary 2.34 implies that |𝐷𝐾 |2 = 𝑝2 | 𝑁 (here, we use that 𝑝 > 3),
contradicting again the coprimality of N and 𝐷𝐾 . �

2.9. Explicit irreducibility for almost all 𝔭

It is known that 𝜌𝔭 is irreducible for all but finitely many 𝔭. Lombardo [69, Thm. 1.4] gives an explicit
(but very large) bound for the reducible primes (actually, for the primes such that the image is not
maximal). What we need, however, is to determine as exactly as possible the finite set of primes 𝔭 such
that 𝜌𝔭 is reducible in each concrete case.

In view of corollary 2.26, we make the following definition.
Definition 2.37. We write 𝑑max for the largest positive integer d such that 𝑑2 | 𝑁 .

We then obtain the following criterion. (Compare [38, §3.1], where similar criteria are used to show
that the mod-p Galois representations associated to an abelian surface with minimal endomorphism ring
are maximal for almost all primes p.)
Proposition 2.38. Let ℓ � 𝑁 be a prime and let 𝑚(ℓ) be the order of ℓ in (Z/𝑑maxZ)×. Let𝔭 be a regular
prime of Z[ 𝑓 ] of residue characteristic p. If 𝑝2 � 𝑁 and

𝔭 � ℓ · res𝑇 (𝑇2 − 𝑎ℓ𝑇 + ℓ, 𝑇𝑚(ℓ) − 1) ∈ Z[ 𝑓 ],

then 𝜌𝔭 is irreducible.

https://doi.org/10.1017/fms.2024.133 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.133


Forum of Mathematics, Sigma 23

We note that when 𝜑(𝑑max) = 1 (which is the case, for example, when N is squarefree) or ℓ ≡
1 mod 𝑑max, the resultant simplifies to ℓ + 1 − 𝑎ℓ .

Proof. Let us prove the contrapositive. Thus, suppose that 𝜌𝔭 is reducible. Let 𝜀 be the character in
corollary 2.26. It can be considered as a Dirichlet character of conductor 𝑑 | 𝑑max with values in F×

𝔭 .
Since 𝑝2 � 𝑁 , we have 𝑛 = 0 or 𝑛 = 1 in corollary 2.26, and by symmetry (and since what we do
depends only on the semi-simplification of 𝜌𝔭), we can assume 𝑛 = 0. If ℓ = 𝑝, then 𝔭 | ℓ, and we are
done. Hence, suppose ℓ � 𝑁𝑝. Then 𝜌𝔭 (Frobℓ) is well-defined and has 𝜀(ℓ) as an eigenvalue, which is
also a root of unity of order dividing 𝑚(ℓ). So the characteristic polynomial 𝑇2 − �̄�ℓ𝑇 + ℓ̄ ∈ F𝔭 [𝑇] of
𝜌𝔭 (Frobℓ) has at least one root in common with 𝑇𝑚(ℓ) − 1. This is equivalent to

res𝑇 (𝑇2 − �̄�ℓ𝑇 + ℓ̄, 𝑇𝑚(ℓ) − 1) = 0 .

Since the resultant is compatible with ring homomorphisms, this implies that 𝔭 divides the resultant in
the statement. �

Remark 2.39. One can alternatively consider the condition

𝑝 | ℓ · res𝑇
(
charpol(𝜌𝑝∞ (Frobℓ)) (𝑇), 𝑇𝑚(ℓ) − 1

)
∈ Z

with the same 𝑚(ℓ) as above. Using the fact that the resultant is the product of all differences of roots
of the first and of the second polynomial, together with the Weil conjectures for the characteristic
polynomial of Frobℓ on 𝑇𝑝𝐴, we see that the resultant above is an integer R satisfying

0 < (
√

ℓ − 1)2𝑔𝑚(ℓ) < 𝑅 < (
√

ℓ + 1)2𝑔𝑚(ℓ) .

In particular, it is nonzero, so taking just one ℓ � 𝑁 gives a relatively small bound for the set of primes p
such that 𝜌𝔭 is reducible for some𝔭 | 𝑝. In practice, one takes several ℓ and uses the gcd of the resultants
to obtain reasonably sharp bounds.

This leads to the following algorithm. Recall the notation 𝑝(𝔭) for the residue characteristic of the
prime ideal 𝔭.

Algorithm 2.40.
Input: A newform 𝑓 ∈ N (𝑁, 𝑔). A bound 𝐵.
Output: A finite set 𝑆 of primes of the maximal order O of Z[ 𝑓 ] such that 𝜌𝔭 is irreducible for all
𝔭 ∉ 𝑆, or ‘failure’.

1. [Maximal conductor] Compute 𝑑max :=
∏

𝑝 |𝑁 𝑝 �𝑣𝑝 (𝑁 )/2� .
2. [Initialization] Let 𝐼 := 〈0〉 as an ideal of O.
3. [Loop over primes] For all primes ℓ ≤ 𝐵 such that ℓ � 𝑁:

a. Compute the order 𝑚(ℓ) of ℓ in (Z/𝑑maxZ)×.
b. Set 𝐼 := 𝐼 + 〈ℓ · res𝑇 (𝑇2 − 𝑎ℓ𝑇 + ℓ, 𝑇𝑚(ℓ) − 1)〉.

4. [Result] If 𝐼 = 〈0〉, then output ‘failure’, else output {𝔭 : 𝔭 | 𝐼or𝑝(𝔭)2 | 𝑁}.

We can then use algorithm 2.19 on the regular odd primes in S to try to show that 𝜌𝔭 is irreducible
even though algorithm 2.40 was unable to prove that. One can also use the idea from remark 2.27.

Remark 2.41. If we take B sufficiently large in algorithm 2.40, then by the Chebotarëv density theorem,
the set S that the algorithm returns will contain only the prime ideals 𝔭 such that 𝑝(𝔭)2 | 𝑁 or that the
image of 𝜌𝔭 consists of elements with one eigenvalue in the image of a character of conductor dividing
𝑑max. This is compatible with the image being contained in the normalizer of a split Cartan subgroup
(but not in the Cartan subgroup itself).
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Example 2.42. Let 𝐴 = 𝐽0(35)𝑤7 be the Jacobian of the modular curve quotient 𝑋0(35)/〈𝑤7〉, where
𝑤7 denotes the Atkin–Lehner involution. A corresponds to the Galois orbit of size 2 of newforms of
level 35, weight 2 and trivial nebentypus. Let f be one of these two newforms. Then Z[ 𝑓 ] is the maximal
order of Q(

√
17). Since the level 𝑁 = 35 is squarefree, 𝑑max = 1.

Let 𝛽 = (1 +
√

17)/2 be a generator of Z[ 𝑓 ]. We then have 𝑎2 = −𝛽 (for one of the two conjugate
newforms), so the resultant is

res𝑇 (𝑇2 + 𝛽𝑇 + 2, 𝑇 − 1) = 3 + 𝛽,

which is an element of norm 23. This shows that 𝜌𝔭 is irreducible for all prime ideals 𝔭 with odd residue
characteristic. We also have 𝑎3 = 𝛽 − 1, and the corresponding resultant is

res𝑇 (𝑇2 − (𝛽 − 1)𝑇 + 3, 𝑇 − 1) = 5 − 𝛽,

whose norm is 24 and which is not divisible by 2, so it generates a power of one of the two prime ideals
above 2 in Z[ 𝑓 ]; explicitly,

〈5 − 𝛽〉 = 〈𝛽 + 1〉4 = 𝔭4 .

Write 〈2〉 = 𝔭𝔭′. Then we can deduce that 𝜌𝔭′ is irreducible.
Magma computes that 𝐴(Q)tors � Z/16Z. This shows that 𝜌𝔭 must be reducible (and that it is

nontrivial since 𝐴[𝔭] (Q) � Z/2Z and not (Z/2Z)2).

Example 2.43. We now consider 𝐴 = 𝐽0(125)+, which corresponds to a Galois orbit of newforms with
coefficient ring the maximal order of Q(

√
5). Let 𝛼 = (1+

√
5)/2. Then we can pick one of the newforms

f such that 𝑎2 = −𝛼 and 𝑎3 = 𝛼 − 2. Here, 𝑑max = 5 and so 𝑚(2) = 𝑚(3) = 4. We find that

𝑟2 := res𝑇 (𝑇2 + 𝛼𝑇 + 2, 𝑇4 − 1) = 15 + 5𝛼 and
𝑟3 := res𝑇 (𝑇2 − (𝛼 − 2)𝑇 + 3, 𝑇4 − 1) = 90 − 15𝛼 .

The ideal of Z[ 𝑓 ] generated by 2𝑟2 and 3𝑟3 has norm 52. So the algorithm shows that 𝜌𝔭 is irreducible
for all primes 𝔭 ≠ 〈

√
5〉. An explicit computation shows that 𝜌 〈

√
5〉 is reducible; see example 2.20, (1).

2.10. Excluding the sub-line and exceptional cases for almost all 𝔭

In the following, we require that the coefficient field of the newform is of degree 2, and so dim 𝐴 = 2 as
well. This simplifies the discussion of the sub-line case.

Our next goal will be to show that 𝜌𝔭 has maximal image for all 𝔭 outside a small explicit finite set.
Starting from the result of the previous subsection, it remains to show that for all but a few explicit 𝔭,
P𝐺𝔭 is not contained in the stabilizer of a sub-line (when deg𝔭 = 2), in a maximal subgroup of type 𝑆4
or 𝐴5, or in the normalizer of a Cartan subgroup.

We begin with the sub-line case and assume that 𝜌𝔭 is irreducible and 𝑝(𝔭) is odd. In this case,
𝐺𝔭 ⊆ P−1 (PGL2(F𝑝)) ∩ 𝐺max

𝔭 , which is a group containing GL2(F𝑝) with index 2. More precisely,
let 𝛼 ∈ F×

𝔭 \ F×
𝑝 be such that 𝛼2 ∈ F×

𝑝; then the group is the union of GL2 (F𝑝) and 𝛼GL2(F𝑝). So
𝐺𝔭 stabilizes the union of a 2-dimensional F𝑝-subspace U (that is not a 1-dimensional F𝔭-subspace) of
𝐴[𝑝] and 𝛼𝑈. If 𝐺𝔭 ⊆ GL2 (F𝑝) (for some choice of F𝔭-basis of 𝐴[𝑝]), then these two F𝑝-subspaces are
fixed individually, and so 𝜌𝑝 is the direct sum of two copies of a 2-dimensional Gal(Q|Q)-representation
over F𝑝; in particular, 𝜌𝑝 is reducible. Conversely, if 𝜌𝑝 is reducible (but 𝜌𝔭 is not), then P𝐺𝔭 must be
contained in the stabilizer of the sub-line that is the image of a 2-dimensional F𝑝-subspace fixed by 𝐺𝔭.
So, by showing that 𝜌𝔭 is irreducible and P𝐺𝔭 is not contained in the stabilizer of a sub-line, we also
show that A has no nontrivial isogenies of degree a power of p.
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In any case, we know from the discussion in Section 2.5 that the element 𝑢(P𝜌𝔭 (Frobℓ)) = 𝑎2
ℓ/ℓ ∈ F𝔭

must be in F𝑝 for all ℓ � 𝑁𝑝 if P𝐺𝔭 is contained in the stabilizer of a sub-line. This is equivalent to
𝑝 | 𝑎2

ℓ − 𝑎𝜎
ℓ

2, where 𝜎 denotes the nontrivial automorphism of Z[ 𝑓 ]. Since in our setting, there always
are 𝔭 of degree 2 such that P𝐺𝔭 does not consist entirely of elements g such that 𝑢(𝑔) ∈ F𝑝 , there will
be a set of primes ℓ � 𝑁 of positive density such that 𝑎2

ℓ ≠ 𝑎𝜎
ℓ

2. (If f has an inner twist by a quadratic
character, then 𝑎ℓ = ±𝑎𝜎

ℓ for almost all ℓ. But in this case, 𝐴 𝑓 is isogenous to the Weil restriction of an
elliptic curve over the quadratic field associated to the character, and so 𝐴 𝑓 is not absolutely simple.)
We can replace 𝑎2

ℓ − 𝑎𝜎
ℓ

2 by (𝑎2
ℓ − 𝑎𝜎

ℓ
2)/

√
disc(Z[ 𝑓 ]) ∈ Z (note that the prime divisors of disc(Z[ 𝑓 ])

are always ramified, so the corresponding primes of Z[ 𝑓 ] have degree 1). This leads to the following
algorithm.

Algorithm 2.44.
Input: A newform 𝑓 ∈ N (𝑁, 2). A bound 𝐵.
Output: A finite set 𝑆 of prime ideals of the maximal order O of Z[ 𝑓 ] such that P𝐺𝔭 is not contained
in the stabilizer of a sub-line for all 𝔭 ∉ 𝑆, or ‘failure’.

1. [Initialize] Set 𝑅 := 0 ∈ Z.
2. [Loop over primes] For all primes ℓ ≤ 𝐵 such that ℓ � 𝑁:

a. Set 𝑅 := gcd(𝑅, ℓ · (𝑎2
ℓ − 𝑎𝜎

ℓ
2)/

√
disc(Z[ 𝑓 ])).

b. If 𝑅 = 1, then exit the loop.
3. [Result] If 𝑅 = 0, then return ‘failure’,

else return {𝔭 : 𝑝(𝔭) | 𝑅 and deg𝔭 = 2}.

By the discussion above, the algorithm will not return ‘failure’ when B is sufficiently large.
We now consider the case of exceptional image. Our analysis of the projective image of the inertia

group 𝐼𝑝 allows us to find elements of order at least 6 in P𝜌𝔭 (𝐼𝑝) ≤ P𝐺𝔭 in most cases, which implies
that P𝐺𝔭 is not contained in 𝑆4 or 𝐴5.

Proposition 2.45. If 𝑝 ≥ 7 is a prime such that 𝑝2 � 𝑁 , then P𝐺𝔭 is not exceptional for all 𝔭 | 𝑝.

Proof. Since we assume 𝑝2 � 𝑁 , it follows from corollary 2.23 that P𝐺𝔭 contains elements of order
𝑝 − 1 or 𝑝 + 1. So if 𝑝 ≥ 7, there are always elements of order at least 6 in P𝐺𝔭, which implies that P𝐺𝔭

cannot be contained in a group isomorphic to 𝑆4 or to 𝐴5. �

So we only have to consider prime ideals 𝔭 of residue characteristic p such that 𝑝 ≤ 5 or 𝑝2 | 𝑁 . By
the classification in Section 2.4, we can also exclude 𝑝 = 3 when deg𝔭 = 1 and 𝑝 = 2. We can then run
algorithm 2.19 on these finitely many 𝔭 to reduce the set of possibly exceptional primes further.

2.11. Proving non-CM

Recall that our goal is to show that 𝐺𝔭 = 𝐺max
𝔭 for all 𝔭 outside an explicit small finite set. Now if f has

CM, then 𝐺𝔭 will always be contained in the normalizer of a Cartan subgroup, so in this case, our task
is impossible. Note that by proposition 2.2, in our case of interest when 𝑔 = 2, if the associated abelian
surface is absolutely simple, f cannot have CM. However, since it may be of interest in other situations,
we describe a suitable algorithm.

We recall the relevant definition (see [88, §3], specialized to the case of interest).

Definition 2.46. Let f be a newform of weight 2, level N and trivial nebentypus, and let 𝜀 be a Dirichlet
character. We say that f has CM by 𝜀, if 𝑓 ⊗ 𝜀 = 𝑓 . We say that f has CM, if f has CM by some nontrivial
Dirichlet character 𝜀.

Remark 2.47. The Dirichlet character 𝜀 is then necessarily quadratic: Since f has totally real coefficients,
𝜀 has to take real values.
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If f has CM by 𝜀, then 𝜀(ℓ)𝑎ℓ = 𝑎ℓ for all ℓ � 𝑁 cond(𝜀), so 𝑎ℓ = 0 whenever 𝜀(ℓ) = −1. This can be
used to show that f does not have CM by 𝜀, by exhibiting a prime ℓ � 𝑁 such that 𝜀(ℓ) = −1 and 𝑎ℓ ≠ 0.

The idea is then to first determine a finite set of possibilities for the conductor D of 𝜀 and then to
check for each of the finitely many possible characters 𝜀 of conductor D that f does not have CM by 𝜀
using this approach.

Theorem 2.48. Let f be a newform of weight 2, level N and trivial nebentypus, and let 𝜀 be a quadratic
Dirichlet character of conductor D. Then the twist 𝑓 ⊗ 𝜀 of f by 𝜀 is a normalized eigenform of level
dividing lcm(𝑁, 𝐷2) and trivial nebentypus.

Proof. See [102, Proposition 3.64], using that 𝜀2 is trivial. �

Proposition 2.49. If f is a CM form of level N, it is the newform associated to a Hecke character 𝜓 of
some conductor 𝔪 of an imaginary quadratic number field K of discriminant −Δ𝐾 . One has 𝑁 = Δ𝐾 𝑀
with M the absolute norm 𝒩(𝔪) := #O𝐾 /𝔪 and 〈Δ𝐾 〉 | 𝔪. In particular, Δ2

𝐾 | 𝑁 .

Proof. [96, Theorem 1.4 and Corollary 1.5] �

In the situation of proposition 2.49, the CM character 𝜀 is the quadratic character associated to K.
This leads to the following algorithm.

Algorithm 2.50.

Input: A newform 𝑓 of weight 2, level 𝑁 and trivial nebentypus. A bound 𝐵.
Output: ‘non-CM’ or ‘no result’.

1. Let 𝑆 be the set of all negative fundamental discriminants −Δ such that Δ2 | 𝑁 .
2. For each Δ ∈ 𝑆, do the following.

a. For all primes ℓ ≤ 𝐵 such that ℓ is inert in Q(
√
−Δ), do:

(i) if 𝑎ℓ ≠ 0, then continue with the next Δ .
b. Return ‘no result’.

3. Return ‘non-CM’.

Remark 2.51. If f does have CM, then this algorithm will eventually return ‘no result’. Then one has a
candidate character 𝜀 (the character associated to −Δ), and one can try to verify that 𝑓 ⊗ 𝜀 = 𝑓 (this is
a finite computation, as the space of cusp forms of weight 2, level lcm(𝑁,Δ2) and trivial nebentypus is
of finite dimension and can be computed).

The following result guarantees that there will be enough primes ℓ as above when f has no CM.

Theorem 2.52. Let f be a non-CM form. The set of primes ℓ such that 𝑎ℓ = 0 has density 0.

Proof. See [99, p. 174]. �

Example 2.53. If N is squarefree, then proposition 2.49 implies that f has no CM since the only possible
value of Δ would lead to −Δ𝐾 = −1, which is not a discriminant of an imaginary quadratic number field.

Remark 2.54. The newforms of weight 2, level 800, trivial nebentypus and with coefficients in Q(
√

5)
in the Galois orbit with LMFDB label 800.2.a.j have CM by Q(

√
−5). Computing its endomorphism

ring using Magma, we see that it has nontrivial idempotents, so 𝐴 𝑓 is not absolutely simple as predicted
by proposition 2.2.

2.12. Maximal image for almost all 𝔭

Let f as usual be a newform of weight 2, level N and trivial nebentypus. We now assume that f does not
have CM. In this section, we will describe an algorithm inspired by [26] that finds a small finite set of
primes 𝔭 such that for all 𝔭 ∉ 𝑆, the representation 𝜌𝔭 has maximal image.
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Using the algorithms we have described so far (and assuming 𝑔 = 2, as that is required for some of
these algorithms), we can determine a finite set S of prime ideals such that for all𝔭 ∉ 𝑆, the representation
𝜌𝔭 is either maximal or irreducible and dihedral. So if P𝐺𝔭 is not maximal for 𝔭 ∉ 𝑆, it is contained in
the normalizer 𝑁 (𝐶) of a Cartan subgroup C. It therefore remains to find a finite set of prime ideals
such that P𝐺𝔭 is not dihedral for 𝔭 outside this set.

So assume that 𝜌𝔭 is irreducible and dihedral, with P𝐺𝔭 ⊆ 𝑁 (𝐶) as above. We can also assume that
𝑝2 � 𝑁 , as this excludes only finitely many p, which we can consider separately. By corollary 2.30, P𝐺𝔭

is not contained in C. So the character 𝜀𝔭 defined in corollary 2.34 is nontrivial.

Proposition 2.55. If N is squarefree, the residue characteristic of 𝔭 is not 2 and 𝜌𝔭 is irreducible, then
𝜌𝔭 is not dihedral.

Proof. Let us prove the contrapositive. Thus, suppose that 𝜌𝔭 is dihedral. Then by the discussion
above, 𝜀𝔭 is nontrivial. By Corollary 2.34, the conductor 𝑑 > 1 of 𝜖𝔭 satisfies 𝑑2 | 𝑁 . Thus, N is not
squarefree. �

So in the semi-stable case, we already know that 𝜌𝔭 is maximal for all 𝔭 ∉ 𝑆. If N is not squarefree,
then corollary 2.34 provides us with a finite set of possibilities for 𝜀𝔭, and we can try to rule each of
them out for all prime ideals outside a finite set.

Lemma 2.56. Assume that 𝔭 has odd residue characteristic p and that 𝜌𝔭 is dihedral, with associated
character 𝜀𝔭. If ℓ � 𝑁𝑝 is a prime such that 𝜀𝔭 (ℓ) = −1, then 𝔭 | 𝑎ℓ .

Proof. Since 𝜀𝔭 (ℓ) = −1 by assumption, we have 𝜌𝔭 (Frobℓ) ∈ 𝑁 (𝐶) \ 𝐶. Then P𝜌𝔭 (Frobℓ) has order
2, which implies that 𝑎ℓ ≡ Tr(𝜌𝔭 (Frobℓ)) = 0 mod 𝔭. �

We make use of this as follows. For each quadratic character 𝜀 of conductor d such that 𝑑2 | 𝑁 (or
𝑑 | 8𝑑0 with 𝑑0 odd such that 𝑑2

0 | 𝑁 if 4 | 𝑁), find some prime ℓ = ℓ(𝜀) � 𝑁 such that 𝑎ℓ ≠ 0 and
𝜀(ℓ) = −1 (there are many such primes by theorem 2.52). Then for all 𝔭 such that 𝔭 � ℓ𝑎ℓ (which are
all but finitely many), it follows that 𝜀𝔭 ≠ 𝜀. (In practice, it makes sense to use several such primes ℓ to
cut the set of possible exceptions down further.) So replacing S by the union of S with the finitely many
finite sets 𝑆𝜀 = {𝔭 : 𝔭 | ℓ𝑎ℓ (𝜀) }, we obtain the desired finite set S of prime ideals such that for 𝔭 ∉ 𝑆,
𝜌𝔭 has maximal image.

Algorithm 2.57.

Input: A non-CM newform 𝑓 ∈ N (𝑁, 2). A bound 𝐵.
Output: A finite set 𝑆 of prime ideals of the maximal order O of Z[ 𝑓 ] such that for all 𝔭 ∉ 𝑆, 𝜌𝔭 has

maximal image, or ‘failure’.

1. [Initialize] Let 𝑆 be the union of

{𝔭 : 𝑝(𝔭) ∈ {2, 3, 5} or 𝑝(𝔭)2 | 𝑁}

and the finite sets returned by algorithms 2.40 and 2.44 (run on 𝑓 with the bound 𝐵).
Return ‘failure’ when one of these algorithms failed.

2. [Possible conductors] Set D := {𝑑 ∈ Z>0 : 𝑑2 | 𝑁 and 2 � 𝑑}.
If 4 | 𝑁 , set D := D ∪ {4𝑑 : 𝑑 ∈ D} ∪ {8𝑑 : 𝑑 ∈ D}.

3. [Loop over characters] For each 𝑑 ∈ D and each quadratic Dirichlet character 𝜀 of conductor 𝑑, do:
a. [Initialize] Set 𝐼 := 〈0〉 as an ideal in O.
b. [Loop over primes] For each prime ℓ ≤ 𝐵 such that ℓ � 𝑁 and 𝜀(ℓ) = −1, set 𝐼 := 𝐼 + 〈ℓ𝑎ℓ〉.
c. [Failure] If 𝐼 = 〈0〉, then return ‘failure’.
d. [Record prime ideals] Set 𝑆 := 𝑆 ∪ {𝔭 : 𝐼 ⊆ 𝔭}.

4. [Refine] Run algorithm 2.19 on each 𝔭 ∈ 𝑆 and remove 𝔭 from 𝑆 when the result is the empty set.
5. Return 𝑆.
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If B is sufficiently large, then the algorithm will not return ‘failure’, and by the discussion above, S
will satisfy the specification.

We can use the information obtained from the various algorithms to provide a list of possible types of
maximal subgroups that could contain 𝐺𝔭 for those primes𝔭 that are in the set returned by algorithm 2.57.

2.13. The image of the 𝔭-adic Galois representation

For theorem 7.7, we also need information about the image of 𝜌𝔭∞ |Gal(Q |Q(𝜇𝑝∞)) , and for theorem 5.10,
about the image of 𝜌𝔭∞ .

Proposition 2.58. Let O be the ring of integers of an unramified extension of Z𝑝 . Let 𝐺 ⊆ SL2(O) be
a closed subgroup.

(i) If 𝑝 > 3 and G surjects onto SL2 (O/𝑝), then 𝐺 = SL2 (O).
(ii) If 𝑝 = 3 and G surjects onto SL2(O/32), then 𝐺 = SL2 (O).

Proof. See [100, Lemma IV.23.3], noting that the proof works for O instead of Z𝑝; for 𝑝 = 3, our claim
follows from the proof given there. �

Proposition 2.59. Assume that O/3 ∈ {F3, F32 }. Let 𝜌 : Gal(Q|Q) → GL2(O) be a continuous homo-
morphism with mod-3𝑛 reduction 𝜌3𝑛 . If 𝜌3 is surjective and the number of characteristic polynomials of
elements of 𝜌32 (Gal(Q|Q)) with constant term 1 is larger than the number of characteristic polynomials
of elements of 𝜌3 (Gal(Q|Q)) with constant term 1, then 𝜌32 is surjective.

Proof. This is a Magma computation, looping over all subgroups of SL2(O/32) that surject onto
SL2 (O/3) and computing characteristic polynomials. �

Proposition 2.60. Let O be the ring of integers of an unramified extension of Z𝑝 . Let

𝐺 ⊆ 𝐺max
𝔭∞ := {𝑀 ∈ GL2(O) : det(𝑀) ∈ Z×

𝑝}

be a closed subgroup with det(𝐺) = Z×
𝑝 .

If 𝑝 > 3 and the image of G in GL2(F𝔭) contains SL2 (F𝑝), then 𝐺 = 𝐺max
𝔭∞ .

Proof. This follows from the proof of [69, Theorem 4.22]. �

We do not need proposition 2.60 for the examples in this article, but it is useful for further examples.

2.14. Examples

The following table contains the result of running our algorithms on all absolutely simple Jacobians with
real multiplication of genus 2 curves over Q that are contained in the LMFDB. (The genus 2 curves in
the LMFDB have discriminant bounded by 106; since the conductor of the Jacobian is the square of the
level N and divides the discriminant, this implies that 𝑁 ≤ 1000.) We add information on the isogeny
classes coming from Hasegawa or Wang curves that are not also represented by an LMFDB curve.

The entry ‘N’ gives the level and the letter x of the isogeny class of the curve in the LMFDB
(the LMFDB label of the isogeny class is then 𝑁2.𝑥 . . . ). For the Hasegawa and Wang curves not
representing an isogeny class of an LMFDB curve, we use the label from [45]. The entry ‘𝑝2 | 𝑁’ lists
the primes at which the Jacobian does not have semi-stable reduction. The third entry ‘disc(O)’ gives
the discriminant of the endomorphism ring of the Jacobian. The next entry lists the prime ideals 𝔭 such
that 𝜌𝔭 is reducible and gives the splitting of 𝜌ss

𝔭 into characters. We use 𝜀𝑑 to denote the quadratic
character associated to the quadratic extension of discriminant d. Since 𝜌ss

𝔭 is the same for isogenous
Jacobians, we list each isogeny class only once. The primes are given as ‘p’ when 𝔭 = 〈𝑝〉 is of degree
2, as ‘𝔭′

𝑝’ or ‘𝔭′′
𝑝 ’ when 𝑝 = 𝑝(𝔭) is split and as ‘𝔭𝑝’ when p is ramified. The last entry lists the prime
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N 𝑝2 | 𝑁 disc(O) reducible 𝜌𝔭 irreducible non-maximal 𝜌𝔭

23a 5 𝔭′
11: 1 ⊕ 𝜒11 3: 𝐴5

29a 8 𝔭′
7: 1 ⊕ 𝜒7 𝔭2: 𝑁 (𝐶𝑛𝑠)

31a 20 𝔭5: 1 ⊕ 𝜒5
35a 17 𝔭′

2: 1 ⊕ 𝜒2 𝔭′′
2 : 𝑁 (𝐶𝑛𝑠)

39a 8 𝔭2: 1 ⊕ 𝜒2; 𝔭′
7: 1 ⊕ 𝜒7

51a 17 𝔭′
2: 1 ⊕ 𝜒2 𝔭′′

2 : 𝑁 (𝐶𝑛𝑠); 3: 𝐴5
65a 12 𝔭2: 1 ⊕ 𝜒2; 𝔭3: 1 ⊕ 𝜒3
67a 5 3: 𝐴4
67c 5 𝔭′

11: 1 ⊕ 𝜒11
73a 13 𝔭′

3: 1 ⊕ 𝜒3
73b 5 3: 𝐴4
77b 5 2: 1 ⊕ 𝜒2
85a 8 𝔭2: 1 ⊕ 𝜒2
85b 12 𝔭2: 1 ⊕ 𝜒2; 𝔭3: 1 ⊕ 𝜒3
87a 5 𝔭5: 1 ⊕ 𝜒5
88b [ 2 ] 17 𝔭′

2: 1 ⊕ 𝜒2 𝔭′′
2 : 𝑁 (𝐶𝑛𝑠)

93a 5 3: 𝐴5
103a 5 3: 𝐴4
107a 5 3: 𝐴5
115b 5 3: 𝐴5
123b 8 𝔭′

7: 1 ⊕ 𝜒7 𝔭2: 𝑁 (𝐶𝑛𝑠); 3: 𝐴5
125a [ 5 ] 5 𝔭5: 𝜒2

5 ⊕ 𝜒3
5 3: 𝐴5

129a 8 𝔭2: 𝑁 (𝐶𝑛𝑠); 3: 𝐴5
133c 5 3: 𝐴4
133d 13 𝔭′

3: 1 ⊕ 𝜒3
133e 5 𝔭5: 1 ⊕ 𝜒5
135c [ 3 ] 52 𝔭′

3: 1 ⊕ 𝜒3
147a [ 7 ] 8 𝔭2: 1 ⊕ 𝜒2; 𝔭′

7: 𝜒3
7 ⊕ 𝜒4

7
165a 8 𝔭2: 1 ⊕ 𝜒2
167a 5
176a [ 2 ] 17 𝔭′

2: 1 ⊕ 𝜒2 𝔭′′
2 : 𝑁 (𝐶𝑛𝑠)

177a 5 3: 𝐴5
188a [ 2 ] 5 2: 𝑁 (𝐶𝑛𝑠); 3: 𝐴5
191a 5 3: 𝐴5
193a 5 3: 𝐴4
205a 5 3: 𝐴5
207b [ 3 ] 8 𝔭2: 1 ⊕ 𝜒2 3: 𝐴5
209a 8 𝔭2: 𝑁 (𝐶𝑛𝑠)
211a 5 𝔭5: 1 ⊕ 𝜒5 3: 𝐴5
213a 5 3: 𝐴5
221a 5 3: 𝐴5
223a 8 𝔭2: 𝑁 (𝐶𝑛𝑠)
227a 5 2: 𝑁 (𝐶𝑛𝑠)
245a [ 7 ] 8 𝔭′

7: 𝜒3
7 ⊕ 𝜒4

7 𝔭2: 𝑁 (𝐶𝑛𝑠); 3: sub-line
250a [ 5 ] 5 𝔭5: 𝜒2

5 ⊕ 𝜒3
5 2: 𝑁 (𝐶𝑛𝑠)

261c [ 3 ] 20
275a [ 5 ] 5 𝔭5: 1 ⊕ 𝜒5 3: 𝐴5
275b [ 5 ] 13 𝔭′

3: 𝜀5 ⊕ 𝜀−3·5
287a 5
289a [ 17 ] 13 𝔭′

3: 𝜀17 ⊕ 𝜀−3·17; 𝔭′
17: 𝜒3

17 ⊕ 𝜒14
17

299a 5
303a 8 𝔭2: 𝑁 (𝐶𝑛𝑠)
313a 5
321a 5
334a 5
357a 8 𝔭2: 𝑁 (𝐶𝑛𝑠)
358a 5 𝔭5: 1 ⊕ 𝜒5
375a [ 5 ] 5 𝔭5: 𝜒2

5 ⊕ 𝜒3
5 3: 𝐴5

376b [ 2 ] 5 2: 𝑁 (𝐶𝑛𝑠)
376e [ 2 ] 5 2: 𝑁 (𝐶𝑛𝑠)
383a 5 3: 𝐴5
389a 8 𝔭2: 𝑁 (𝐶𝑛𝑠)
457a 5
461a 5 3: 𝐴5
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N 𝑝2 | 𝑁 disc(O) reducible 𝜌𝔭 irreducible non-maximal 𝜌𝔭

491a 5
499a 5 3: 𝐴5
523a 5 3: 𝐴4
533a 8 𝔭2: 𝑁 (𝐶𝑛𝑠)
599a 5
621a [ 3 ] 8 𝔭2: 𝑁 (𝐶𝑛𝑠); 3: 𝐴5
621c [ 3 ] 5 3: 𝐴5
637a [ 7 ] 5 3: 𝐴4
640a [ 2 ] 5 2: 1 ⊕ 𝜒2
640b [ 2 ] 5 2: 1 ⊕ 𝜒2
647a 5 3: 𝐴5
677a 5 3: 𝐴5
683a 5 2: 𝑁 (𝐶𝑛𝑠)
689a 5 2: 𝑁 (𝐶𝑛𝑠)
752a [ 2 ] 5 2: 𝑁 (𝐶𝑛𝑠); 3: 𝐴5
752f [ 2 ] 5 2: 𝑁 (𝐶𝑛𝑠)
752j [ 2 ] 5 2: 𝑁 (𝐶𝑛𝑠)
783a [ 3 ] 5
799a 5 3: 𝐴5
809a 5
837b [ 3 ] 8 𝔭2: 𝑁 (𝐶𝑛𝑠)
841a [ 29 ] 5 𝔭′

29: 𝜒5
29 ⊕ 𝜒24

29
845a [ 13 ] 5 3: 𝐴5
877a 5 2: 𝑁 (𝐶𝑛𝑠)
887a 5 3: 𝐴5
929a 5 3: 𝐴5

Hasegawa curve isogeny class not in the LMFDB
161 5 3: 𝐴5

‘Wang only’ curve isogeny classes not in the LMFDB
65A 8 𝔭2: 1 ⊕ 1; 𝔭′

7: 1 ⊕ 𝜒7 3: 𝐴5
117B [ 3 ] 8 𝔭2: 1 ⊕ 𝜒2
125B [ 5 ] 5 𝔭5: 1 ⊕ 𝜒5 3: 𝐴5
175 [ 5 ] 5 𝔭5: 1 ⊕ 𝜒5

ideals 𝔭 such that 𝜌𝔭 is irreducible, but algorithm 2.57 does not prove that 𝜌𝔭 is maximal. In these cases,
we have determined the isomorphism type of P𝐺𝔭 by a direct computation; we give it in the table.

3. Computation of Heegner points and the Heegner index

For this section, we fix the following setup. Let 𝑓 ∈ N (𝑁, 𝑔) be a newform of level N with Galois orbit
of size g, so that its coefficient ring Z[ 𝑓 ] is an order in the totally real number field Q( 𝑓 ) of degree g.
Its Fourier coefficients are 𝑎𝑛 = 𝑎𝑛 ( 𝑓 ) ∈ Z[ 𝑓 ]. We denote the set of embeddings Q( 𝑓 ) ↩→ R by Σ,
and we write 𝑓 𝜎 for the modular form with real coefficients obtained from f by applying 𝜎 ∈ Σ to its
coefficients. Recall that 𝐼 𝑓 denotes the annihilator of f in the integral Hecke algebra T, and that we have
morphisms of abelian varieties

𝐴∨
𝑓 = 𝐽0 (𝑁) [𝐼 𝑓 ]

𝜄 𝑓
↩→ 𝐽0(𝑁)

𝜋 𝑓
� 𝐽0 (𝑁)/𝐼 𝑓 𝐽0(𝑁) = 𝐴 𝑓 ;

the composition 𝜆 𝑓 = 𝜋 𝑓 ◦ 𝜄 𝑓 : 𝐴∨
𝑓 → 𝐴 𝑓 is a polarization of 𝐴∨

𝑓 ; it is the polarization induced by the
canonical principal polarization of 𝐽0 (𝑁) as the Jacobian of 𝑋0(𝑁). (If 𝜆 : 𝐴 → 𝐴∨ is the polarization
coming from 𝐿 ∈ NS(𝐴) and 𝜑 : 𝐵 ⊆ 𝐴 is an abelian subvariety, then 𝜑∨ ◦ 𝜆 ◦ 𝜑 : 𝐵 → 𝐵∨ is the
polarization on B coming from 𝜑∗𝐿. See [9, Cor. 2.4.6 (d)].) Note that 𝜄 𝑓 is the composition of 𝜋∨

𝑓 with
the inverse of the canonical polarization of 𝐽0 (𝑁). We write

𝑑 𝑓 := 𝑑1 · · · 𝑑𝑔,(3.1)
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where (𝑑1, . . . , 𝑑𝑔) is the type of 𝜆 𝑓 ; then deg 𝜆 𝑓 = 𝑑2
𝑓 (see [9, Thm. 3.6.1 and Cor. 3.6.2]). The

number 𝑑 𝑓 is sometimes called the modular degree of 𝐴 𝑓 ; see, for example, [3, §3.3].
We further assume that we are given a (nice) curve X whose Jacobian J is isogenous to 𝐴 𝑓 via an

isogeny 𝜋 : 𝐴 𝑓 → 𝐽. We denote EndQ(𝐽) by O. The isogeny 𝜋 induces an isomorphism of endomor-
phism algebras (where End0

Q(𝐴) := EndQ(𝐴) ⊗Z Q)

𝜋0
∗ : Q( 𝑓 ) = End0

Q(𝐴 𝑓 )
�−→ End0

Q(𝐽) = Frac(O), 𝜑 ↦−→ 𝜋𝜑𝜋−1,(3.2)

which we use to identify End0
Q(𝐽) = Q( 𝑓 ). In particular, O is identified with an order of Q( 𝑓 ). Then

for any 𝛾 ∈ Z[ 𝑓 ] ∩O, it follows that

𝜋 ◦ 𝛾 = 𝛾 ◦ 𝜋.(3.3)

We write 𝜋𝐽 = 𝜋 ◦ 𝜋 𝑓 : 𝐽0 (𝑁) → 𝐽. We then have a commutative diagram

𝐽0(𝑁) 𝜋 𝑓
�� ��

𝜋𝐽

��𝐴 𝑓 𝜋
�� 𝐽��

𝜆

𝐽0 (𝑁)∨ 𝐴∨
𝑓

� �
𝜋∨
𝑓

��

𝜆 𝑓

��

𝐽∨𝜋∨
𝐽

𝜋∨
��

��

(3.4)

with a polarization 𝜆 = 𝜋 ◦ 𝜆 𝑓 ◦ 𝜋∨ = 𝜋𝐽 ◦ 𝜋∨
𝐽 of 𝐽∨. Then by pre-composing 𝜆 with the canonical

principal polarization 𝜆𝐽 of J, we obtain an element

𝛼 := 𝜆 ◦ 𝜆𝐽 = 𝜋 ◦ 𝜆 𝑓 ◦ 𝜋∨ ◦ 𝜆𝐽 ∈ O ⊆ Q( 𝑓 ).(3.5)

By [76, Prop. 12.12], (deg 𝜋)2(deg 𝜆 𝑓 ) = deg 𝛼 = N(𝛼)2, which implies that

N(𝛼) = 𝑑 𝑓 · deg 𝜋.(3.6)

In practice, we start with the curve X of genus g, and we know that its Jacobian J has real multiplication
(and is absolutely simple). We then need to find the corresponding newform 𝑓 ∈ N (𝑁, 𝑔). We first
determine N. When X is a quotient of 𝑋0 (𝑁), then we know N by construction. In general, we find N
as the square root of the conductor of J, which can be computed up to finitely many choices of power
of 2 at worst; in our LMFDB examples, the conductor has been determined exactly and is available in
the LMFDB. Given N, we then compare the traces of the Fourier coefficients at primes ℓ � 𝑁 of the
various candidate f with the corresponding coefficient of the L-function of J. This quickly leaves only
one candidate, which must then be the correct f (up to the Galois action). We now assume that f is fixed.

One of the ingredients we need in order to prove that X(𝐽/Q) [𝔭] = 0 for all except an explicit
finite set of prime ideals 𝔭 of O is the Heegner index, whose definition we now recall. (See Sections
4 and 5 below for why the Heegner index is important.) Let K be a Heegner field for f ; this is
an imaginary quadratic field such that all prime divisors of N split in K and such that the L-series
𝐿( 𝑓 /𝐾, 𝑠) = 𝐿( 𝑓 , 𝑠)𝐿( 𝑓 ⊗ 𝜀𝐾 , 𝑠) (with 𝜀𝐾 the quadratic character corresponding to K) vanishes to
first order at 𝑠 = 1. The first condition implies that O𝐾 contains ideals 𝔫 of norm N such that O𝐾 /𝔫 is
a cyclic group of order N. Then the natural map C/O𝐾 → C/𝔫−1 corresponds to a cyclic isogeny of
degree N between two elliptic curves with CM by O𝐾 and so defines a point in 𝑋0(𝑁), which is known
to be defined over the Hilbert class field H of K. More generally, let 𝔞 be some ideal of O; then we can
consider C/𝔞 → C/𝔞𝔫−1. We obtain ℎ𝐾 points 𝑥 [𝔞 ] ∈ 𝑋0 (𝑁) (𝐻) in this way, where ℎ𝐾 denotes the
class number of K and the point depends only on the ideal class of 𝔞. These points form an orbit under
Gal(𝐻 |𝐾); their formal sum x𝐾 is the Heegner cycle on 𝑋0 (𝑁) associated to K and 𝔫; it is defined over
K. Let ∞ ∈ 𝑋0 (𝑁) (Q) denote the cusp at infinity. Then 𝑦𝐾 = [x𝐾 − ℎ𝐾 · (∞)] ∈ 𝐽0(𝑁) (𝐾) is a Heegner
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point associated to K. By varying 𝔫 in the construction, we may get different Heegner points, but they
all agree up to sign and adding a torsion point. (See also [51].) So in the following, we will consider
Heegner points up to sign and modulo torsion.

We then obtain a point 𝑦𝐾,𝜋 = 𝜋𝐽 (𝑦𝐾 ) ∈ 𝐽 (𝐾). By [52], the O-span of 𝑦𝐾,𝜋 ∈ 𝐽 (𝐾) is a rank
𝑔 = dim 𝐽 subgroup of finite index of 𝐽 (𝐾) (which does not depend on the choice of the Heegner point).
This index is the Heegner index; we denote it by

𝐼𝐾,𝜋 := (𝐽 (𝐾) : O · 𝑦𝐾,𝜋).(3.7)

Considering the characteristic ideal I𝐾,𝜋 := CharO (𝐽 (𝐾)/O𝑦𝐾,𝜋) gives refined information; this re-
finement is helpful for our intended application because we can study the summands of X(𝐽/Q) [𝑝∞] =⊕

𝔭 |𝑝 X(𝐽/Q) [𝔭∞] individually. In the same way, we have 𝑦𝐾,𝐴 𝑓 = 𝜋 𝑓 (𝑦𝐾 ) ∈ 𝐴 𝑓 (𝐾), and we set
𝐼𝐾 := (𝐴 𝑓 (𝐾) : Z[ 𝑓 ]𝑦𝐾,𝐴 𝑓 ) and I𝐾 := CharZ[ 𝑓 ] (𝐴 𝑓 (𝐾)/Z[ 𝑓 ]𝑦𝐾,𝐴 𝑓 ).

For an abelian variety 𝐴/Q and a quadratic number field K, we denote the quadratic twist of A
by the quadratic character associated to K by 𝐴𝐾 . Then 𝐴𝐾 is isomorphic to A over K. The natural
map 𝐴(Q) × 𝐴𝐾 (Q) → 𝐴(𝐾) has finite kernel and cokernel killed by 2: The kernel is the diagonally
embedded 𝐴(Q) [2], and the image contains 2𝐴(𝐾).

When 𝐿-rk 𝐽 = 0, then 𝐽 (𝐾) is essentially 𝐽𝐾 (Q); more precisely, the image of 𝐽𝐾 (Q) in 𝐽 (𝐾)
contains 2𝐽 (𝐾) up to torsion, and so we can identify 2𝑦𝐾,𝜋 up to torsion with a rational point on 𝐽𝐾 .
When 𝐿-rk 𝐽 = 1, then 2𝐽 (𝐾) is contained in 𝐽 (Q) up to torsion, and we can identify 2𝑦𝐾,𝜋 up to
torsion with a rational point on J. (See also [73, Lemma 2.1].) This simplifies the computations since
certain algorithms (for example, computing canonical heights on J) are so far only implemented when
the base field is Q.

The aim of this section is to explain how we can compute the Heegner index 𝐼𝐾,𝜋 (or the corresponding
ideal I𝐾,𝜋).

The first step is to determine a Heegner field K. This is explained in Section 3.2. In order to determine
the O-span of 𝑦𝐾,𝜋 , we need to determine O = EndQ(𝐽) and its action on 𝐽 (𝐾) (we can determine
generators of 𝐽 (𝐾) from generators of 𝐽 (Q) and of 𝐽𝐾 (Q), which Magma can usually compute).
Section 3.3 explains how to do that. Then, of course, we need to find the Heegner point 𝑦𝐾,𝜋 on J.

One approach is to compute the j-invariant morphism 𝑋0 (𝑁) → P1
Q given by sending the point

representing an isogeny 𝐸 → 𝐸 ′ to 𝑗 (𝐸) as an algebraic map. Then, given the ℎ𝐾 different j-invariants
of elliptic curves with CM by O𝐾 , we can lift them to the corresponding points in 𝑋0 (𝑁) (𝐻) and
thus get an algebraic description of the Heegner cycle. However, this turns out to be too slow even for
moderately large N. Therefore, we do not give more details here.

Instead, we use an analytic approach. We start with the ℎ𝐾 reduced integral binary quadratic forms
whose roots with positive imaginary part map to the points in the support of the Heegner cycle on
𝑋0 (𝑁) under the uniformization map H → 𝑋0 (𝑁) (C), where H denotes the upper half plane. These
quadratic forms can easily be determined using the built-in Magma function HeegnerForms. Via the
uniformization map H → 𝑋0 (𝑁) (C), we obtain the set of ℎ𝐾 points in the Heegner cycle. If the curve
X is a quotient of 𝑋0 (𝑁), we can then map the Heegner cycle directly to X and try to recognize it as a
divisor defined over K. We can then obtain the point on J given by the Heegner cycle. If X is not a quotient
of 𝑋0 (𝑁), we do the following. We first use the Abel–Jacobi map 𝑋0 (𝑁) (C) → 𝐽0 (𝑁) (C) and the map
𝜋 𝑓 ,C : 𝐽0 (𝑁) (C) → 𝐴 𝑓 (C) � C/Λ 𝑓 to map the Heegner cycle to 𝐴 𝑓 (C). We then compute the point
𝑦𝐾 ∈ 𝐴 𝑓 (C) (by taking a sum in C/Λ 𝑓 ). Then we use an explicit numerical representation of the
isogeny 𝜋C : 𝐴 𝑓 (C) → 𝐽 (C) to map the Heegner point from 𝐴 𝑓 (C) to 𝐽 (C). Finally, we recognize
the image as a point defined over the Heegner field K. This is explained in Section 3.4. However,
𝐽 (𝐾) ⊂ 𝐽 (C) is dense. Hence, we must prove that we have found the correct point. We do this by
determining its canonical height (which is well-defined since it does not change when adding a torsion
point or changing the sign) via the Gross–Zagier formula. Since there are only finitely many points
with bounded height, knowing the height is sufficient to cut the possibilities down to finitely many
candidates up to sign and torsion; in practice, there is only one candidate. So we check that the point
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we have computed has the correct height and that no other point (up to sign and torsion) has the same
height up to the numerical precision used in the computation. In principle, we could use this approach
to bypass the analytic computation of the Heegner point altogether and just recognize it from its height,
but using both approaches provides an additional level of confirmation that our results are correct. A
further benefit of computing the Heegner point (and its image under a generator of the endomorphism
ring of J) is that this provides us with generators of a finite-index subgroup of 𝐽 (𝐾). So in order to
determine 𝐽 (𝐾) (which is necessary for the computation of the Heegner index 𝐼𝐾,𝜋), it then suffices to
saturate the known subgroup, which means that we do not have to search for points first. This can save
a considerable amount of time.

Since the Gross–Zagier formula involves the Petersson norm of 𝑓 𝜎 for the various embeddings
𝜎 : Z[ 𝑓 ] ↩→ R, we need a way to compute these Petersson norms; see Section 3.5. To apply the Gross–
Zagier formula, we project 𝑦𝐾 , viewed as an element of 𝐽0 (𝑁) (𝐾) ⊗Z R, to its various 𝜎-components
𝑦𝐾,𝜎 (which have the property that Q( 𝑓 ) acts on them via the embedding 𝜎). The formula then gives an
expression for ℎ̂(𝑦𝐾,𝜎), where ℎ̂ : 𝐽0 (𝑁) (𝐾) ⊗Z R → R is the normalized canonical height on 𝐽0(𝑁)
associated to twice the theta divisor. This is discussed in Section 3.7. Finally, we have to relate the height
ℎ̂𝐽 (𝑦𝐾,𝜋) with respect to twice the theta divisor on J to the heights ℎ̂(𝑦𝐾,𝜎); this is done in Section 3.8.

3.1. Computational representation of Diagram (3.4)

For our computations, we need to represent 𝐴∨
𝑓 , 𝐴 𝑓 , J as complex tori and the isogenies between them.

This is done as follows.

Definition 3.1. Let A be an arbitrary abelian variety over C, of dimension g. Associated to a C-basis
𝜔 = (𝜔1, . . . , 𝜔𝑔) of H0(𝐴,Ω1) and a Z-basis 𝛾 = (𝛾1 . . . , 𝛾2𝑔) of the integral homology H1 (𝐴(C), Z),
there is the period matrix

Π𝐴 := Π𝐴,𝜔,𝛾 :=
(∫

𝛾 𝑗

𝜔𝑖

)
𝑖, 𝑗

∈ C𝑔×2𝑔 .

Its 2𝑔 columns generate a lattice Λ, and 𝐴(C) � C/Λ via 𝑥 ↦→
(∫ 𝑥

0 𝜔𝑖
)
𝑖 + Λ. We also write Λ𝐴 for Λ

to indicate the associated abelian variety.

Definition 3.2. Let A and B be two abelian varieties over C of the same dimension g, and let Π𝐴 and Π𝐵

be associated period matrices. If 𝜑 : 𝐴 → 𝐵 is an isogeny, then there are uniquely determined matrices
𝛼𝜑 ∈ GL𝑔 (C) and 𝑀𝜑 ∈ Z2𝑔×2𝑔 such that

𝛼𝜑 · Π𝐴 = Π𝐵 · 𝑀𝜑 .

We call (𝛼𝜑 , 𝑀𝜑) the pair of matrices associated to 𝜑.

We observe that, given Π𝐴 and Π𝐵, each of 𝑀𝜑 and 𝛼𝜑 can be determined from the other.
Note that 𝛼𝜑 is the matrix of the C-linear map 𝜔 ↦→ 𝜑∗𝜔 with respect to the bases of the spaces of

holomorphic differentials used for Π𝐴 and Π𝐵, and 𝑀𝜑 is the matrix of the Z-linear map 𝛾 ↦→ 𝜑∗𝛾 on
the homology bases.

If A, B and 𝜑 are defined over Q and we use Q-bases of H0(𝐴,Ω1) and H0(𝐵,Ω1), then 𝛼𝜑 ∈ GL𝑔 (Q)
(since 𝜑∗ is a Q-linear map). Similarly, if we use Z-bases of H0 (𝒜,Ω1) and H0(ℬ,Ω1), where 𝒜 and
ℬ are the Néron models of A and B over Z, then 𝛼𝜑 ∈ Z𝑔×𝑔 ∩ GL𝑔 (Q).

Definition 3.3. Let A and B be abelian varieties defined over Q, with Néron models 𝒜 and ℬ over Z,
respectively. Let 𝜑 : 𝐴 → 𝐵 be an isogeny defined over Q. Then we set

𝑐𝜑 :=
(
H0 (𝒜,Ω1) : 𝜑∗H0 (ℬ,Ω1)

)
∈ Z≥1.

If Π𝐴 and Π𝐵 are computed using Z-bases of H0(𝒜,Ω1) and H0 (ℬ,Ω1), then 𝑐𝜑 = | det 𝛼𝜑 |.
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Definition 3.4. Let 𝑓 ∈ N (𝑁, 𝑔). We define 𝑆2 ( 𝑓 , Z) to be the Z-sublattice of the C-span of f and its
Galois conjugates in 𝑆2(Γ0 (𝑁)) that consists of forms whose q-expansions have integral coefficients.
Under the natural identification of 𝑆2(Γ0 (𝑁)) with H0(𝑋0 (𝑁),Ω1) � H0 (𝐽0 (𝑁),Ω1), the image of
𝑆2 ( 𝑓 , Z) contains 𝜋∗

𝑓 H0(𝒜 𝑓 ,Ω1) (where 𝒜 𝑓 is the Néron model of 𝐴 𝑓 over Z). The index

𝑐 𝑓 :=
(
𝑆2 ( 𝑓 , Z) : 𝜋∗

𝑓 H0 (𝒜 𝑓 ,Ω
1)

)
∈ Z≥1

is the Manin constant of 𝜋 𝑓 .
See [1, Def. 3.3 and Thm. 3.4].

Proposition 3.5. The Manin constant 𝑐 𝑓 is divisible only by primes p such that 𝑝2 | 𝑁 or 𝑝 = 2, and
the conductor of Z[ 𝑓 ] is even.

In particular, 𝑐 𝑓 = 1 if N is squarefree and the conductor of Z[ 𝑓 ] is odd.
Proof. This is [1, Cor. 3.7] for odd primes and [22, Thm. 5.19] for 𝑝 = 2. �

It has been conjectured (see [22, Conj. 5.2] and the text preceding it) that 𝑐 𝑓 is always 1, but [22,
Thm. 5.10] gives a counterexample in dimension 24 (with 𝑁 = 431 odd and 2 | 𝑐 𝑓 ).

Magma can compute a period matrix Π𝐴∨
𝑓

of 𝐴∨
𝑓 with respect to a Z-basis of 𝑆2 ( 𝑓 , Z) and some

homology basis. Magma also computes the matrix I of the intersection pairing (inside the homology of
𝐽0 (𝑁) (C)) on the first homology of 𝐴∨

𝑓 (C). Then Π𝐴 𝑓 := Π𝐴∨
𝑓
· 𝐼−1 is a period matrix for 𝐴 𝑓 (with

respect to the same basis of 𝑆2( 𝑓 , Z)), and (𝐼𝑔, 𝐼) is the pair of matrices associated to the polarization
𝜆 𝑓 . Let now J be the Jacobian of a curve of genus 2 over Q such that there is an isogeny 𝜋 : 𝐴 𝑓 → 𝐽 as
in (3.4). Magma can compute a period matrix Π𝐽 for J with respect to a certain Q-basis B of H0(𝐽,Ω1)
(if J is the Jacobian of a genus 2 curve 𝑦2 = 𝑓 (𝑥), then B corresponds to the differentials 𝑑𝑥/𝑦 and
𝑥 𝑑𝑥/𝑦 on the curve) and a symplectic homology basis. We can then find the associated pair of matrices
(𝛼𝜋 , 𝑀𝜋). The algorithm [11, Algorithm 13] determines the ‘compensation factor’ (called W in loc. cit.)

𝐶 =
(
H0 (𝒥,Ω1) : 〈𝐵〉Z

)
(3.8)

(where 𝒥 is the Néron model of J over Z and the index of two commensurable Z-lattices in H0(𝐽,Ω1)
is in general a positive rational number). Combining these computations gives the following.
Lemma 3.6.

𝑐 𝑓 · 𝑐𝜋 = 𝐶 · | det 𝛼𝜋 |.

In our LMFDB examples, the compensation factor C (with respect to a minimal Weierstrass model)
is always 1, and 𝑐 𝑓 𝑐𝜋 divides the degree of the isogeny 𝜋.

For later applications, we want to compute the sizes of the kernel and cokernel of the map
𝜋R : 𝐴 𝑓 (R) → 𝐽 (R) induced by the isogeny 𝜋 on the groups of real points. We note that we can
obtain the action of complex conjugation 𝜏 on 𝐴(C) � H1(𝐴(C), Z) ⊗ R/Z by solving Π𝐴 = Π𝐴 · 𝑀𝐴,𝜏

for 𝑀𝐴,𝜏 ∈ Z2𝑔×2𝑔. We obtain ker𝜋 � 𝑀−1
𝜋 Z2𝑔/Z2𝑔 � Z2𝑔/𝑀𝜋Z2𝑔, and we can find its 𝜏-invariant part

ker𝜋R using 𝑀𝐴 𝑓 ,𝜏 . The group 𝜋0 (𝐽 (R)) of connected components of 𝐽 (R) is isomorphic to

ker(1 + 𝜏 | Λ𝐽 )/(1 − 𝜏)Λ𝐽 � ker(𝐼2𝑔 + 𝑀𝐽 ,𝜏 | Z2𝑔)/(𝐼2𝑔 − 𝑀𝐽 ,𝜏)Z2𝑔

and similarly for 𝐴 𝑓 , so

coker 𝜋R �
ker(𝐼2𝑔 + 𝑀𝐽 ,𝜏 | Z2𝑔)

(𝐼2𝑔 − 𝑀𝐽 ,𝜏)Z2𝑔 + ker(𝐼2𝑔 + 𝑀𝐽 ,𝜏 | 𝑀𝜋Z2𝑔)
.

When considering the quadratic twist 𝜋𝐾 for an imaginary quadratic field K, then we have to replace
𝑀𝐽 ,𝜏 by −𝑀𝐽 ,𝜏 to obtain the twisted action of 𝜏 on 𝐽𝐾 (C) � 𝐽 (C).
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We can use a similar idea to compute Ω𝐽 from the period matrix Π𝐽 and the compensation factor C
from (3.8), as follows.

Lemma 3.7. Let 𝑇 ∈ GL2𝑔 (Z) be such that (𝑀𝐽 ,𝜏 + 𝐼2𝑔) · 𝑇 = (�̃� | 0) with �̃� ∈ Z2𝑔×𝑔. Then

Ω𝐽 = 𝐶 · | det(Π𝐽 · �̃�) |.

Proof. It is well-known that Ω𝐽 is the covolume of the lattice given by integrating a Néron basis over
the C|R-trace of H1 (𝑋 (C), Z) (see [45, §3.5] or [11, Def. 11]). The Z-lattice generated by the columns
of the matrix 𝑀𝐽 ,𝜏 + 𝐼2𝑔 corresponds to the C|R-trace of H1 (𝑋 (C), Z) (w.r.t. the homology basis used
to compute Π𝐽 ). This lattice is known to have rank g, so there exists a unimodular matrix T as in the
statement, and multiplying on the right by T preserves the lattice. So the columns of �̃� give a basis
of the C|R-trace of H1 (𝑋 (C), Z), and the result follows (taking into account the factor C arising from
changing the basis of differentials used in the computation of Π𝐽 to a Néron basis). �

This improves over the method currently implemented in Magma (which is based on [11, Algorithm
13]) in that it uses an exact computation to find the correct integral linear combination of 𝑔×𝑔 minors of
Π𝐽 instead of relying on a ‘real gcd’ computation with numerical approximations. (The approximation
step is in the computation of 𝑀𝐽 ,𝜏 , but here we know that the entries are integers, so we can simply
round.)

We now want to determine the endomorphism 𝛼 ∈ O = End𝐽 that was defined in (3.5). Since Π𝐽

is computed with respect to a symplectic homology basis, we obtain the M-matrix of the canonical
polarization of J as the matrix 𝐼 ′ of the standard symplectic pairing. Then 𝑀 := 𝑀𝜋 · 𝐼 ·𝑀�

𝜋 · 𝐼 ′ gives the
action of 𝛼 ∈ O on the lattice associated to J, and its action on the tangent space can be recovered from
that. (Recall that I denotes the matrix of the intersection pairing for 𝐴∨

𝑓 (C).) We can (and do) ‘optimize’
𝛼 by post-composing 𝜋 with an automorphism 𝜀 ∈ EndQ(𝐽)× (this has the effect of multiplying 𝛼 by
𝜀2) in the sense that we minimize the images 𝛼𝜎 ∈ R>0 under the real embeddings of O (in practice, we
minimize the trace of 𝛼). This leads to potentially smaller Heegner points on J, which simplifies some
of the computations.

3.2. Determining Heegner fields

To be able to use the results of [52] and some other results that require the discriminant of the Heegner
field to be odd, we restrict to odd discriminants in the following.

We find a Heegner field K by enumerating the odd discriminants −𝐷 of imaginary quadratic number
fields with the property that all prime divisors of N split completely in O𝐾 (this can be checked easily by
computing Legendre symbols). The condition ord𝑠=1𝐿( 𝑓 /𝐾, 𝑠) = 1 is equivalent to 𝐿( 𝑓 ⊗ 𝜀𝐾 , 1) ≠ 0
when 𝐿-rk 𝐽 = 1 and to 𝐿 ′( 𝑓 ⊗ 𝜀𝐾 , 1) ≠ 0 when 𝐿-rk 𝐽 = 0. Using modular symbols as described in
[31, §2.8], we can decide whether 𝐿( 𝑓 ⊗ 𝜀𝐾 , 1) = 0 or not. The nonvanishing of 𝐿 ′( 𝑓 ⊗ 𝜀𝐾 , 1) can
be proved by computing it to a high enough precision using Dokchitser’s Magma implementation [40].
Alternatively and in practice (because the evaluation of the twisted L-value can take fairly long when
N is large), we can compute the Heegner point for a given K; if it is non-torsion, then K is a suitable
Heegner field.

3.3. Computing the endomorphism ring and its action on Mordell–Weil groups

We need to determine the endomorphism ring O of the Jacobian J and how it acts on the Mordell–Weil
group 𝐽 (Q) or 𝐽𝐾 (Q), or, more generally, on 𝐽 (𝐿) for some number field L. For this, we compute a
numerical approximation to the big period matrix as in Section 3.1; potential endomorphisms can be
guessed from this information. To verify that the presumed endomorphism ring is the correct one, we
can use data from the LMFDB [68]. (Alternatively, one could use [70].) This shows that the numerical
endomorphisms are close to actual endomorphisms and thus gives us a representation of O as a subring
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of a matrix algebra over Z, together with its action on the complex torus C2/Λ � 𝐽 (C). To compute
the action of O on 𝐽 (𝐿), we use an improved version of Magma’s (To/From)AnalyticJacobian to
convert between points in 𝐽 (C) in Mumford representation and representatives in C2. (The improvement
also handles points at infinity and Weierstrass points.) For a generator 𝛾 of O and each generator x of
𝐽 (𝐿), we map x to C2/Λ, apply 𝛾 to the image, and map back to 𝐽 (C). We then recognize the coefficients
of the Mumford representation as elements of L using Magma’s MinimalPolynomial and check that
the coefficients we recognize really define a point in 𝐽 (𝐿). We then write the resulting point as a linear
combination of the generators of 𝐽 (𝐿). In this way, we obtain a matrix giving the action of 𝛾 on 𝐽 (𝐿)
with respect to the chosen generators. We can bound the height of 𝛾 · 𝑥 by max𝜎 |𝛾𝜎 |2 times the height
of x, so there are only finitely many candidates for 𝛾 · 𝑥, which allows us to determine 𝛾 · 𝑥 exactly by
computing with sufficient precision. As an additional check, we verify that the matrix we obtain has the
same minimal polynomial as 𝛾.

3.4. Computing Heegner points analytically

Recall that 𝜋 denotes the isogeny 𝐴 𝑓 → 𝐽 and that we want to compute the Heegner point

𝑦𝐾,𝜋 = 𝜋𝐽 (𝑦𝐾 ) = 𝜋(𝑦𝐾,𝐴 𝑓 ) ∈ 𝐽 (𝐾).

In this section, we explain how to find 𝑦𝐾,𝜋 explicitly. Also recall that 𝝅 denotes the real number giving
the area of the unit disk, to avoid confusion with the isogeny 𝜋.

We obtain a computational representation of the isogeny 𝜋 : 𝐴 𝑓 → 𝐽 as described in Section 3.1.
Since we know that an isogeny has to exist, we can be sure that what we obtain indeed describes an
actual isogeny.

To find the Heegner point on J, we first determine the integral binary quadratic ‘Heegner forms’
associated to K and N. These are representatives of the ℎ𝐾 classes of positive definite binary quadratic
forms of discriminant 𝐷𝐾 such that their roots 𝜏 ∈ H map to the points in the Heegner cycle x𝐾. Let
( 𝑓1, . . . , 𝑓𝑔) be the Z-basis of 𝑆2( 𝑓 , Z) that is used for the computation of the big period matrix of 𝐴 𝑓

(it can be obtained via the Magma function qIntegralBasis). We then compute the period integrals

𝑃(𝜏, 𝑗) := 2𝝅𝑖

∫ 𝜏

𝑖∞
𝑓 𝑗 (𝑧) 𝑑𝑧 =

∫ 𝑒2𝝅𝑖𝜏

0

∑
𝑛≥1

𝑎𝑛 ( 𝑓 𝑗 )𝑞𝑛
𝑑𝑞

𝑞
=

∑
𝑛≥1

𝑎𝑛 ( 𝑓 𝑗 )
𝑛

𝑒2𝝅𝑖𝜏𝑛 ∈ C

for each of these roots 𝜏 and each 1 ≤ 𝑗 ≤ 𝑔 to the desired precision. (We pick our Heegner forms in
such a way that 𝜏 has imaginary part as large as possible. We can use the bound |𝑎𝜎

𝑛 | ≤
√

3𝑛 (see [50,
Lemma 2.9], where a bound |𝑎𝜎

𝑛 | ≤ 𝑛 is claimed, but their argument bounding |𝑎𝜎
𝑝𝑚 | is not correct for

powers of 2 or 3) and the representation of 𝑓 𝑗 as a linear combination of the 𝑓 𝜎 to determine the number
of terms we need. The points 𝑦𝜏 =

(
𝑃(𝜏, 𝑗)

)
𝑗 ∈ C𝑔/Λ 𝑓 � 𝐴 𝑓 (C) then are of the form [𝑥𝜏 − (∞)]

projected to 𝐴 𝑓 , where ∞ is the cusp at infinity and 𝑥𝜏 runs through the points in the support of the
Heegner cycle x𝐾 . In particular, we have

∑
𝜏 𝑦𝜏 = 𝑦𝐾,𝐴 𝑓 .

We then use the matrix 𝛼𝜋 associated to the isogeny 𝜋 to map 𝑦𝐾 or all the points 𝑦𝜏 to C𝑔/Λ � 𝐽 (C).
We apply the numerical inverse of the Abel–Jacobi map to find the Mumford representation of this or
these points as points on J. We then try to recognize the coefficients in the Mumford representation as
elements of K (for 𝜋(𝑦𝐾,𝐴 𝑓 ) = 𝑦𝐾,𝜋) or of H (for 𝜋(𝑦𝜏)) and check that this really gives rise to a point
in 𝐽 (𝐾) or 𝐽 (𝐻).

Using the action of O on 𝐽 (𝐾) that we have determined in Section 3.3, we can then determine the
O-span of 𝑦𝐾,𝜋 and from it the ideal

I𝐾,𝜋 = CharO (𝐽 (𝐾)/O𝑦𝐾,𝜋)
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and the index 𝐼𝐾,𝜋 = (𝐽 (𝐾) : O𝑦𝐾,𝜋). The corresponding index for 𝐴 𝑓 is 𝐼𝐾 = (𝐴 𝑓 (𝐾) : Z[ 𝑓 ] ·𝑦𝐾,𝐴 𝑓 ).
We can express it in terms of 𝐼𝐾,𝜋 via

𝐼𝐾 =
(OQ( 𝑓 ) : Z[ 𝑓 ])
(OQ( 𝑓 ) : O) ·

#𝐴 𝑓 [𝜋] (𝐾)
#
(
𝐽 (𝐾)/𝜋(𝐴 𝑓 (𝐾))

) · 𝐼𝐾,𝜋 .

The first factor on the right takes care of the fact that Z[ 𝑓 ] and O = EndQ(𝐽) can be different
orders in Q( 𝑓 ); it can be computed easily as

√
disc Z[ 𝑓 ]/discO. The second factor captures the

effect of the isogeny 𝜋. Note that the second factor can be multiplicatively bounded from above by
#𝐴 𝑓 [𝜋] (𝐾) | deg 𝜋, which gives a multiplicative upper bound for 𝐼𝐾 as well. (We may get a better
bound than deg 𝜋 from bounding #𝐴 𝑓 (𝐾)tors using the coefficients of the L-series of 𝐴 𝑓 /𝐾 .)

We will need 𝐼𝐾,𝜋 in Section 4.4 for the computation ofX(𝐽/Q)an when 𝐿-rk 𝐽 = 1 and in Section 5.2
for the determination of an explicit finite support of X(𝐽/Q). We will need (a multiplicative upper
bound for) 𝐼𝐾 in Section 7.

3.5. Computing the Petersson norm of a newform

Let 𝜎 : Q( 𝑓 ) ↩→ R be an embedding. For the Gross–Zagier formula, we need the Petersson norms of the
conjugates 𝑓 𝜎 for the various possible 𝜎. We identify 𝑋0 (𝑁) (C) with Γ0 (𝑁)\H∗ (where H∗ = H∪P1 (Q)
is the upper half-plane together with the cusps) and use the normalization

‖ 𝑓 𝜎 ‖2 =
∫
𝑋0 (𝑁 ) (C)

| 𝑓 𝜎 (𝑥 + 𝑦𝑖) |2 𝑑𝑥 ∧ 𝑑𝑦

for the Petersson norm of 𝑓 𝜎 ∈ 𝑆2(Γ0 (𝑁), C) as in [52, (5.1)]. (Sometimes this is normalized differently
by dividing by the volume 𝜇(𝑋0 (𝑁) (C)) to make it independent of the choice of N.) We compute the
Petersson norm by relating it to the symmetric square L-function 𝐿(Sym2 𝑓 𝜎 , 𝑠).

If an L-function 𝐿(X , 𝑠) has an Euler product expansion, we write it as

𝐿(X , 𝑠) =
∏
ℓ

𝐿ℓ (X , ℓ−𝑠)−1,

where 𝐿ℓ (X , 𝑇) ∈ 𝑅[𝑇] (with R the coefficient ring of the L-function) is the Euler polynomial at ℓ.
We define the symmetric square L-function 𝐿(Sym2 𝑓 , 𝑠) as the L-function associated to the strictly

compatible system (Sym2 𝜌𝔭∞ , 𝑓 ) of 𝔭-adic Galois representations. For a prime ℓ � 𝑁 , write

𝐿ℓ ( 𝑓 , 𝑇) = 1 − 𝑎ℓ𝑇 + ℓ𝑇2 = (1 − 𝛼ℓ𝑇) (1 − 𝛽ℓ𝑇) ;

then

𝐿ℓ (Sym2 𝑓 , 𝑇) = (1 − 𝛼2
ℓ𝑇) (1 − 𝛼ℓ 𝛽ℓ𝑇) (1 − 𝛽2

ℓ𝑇)

= (1 − ℓ𝑇)
(
(1 + ℓ𝑇)2 − 𝑎2

ℓ𝑇
)
.

(3.9)

We define the imprimitive symmetric square L-function �̃�(Sym2 𝑓 , 𝑠) by this formula for the Euler
polynomial at all primes (then we take 𝛼ℓ = 𝑎ℓ and 𝛽ℓ = 0 when ℓ | 𝑁); compare [24, p. 110]. (The
difference is whether we take 𝐼ℓ-coinvariants before (�̃�(Sym2 𝑓 , 𝑠)) or after (𝐿(Sym2 𝑓 , 𝑠)) applying
Sym2 when defining the Euler polynomials.) This imprimitive version is what Shimura denotes 𝐷 (𝑠)
in [103].

We thank user334725 on MathOverflow [115] for pointers to the relevant literature.
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Proposition 3.8. Let 𝑓 ∈ 𝑆2 (Γ0(𝑁), C) be a normalized eigenform. Then the Petersson norm of f is
given by

‖ 𝑓 ‖2 =
𝑁

8𝝅3 · �̃�(Sym2 𝑓 , 2).

Proof. Denote the Fourier coefficients of f by 𝑎𝑛. We set

𝐷 ( 𝑓 , 𝑠) :=
∑
𝑛≥1

𝑎2
𝑛

𝑛𝑠
.

By [83, Satz 6] (and taking into account the different normalization (compare also [104, Eq. (2.5)])),

‖ 𝑓 ‖2 = [Γ(1) : Γ0(𝑁)] 𝝅
3

1
(4𝝅)2 res𝑠=2 𝐷 ( 𝑓 , 𝑠)

= 𝑁
∏
ℓ |𝑁

(
1 + 1

ℓ

) 1
48𝝅

res𝑠=2 𝐷 ( 𝑓 , 𝑠).(3.10)

By [103, Eq. (0.4)] (see [104, Lemma 1] for the relation between the Euler factors), we have the following
equality, where the superscript N means that we leave out the Euler factors coming from prime divisors
of N.

𝐷 ( 𝑓 , 𝑠) = 𝜁𝑁 (𝑠 − 1)
𝜁𝑁 (2𝑠 − 2)

�̃�(Sym2 𝑓 , 𝑠).

Taking the residue at 𝑠 = 2 on both sides, we obtain

res𝑠=2 𝐷 ( 𝑓 , 𝑠) = 6
𝝅2

∏
ℓ |𝑁

(
1 + 1

ℓ

)−1
�̃�(Sym2 𝑓 , 2),

which gives the desired result when used in (3.10). �

So we need to compute �̃�(Sym2 𝑓 , 2). However, we cannot directly do that since �̃�(Sym2 𝑓 , 2)
does not in general satisfy a suitable functional equation (which is needed to obtain a reasonably fast
converging series for the value via a Mellin transform). We can, however, compute 𝐿(Sym2 𝑓 , 2) if we
know its Euler factors at primes dividing N. So we need to determine these Euler factors; combining
this with (3.9) will also tell us what the correction factor �̃�(Sym2 𝑓 , 2)/𝐿(Sym2 𝑓 , 2) is.

For a prime ℓ, we set

𝐶ℓ :=
𝐿ℓ (Sym2 𝑓 , ℓ−2)
�̃�ℓ (Sym2 𝑓 , ℓ−2)

.

Corollary 3.9. Let f and 𝐶ℓ be as above. Then

‖ 𝑓 ‖2 =
𝑁

8𝝅3

∏
ℓ2 |𝑁

𝐶ℓ · 𝐿(Sym2 𝑓 , 2).

In particular,

‖ 𝑓 ‖2 =
𝑁

8𝝅3 · 𝐿(Sym2 𝑓 , 2)

when the level N is squarefree.
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Proof. This follows from proposition 3.8 and the definition of 𝐶ℓ , together with the fact that 𝐶ℓ = 1
unless ℓ2 | 𝑁 , which will be shown in lemma 3.10 below. �

Alternative algorithms for computing the Petersson inner product are described in [25] and have been
implemented in Pari.

Using the formula in corollary 3.9, we can compute ‖ 𝑓 𝜎 ‖2 using [40] for all 𝜎 ∈ Σ if we can
determine the Euler factors 𝐿ℓ (Sym2 𝑓 , 𝑇) for the primes ℓ | 𝑁 . We will do that in the following
subsection.

3.6. Euler factors of the symmetric square L-function

In this section, we explain how to find the Euler factors of 𝐿(Sym2 𝑓 , 𝑠) at primes ℓ dividing the level
N of f. In [24, §1], analogous statements are shown for the L-function of an elliptic curve, and [94] has
similar results stated in a somewhat different language.

Recall that when ℓ � 𝑁 , 𝐿ℓ (Sym2 𝑓 , 𝑇) = �̃�ℓ (Sym2 𝑓 , 𝑇) (and hence 𝐶ℓ = 1), and we can write
down �̃�ℓ (Sym2 𝑓 , 𝑇) easily in terms of 𝐿ℓ ( 𝑓 , 𝑇). We now consider the case 𝑣ℓ (𝑁) = 1.

Lemma 3.10. Assume that 𝑣ℓ (𝑁) = 1. Then

𝐿ℓ (Sym2 𝑓 , 𝑇) = �̃�ℓ (Sym2 𝑓 , 𝑇) = 1 − 𝑇.

In particular, 𝐶ℓ = 1 whenever ℓ2 � 𝑁 .

Proof. Fix some 𝔭 � 𝑁ℓ and set 𝑝 = 𝑝(𝔭) and 𝑉𝔭 = 𝑉𝔭 (𝐴 𝑓 ). Since 𝑣ℓ (𝑁) = 1, 𝑉𝔭 has a one-
dimensional quotient of 𝐼ℓ-coinvariants. Since 𝜒𝑝∞ = det ◦𝜌𝔭∞ is trivial on 𝐼ℓ , it follows that 𝜌𝔭∞ (𝐼ℓ)
lands in a unipotent subgroup (compare lemma 2.32). The image is nontrivial, since otherwise, ℓ � 𝑁 .
Since ℓ ≠ 𝑝 and the unipotent subgroups of GL2(Q( 𝑓 )𝔭) are pro-p groups, whereas the wild inertia
at ℓ is a pro-ℓ group, it follows that 𝜌𝔭∞ |𝐼ℓ factors through the tame inertia group 𝐼 t

ℓ . By lemma 2.7,
conjugating by any lift Frobℓ of the Frobenius automorphism to 𝐼 t

ℓ has the effect of raising to the
ℓth power. Using that det 𝜌𝔭∞ (Frobℓ) = 𝜒𝑝∞ (Frobℓ) = ℓ, it follows that (with respect to a suitable
Q( 𝑓 )𝔭-basis), 𝜌𝔭∞ (Frobℓ) = ±

(
ℓ 0
0 1

)
and 𝜌𝔭∞ |𝐼ℓ ⊆

( 1 ∗
0 1

)
. This implies that 𝐿ℓ ( 𝑓 , 𝑇) = 1 ∓ 𝑇 , and so

�̃�ℓ (Sym2 𝑓 , 𝑇) = 1 − 𝑇 . We also see that

Sym2 𝜌𝔭∞ |Gal(Qℓ |Qℓ ) =
���
𝜒2
𝑝∞ ∗ ∗
0 𝜒𝑝∞ ∗
0 0 1

���
with a one-dimensional 𝐼ℓ-coinvariant quotient, on which Frobℓ acts trivially. This shows that
𝐿ℓ (Sym2 𝑓 , 𝑇) = 1 − 𝑇 as well. (This is analogous to [24, Lemma 1.2].)

In particular, 𝐶ℓ = 1, which, together with the discussion preceding this lemma, gives the last
claim. �

We now consider the case ℓ2 | 𝑁 . We first note that 𝐿(Sym2 𝑓 , 𝑠) does not change under quadratic
twists.

Lemma 3.11. Let 𝑓 be a quadratic twist of f. Then

𝐿(Sym2 𝑓 , 𝑠) = 𝐿(Sym2 𝑓 , 𝑠).

Proof. We consider the Euler factor at ℓ. Fix some 𝔭 � 𝑁ℓ and set 𝑝 = 𝑝(𝔭) and 𝑉𝔭 = 𝑉𝔭 (𝐴 𝑓 ). Let 𝜀
be the quadratic character such that 𝑓 = 𝑓 ⊗ 𝜀. Since the canonical group homomorphism GL(𝑉𝔭) →
GL(Sym2 𝑉𝔭) is trivial on ±id, it follows that Sym2 (𝜌𝔭∞ ⊗ 𝜀) = Sym2 𝜌𝔭∞ , which, upon restricting to
Gal(Qℓ |Qℓ ), directly translates into 𝐿ℓ (Sym2 𝑓 , 𝑇) = 𝐿ℓ (Sym2 𝑓 , 𝑇). The claim follows. �
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The argument in the proof together with the fact that 𝜌𝔭∞ (𝐼ℓ) ⊆ SL(𝑉𝔭) shows that the action of 𝐼ℓ
on Sym2 𝑉𝔭 depends only on the projective image P𝜌𝔭∞ (𝐼ℓ) ⊆ PSL(𝑉𝔭). We will see that the dimension
of the 𝐼ℓ-coinvariants of Sym2 𝑉𝔭 depends on whether this projective image is abelian or not.

Lemma 3.12. Let k be a field of characteristic zero and let V be a two-dimensional k-vector space. Let
𝐺 ⊆ SL(𝑉) be such that P𝐺 is not unipotent.

(1) If Sym2 𝑉 has a nontrivial G-invariant quotient, then G is abelian.
(2) If P𝐺 is abelian, then �̄� := 𝑉 ⊗𝑘 �̄� has a basis 𝑒1, 𝑒2 consisting of simultaneous eigenvectors for

the elements of G. The G-coinvariant space of Sym2 �̄� = 〈𝑒2
1, 𝑒1𝑒2, 𝑒

2
2〉 is one-dimensional and is

isomorphic to the direct summand �̄� · 𝑒1𝑒2.

Proof. We can assume without loss of generality that k is algebraically closed.

(1) If Sym2 𝑉 has a nontrivial G-invariant quotient, then Sym2 𝑉∗ has a nonzero G-invariant element,
which is a quadratic form q on V. Then G must fix the zero set of q in P1 (𝑘). This zero set can have
either one or two elements.

In the first case, G fixes a point in P1, and hence is contained in a Borel subgroup, so, after fixing
a suitable basis, the associated representation 𝜌 has the form

(
𝜒 𝛼

0 𝜒−1

)
with a character 𝜒 such that

𝜒2 ≠ 1 (recall that P𝐺 is not unipotent). Then (with the columns giving the action on 𝑋2, 𝑋𝑌 , 𝑌2,
when 𝑋,𝑌 is the given basis with 𝜌(𝑔)𝑋 = 𝜒(𝑔)𝑋 , 𝜌(𝑔)𝑌 = 𝛼(𝑔)𝑋 + 𝜒−1(𝑔)𝑌 )

Sym2 𝜌 =
���
𝜒2 𝛼𝜒 𝛼2

0 1 2𝛼𝜒−1

0 0 𝜒−2

���,
and this has nontrivial G-coinvariants only when 𝛼 = 0, which implies that G is abelian.

In the second case, G is contained in the normalizer of a Cartan subgroup, so its elements are
(with respect to a suitable basis (𝑒1, 𝑒2)) either of the form

(
𝑎 0
0 𝑎−1

)
(which fix 𝑒1 · 𝑒2) or of the form(

0 −𝑎
𝑎−1 0

)
. However, the elements of the second form send 𝑒1 · 𝑒2 to its negative, so (noting that there

must be elements of the first form with 𝑎2 ≠ 1, again since P𝐺 is not unipotent, so that neither 𝑒2
1 nor

𝑒2
2 can be fixed by G) such elements cannot be present in G, which again implies that G is abelian.

(2) If P𝐺 is abelian, then so is G. The representation on V then splits as a sum of two characters 𝜒
and 𝜒−1 such that 𝜒2 ≠ 1. Let 𝑒1 and 𝑒2 be corresponding eigenvectors. Then Sym2 𝑉 splits as
𝜒2 ⊕ 1 ⊕ 𝜒−2, with the G-action on 𝑒1𝑒2 being trivial. This shows the claim.

�

This leads to the following classification.

Lemma 3.13. Let ℓ be a prime such that ℓ2 | 𝑁 . Then �̃�ℓ (Sym2 𝑓 , 𝑇) = 1. Let 𝑓 be a quadratic twist of
f whose level �̃� is (multiplicatively) minimal. Fix a regular prime ideal 𝔭 � 𝑁ℓ of Z[ 𝑓 ].

(1) P𝜌𝔭∞ (𝐼ℓ) is trivial if and only if ℓ � �̃� . In particular, using (3.9),

𝐶ℓ =
(ℓ − 1) ((ℓ + 1)2 − 𝑎ℓ ( 𝑓 )2)

ℓ3 .

(2) P𝜌𝔭∞ (𝐼ℓ) is nontrivial and unipotent if and only if 𝑣ℓ (�̃�) = 1. In this case, 𝐿ℓ (Sym2 𝑓 , 𝑇) = 1 − 𝑇

and the conductor exponent of Sym2 𝑓 at ℓ is 2. In particular, 𝐶ℓ = ℓ2−1
ℓ2 .

(3) P𝜌𝔭∞ (𝐼ℓ) is abelian and not unipotent if and only if 𝑣ℓ (�̃�) = 2. In this case, 𝐿ℓ (Sym2 𝑓 , 𝑇) = 1∓ℓ𝑇 ,
with the negative sign if and only if 𝜌𝔭∞ (Gal(Qℓ |Qℓ )) is abelian, and the conductor exponent of
Sym2 𝑓 at ℓ is 2. In particular, 𝐶ℓ = ℓ∓1

ℓ (with the same sign).

https://doi.org/10.1017/fms.2024.133 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.133


Forum of Mathematics, Sigma 41

(4) P𝜌𝔭∞ (𝐼ℓ) is nonabelian if and only if 𝑣ℓ (�̃�) ≥ 3. In this case, we have 𝐿ℓ (Sym2 𝑓 , 𝑇) = 1, and the
conductor exponent of Sym2 𝑓 at ℓ is at least 4 and at most 2𝑣ℓ (�̃�) − 1. In particular, 𝐶ℓ = 1.

Proof. When ℓ2 | 𝑁 , then the space of 𝐼ℓ-coinvariants is trivial, and hence, so is its symmetric square.
This means that �̃�ℓ (Sym2 𝑓 , 𝑇) = 1. By lemma 3.11, we have that 𝐿(Sym2 𝑓 , 𝑠) = 𝐿(Sym2 𝑓 , 𝑠). It
suffices to show the ‘only if’ direction of the equivalences at the beginning of each statement since the
consequences exhaust all possibilities disjointly.
(1) If P𝜌𝔭∞ (𝐼ℓ) is trivial, then 𝜌𝔭∞ |𝐼ℓ is of the form (1 ⊕ 1) ⊗ 𝜀 with a quadratic character 𝜀. Twisting

by 𝜀 makes the representation unramified at ℓ, so ℓ � �̃� (using that �̃� is minimal). The statement
on 𝐶ℓ then follows.

(2) If the projective image is nontrivial and unipotent, then there is a quadratic character 𝜀 such that
𝜌𝔭∞ ⊗ 𝜀 |𝐼ℓ is unipotent and nontrivial, which implies that 𝑣ℓ (�̃�) = 1. The statement on the Euler
factor then follows from lemma 3.10.

(3) We assume that P𝜌𝔭∞ (𝐼ℓ) is abelian, but not unipotent. By lemma 3.12, Sym2 𝑉𝔭 has a one-
dimensional 𝐼ℓ-coinvariant space. Also, because 𝜌𝔭∞ |𝐼ℓ is a sum of two characters of order coprime
to ℓ, the representation factors through the tame inertia group, and hence, there is no wild part in
the conductor. This shows that 𝑣ℓ (�̃�) = 2 and that the conductor exponent of Sym2 𝑓 = Sym2 𝑓
is 3 − 1 = 2. Also by lemma 3.12, the coinvariant space corresponds to the tensor product of the
two one-dimensional representations in the splitting of 𝑉𝔭. Frobenius either fixes each of these two
one-dimensional spaces, in which case its action on the tensor product is by det(𝜌𝔭∞ (Frobℓ)) = ℓ;
then 𝐿ℓ (Sym2 𝑓 , 𝑇) = 1 − ℓ𝑇 , and 𝜌𝔭∞ (Gal(Qℓ |Qℓ)) is abelian. Or else Frobℓ swaps the two
spaces; then it acts by the negative of the determinant (compare the proof of lemma 3.12), so
𝐿ℓ (Sym2 𝑓 , 𝑇) = 1 + ℓ𝑇 , and 𝜌𝔭∞ (Gal(Qℓ |Qℓ )) is nonabelian.

(4) We assume that P𝜌𝔭∞ (𝐼ℓ) is nonabelian. This implies that it is not unipotent. By lemma 3.12, the
𝐼ℓ-coinvariant space of Sym2 𝑉𝔭 is trivial. This shows that 𝐿ℓ (Sym2 𝑓 , 𝑇) = 1. Also, P𝜌𝔭∞ |𝐼ℓ cannot
factor through the tame inertia group since the latter is abelian. So there must be wild ramification at
ℓ both in P𝜌𝔭∞ and in Sym2 𝜌𝔭∞ . As the tame parts of the conductor exponents of these two are given
by dim𝑉𝔭 = 2 and dim Sym2 𝑉𝔭 = 3, respectively, it follows that ℓ3 | �̃� and the conductor exponent
c of Sym2 𝑓 is at least 4. To obtain the claimed upper bound, we observe that when 𝜌 : 𝐺 → GL(𝑉)
is a 2-dimensional representation, then the codimension of the invariant subspace of Sym2 𝜌 is at
most twice the codimension of the invariant subspace of 𝜌. Then [97, Eq. (1.2.1)] implies that the
wild part 𝑐 − 3 of c is at most twice the wild part 𝑣ℓ (�̃�) − 2 of the conductor exponent of 𝑓 . This
gives the desired bound. �

Given f, a choice of 𝑓 can be obtained from the LMFDB. Alternatively, the conductor d of the twisting
character 𝜀 must satisfy 𝑑2 | 𝑁 , so we can check the finitely many possibilities for 𝜀 and compare the
resulting levels to find 𝑓 .

Which of the two possibilities for the Euler factor in case (3) is correct and what the correct choice of
conductor exponent is in case (4) can be checked by trying all possibilities and determining which one
is compatible with the functional equation. Using the function SymmetricPower that Magma provides
for constructing symmetric power L-functions seems to result in fairly slow code. Instead, we compute
the relevant number of coefficients ourselves and use this coefficient sequence when constructing the
L-series, which is then used for testing the functional equation and evaluating at 𝑠 = 2.

3.7. Computing the height of a Heegner point using the Gross–Zagier formula

To state the Gross–Zagier formula, we need to introduce some more notation. Let K be a Heegner field
for f. Recall that H denotes the Hilbert class field of K. The Heegner cycle x𝐾 on 𝑋0 (𝑁) and the Heegner
point 𝑦𝐾 = [x𝐾 − ℎ𝐾 · (∞)] ∈ 𝐽0 (𝑁) (𝐾) have been defined in the introduction to this section. Recall
that 𝐼 𝑓 = AnnT ( 𝑓 ).

The action of T (or its quotient EndQ(𝐽0 (𝑁))) on 𝐽0 (𝑁) (𝐾) extends to a linear action on the real
vector space 𝐽0 (𝑁) (𝐾) ⊗Z R. Since the center Z of EndQ(𝐽0(𝑁)) is an order in a totally real étale
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Q-algebra, we obtain a canonical decomposition

𝐽0 (𝑁) (𝐾) ⊗Z R =
⊕

𝜎 : 𝑍↩→R
𝐽0 (𝑁) (𝐾)𝜎

into isotypical linear subspaces. If 𝜎 factors through Z[ 𝑓 ], then

𝐽0 (𝑁) (𝐾)𝜎 ⊆ 𝐴∨
𝑓 (𝐾) ⊗Z R = 𝐽0 (𝑁) (𝐾) [𝐼 𝑓 ] ⊗Z R,

and by the Heegner hypothesis (which implies that 𝐴∨
𝑓 (𝐾) has rank 1 as a Z[ 𝑓 ]-module), it follows that

dim 𝐽0 (𝑁) (𝐾)𝜎 = 1. We will abuse notation slightly and also write 𝐽0 (𝑁) (𝐾)𝜎 when 𝜎 ∈ Σ, implicitly
pre-composing with the projection 𝑍 → Z[ 𝑓 ]. We write 𝑦𝐾,𝜎 ∈ 𝐽0 (𝑁) (𝐾)𝜎 for the components of 𝑦𝐾
with respect to this composition and set

𝑦
𝑓
𝐾 :=

∑
𝜎∈Σ

𝑦𝐾,𝜎 ∈ 𝐴∨
𝑓 (𝐾) ⊗Z R ;

Then 𝜆 𝑓 (𝑦 𝑓
𝐾 ) = 𝑦𝐾,𝐴 𝑓 ; compare the diagram (3.4). Note that 𝜔 ∈ Q( 𝑓 ) acts on 𝑦𝐾,𝜎 as 𝜔 · 𝑦𝐾,𝜎 =

𝜔𝜎𝑦𝐾,𝜎 . Explicitly, when (𝑏 𝑗 )1≤ 𝑗≤𝑔 is a Z-basis of Z[ 𝑓 ] and (𝑏∗
𝑗 )1≤ 𝑗≤𝑔 is its dual basis in Z[ 𝑓 ] ⊗Z R

with respect to the trace form, we have

𝑦𝐾,𝜎 =
𝑔∑
𝑗=1

(𝑏 𝑗 · 𝑦𝐾 ) ⊗ 𝑏∗
𝑗
𝜎 .(3.11)

The normalized canonical height on 𝐽0(𝑁) (𝐾) (with respect to twice the theta divisor) induces a
positive definite quadratic form on 𝐽0 (𝑁) (𝐾) ⊗Z R, which (by abuse of notation) we also denote ℎ̂.
Since the endomorphisms are self-adjoint with respect to the height pairing (this is because they are
fixed under the Rosati involution; see [9, Section 5.5] and recall that the endomorphism ring is totally
real), it follows that the 𝜎-components are pairwise orthogonal under the height pairing.

Recall that we write 𝐿( 𝑓 /𝐾, 𝑠) for the L-function of f base-changed to K. This is the same as
𝐿( 𝑓 , 1, 𝑠) for the trivial character 1 : Gal(𝐻 |𝐾) → C× in the notation of [52].
Theorem 3.14 (Gross–Zagier formula). With the notation introduced above and assuming that 𝐷𝐾 is
odd, we have

ℎ̂(𝑦𝐾,𝜎) = 𝐿 ′( 𝑓 𝜎/𝐾, 1)
𝑢2
𝐾

√
−𝐷𝐾

16𝝅2‖ 𝑓 𝜎 ‖2 .

Here, 𝑢𝐾 := #O×
𝐾 /Z×, which equals 1 for 𝐷𝐾 < −4, 2 for 𝐷𝐾 = −4 and 3 for 𝐷𝐾 = −3.

Proof. This is a reformulation of [52, Theorem I.6.3], taking into account that our ℎ̂ is 1/2ℎ𝐾 times the
height used there (see [52, Eq. (I.6.4)]), where ℎ𝐾 is the class number of K. Note that Gross and Zagier
assume that the Heegner discriminant is odd; see [52, §I.3]. �

To evaluate this formula, we need the Petersson norm from 3.5, and we need to evaluate 𝐿 ′( 𝑓 𝜎/𝐾, 1).
By the Artin formalism of L-functions,

𝐿( 𝑓 /𝐾, 𝑠) = 𝐿( 𝑓 , 𝑠)𝐿( 𝑓 ⊗ 𝜀𝐾 , 𝑠)

with 𝑓 ⊗ 𝜀𝐾 the twist of f by (the Kronecker character associated to) K. Its first derivative at 𝑠 = 1 is

𝐿 ′( 𝑓 /𝐾, 1) = 𝐿( 𝑓 , 1)𝐿 ′( 𝑓 ⊗ 𝜀𝐾 , 1) + 𝐿 ′( 𝑓 , 1)𝐿( 𝑓 ⊗ 𝜀𝐾 , 1).

Since K is a Heegner field by assumption, 𝐿( 𝑓 /𝐾, 𝑠) vanishes to first order at 𝑠 = 1. This implies that
exactly one of the two terms in the sum is nonzero; which one it is can be decided by considering the
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action of the Fricke involution 𝑤𝑁 on f : if 𝑤𝑁 · 𝑓 = 𝑓 , then 𝐿( 𝑓 , 1) = 0; otherwise, 𝑤𝑁 · 𝑓 = − 𝑓 , and
𝐿 ′( 𝑓 , 1) = 0. The special values of the L-functions of newforms and their derivatives can be computed to
arbitrary precision using Tim Dokchitser’s Magma implementation [40]. It provides a TensorProduct
function for L-functions, which, however, tends to be slow in our use case. So we construct the tensor
product L-function 𝐿( 𝑓 ⊗ 𝜀𝐾 , 𝑠) ‘by hand’ for performance reasons, explicitly giving the Euler factors.

We finally obtain a formula for ℎ̂(𝑦 𝑓
𝐾 ).

Corollary 3.15. Let K be a Heegner field for f and let 𝑦
𝑓
𝐾 ∈ 𝐴 𝑓 (𝐾)∨ be an associated Heegner point.

Then

ℎ̂(𝑦 𝑓
𝐾 ) =

𝑢2
𝐾

√
−𝐷𝐾 𝝅

2𝑁
∏

ℓ2 |𝑁 𝐶ℓ

∑
𝜎∈Σ

𝐿 ′( 𝑓 𝜎/𝐾, 1)
𝐿(Sym2 𝑓 𝜎 , 2)

.

Proof. Since the 𝑦𝐾,𝜎 are orthogonal with respect to the height pairing, we have ℎ̂(𝑦 𝑓
𝐾 ) =

∑
𝜎 ℎ̂(𝑦𝐾,𝜎).

Now combine theorem 3.14 and corollary 3.9. �

3.8. Comparing canonical heights

Our goal in this section is to determine ℎ̂𝐽 (𝑦𝐾,𝜋) (so that we can either use that to identify 𝑦𝐾,𝜋 up to
a sign and adding torsion assuming there is an essentially unique point of that height, or to verify that
our computation of 𝑦𝐾,𝜋 is correct). Recall the diagram (3.4) –in particular, the endomorphism 𝛼 of J
defined in (3.5). Note that 𝜆 = 𝜋𝐽 ◦ 𝜋∨

𝐽 equals 𝛼 composed with the inverse of the canonical polarization
𝜆𝐽 of J induced by the theta divisor.

We freely use standard facts about height pairings on abelian varieties; see, for example, [10, §9].
We denote by 〈−,−〉𝐽 the height pairing on J (such that ℎ̂𝐽 (𝑥) = 〈𝑥, 𝑥〉𝐽 ). By [10, Prop. 9.3.6] (noting
that our ℎ̂𝐽 is twice their ℎ̂𝜃 ), it satisfies

〈𝑥, 𝑥 ′〉𝐽 = ℎ̂𝒫 (𝜆𝐽 (𝑥), 𝑥 ′),

where ℎ̂𝒫 (−) is the canonical height on 𝐽∨×𝐽 associated to the Poincaré bundle 𝒫. Similarly, we obtain
the canonical height associated to a polarization 𝜆 : 𝐽∨ → 𝐽 as ℎ̂𝜆 (𝑥) = ℎ̂𝒫 (𝑥, 𝜆(𝑥)). If 𝜑 : 𝐴 → 𝐽 is a
homomorphism and 𝜆𝐴∨ : 𝐴∨ → 𝐴 is a polarization such that

𝜆 = 𝜑∨∗
𝜆𝐴∨ = 𝜑 ◦ 𝜆𝐴∨ ◦ 𝜑∨ = 𝛼 ◦ 𝜆−1

𝐽

with 𝛼 ∈ EndQ(𝐽), then by functoriality of heights, we have for 𝑥 ∈ 𝐽 (Q)

ℎ̂𝜆𝐴∨ (𝜑∨(𝜆𝐽 (𝑥))) = ℎ̂𝜑∨∗𝜆𝐴∨ (𝜆𝐽 (𝑥)) = ℎ̂𝜆 (𝜆𝐽 (𝑥)) = ℎ̂𝒫 (𝜆𝐽 (𝑥), 𝜆(𝜆𝐽 (𝑥)))
= ℎ̂𝒫 (𝜆𝐽 (𝑥), 𝛼(𝑥)) = 〈𝑥, 𝛼(𝑥)〉𝐽 .

Proposition 3.16. For each 𝜎 ∈ Σ, write 𝑦𝐾,𝜋,𝜎 = 𝜋𝐽 (𝑦𝐾,𝜎) ∈ 𝐽 (𝐾) ⊗Z R for the 𝜎-component of
𝑦𝐾,𝜋 . Then ℎ̂𝐽 (𝑦𝐾,𝜋,𝜎) = 𝛼𝜎 ℎ̂(𝑦𝐾,𝜎), and so

ℎ̂𝐽 (𝑦𝐾,𝜋) =
∑
𝜎∈Σ

𝛼𝜎 ℎ̂(𝑦𝐾,𝜎).
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Proof. Chasing 𝑦𝐾,𝜎 through the diagram (3.4) and taking into account the definition of 𝛼 ∈ O ⊆ Q( 𝑓 ),
we see that (identifying 𝐴∨

𝑓 (𝐾) with its image under the inclusion 𝜄 𝑓 )

𝜋∨ (
𝜆𝐽 (𝑦𝐾,𝜋,𝜎)

)
= 𝜋∨ (

(𝜆𝐽 ◦ 𝜋𝐽 ) (𝑦𝐾,𝜎)
)
= 𝜋∨

𝐽

(
(𝜆𝐽 ◦ 𝜋𝐽 ) (𝑦𝐾,𝜎)

)
= 𝛼 · 𝑦𝐾,𝜎 = 𝛼𝜎𝑦𝐾,𝜎 .

By the discussion preceding the proposition, we have

ℎ̂
(
𝜋∨ (

𝜆𝐽 (𝑦𝐾,𝜋,𝜎)
) )

= 〈𝑦𝐾,𝜋,𝜎 , 𝛼 · 𝑦𝐾,𝜋,𝜎〉𝐽 = 〈𝑦𝐾,𝜋,𝜎 , 𝛼𝜎𝑦𝐾,𝜋,𝜎〉𝐽
= 𝛼𝜎 〈𝑦𝐾,𝜋,𝜎 , 𝑦𝐾,𝜋,𝜎〉𝐽 = 𝛼𝜎 ℎ̂𝐽 (𝑦𝐾,𝜋,𝜎).

Therefore,

ℎ̂𝐽 (𝑦𝐾,𝜋,𝜎) =
ℎ̂
(
𝜋∨ (

𝜆𝐽 (𝑦𝐾,𝜋,𝜎)
) )

𝛼𝜎
=

ℎ̂(𝛼𝜎𝑦𝐾,𝜎)
𝛼𝜎

= 𝛼𝜎 ℎ̂(𝑦𝐾,𝜎).

�

When X is a quotient of 𝑋0 (𝑁), this gives a particularly simple formula.

Corollary 3.17. Assume that 𝜋𝑋 : 𝑋0 (𝑁) → 𝑋 is a finite covering of curves of degree n and that
𝜋𝐽 : 𝐽0 (𝑁) → 𝐽 is induced by 𝜋𝑋 via Albanese functoriality. Then

ℎ̂𝐽 (𝑦𝐾,𝜋) = 𝑛ℎ̂
(
𝑦
𝑓
𝐾

)
.

Proof. In this case, 𝛼 = 𝜆𝐽 ◦ 𝜋𝐽 ◦ 𝜋∨
𝐽 is multiplication by deg 𝜋𝑋 = 𝑛, so 𝛼𝜎 = 𝑛 for all 𝜎 ∈ Σ. Now

use proposition 3.16. �

In the general case, we can determine 𝛼 as described in Section 3.1. We record the final general
formula for the height of 𝑦𝐾,𝜋 .

Corollary 3.18. With the notation introduced so far, we have

ℎ̂𝐽 (𝑦𝐾,𝜋) =
𝑢2
𝐾

√
−𝐷𝐾 𝝅

2𝑁
∏

ℓ2 |𝑁 𝐶ℓ

∑
𝜎∈Σ

𝛼𝜎 𝐿 ′( 𝑓 𝜎/𝐾, 1)
𝐿(Sym2 𝑓 𝜎 , 2)

.

Proof. Combine theorem 3.14 and proposition 3.16. �

Remark 3.19. In a similar way as in the proof of proposition 3.16, we obtain the formula

〈𝛽 · 𝑦𝐾,𝜋 , 𝛾 · 𝑦𝐾,𝜋〉𝐽 =
∑
𝜎∈Σ

𝛼𝜎𝛽𝜎𝛾𝜎 ℎ̂(𝑦𝐾,𝜎)

for arbitrary 𝛽, 𝛾 ∈ O. This allows us to compute the height pairing matrix M for a Z-basis of O𝑦𝐾,𝜋

and from this the regulator RegO𝑦𝐾,𝜋 = det 𝑀 . Then the Heegner index is given by

𝐼𝐾,𝜋 = #𝐽 (𝐾)tors

√
RegO𝑦𝐾,𝜋

Reg𝐽 (𝐾 )
.

4. Computing the analytic order of X

Recall that J is an absolutely simple and principally polarized abelian variety over Q of dimension g of
GL2-type with associated newform 𝑓 ∈ 𝑆2 (Γ0(𝑁)), and 𝐴 𝑓 is the modular abelian variety associated
to f. In particular, 𝐴 𝑓 and J are isogenous.
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For an abelian variety J over a number field F, we define the Tamagawa product to be

Tam(𝐽/𝐹) :=
∏
𝑣

𝑐𝑣 (𝐽/𝐹),

where v runs through the finite places of F. When J is the Jacobian variety of an explicitly given
curve, the Tamagawa numbers 𝑐𝑣 (𝐶/𝐹) (which are 1 for all places of good reduction) and hence the
Tamagawa product Tam(𝐽/𝐹) can be computed. For Jacobians of genus 2 curves in the LMFDB [68],
this information is also available in the LMFDB. For the Tamagawa number at 2 in the example in
Appendix A, we compute a regular model by hand.

We now describe how to compute the analytic order of the Tate–Shafarevich group

#X(𝐽/Q)an :=
𝐿 (𝑟 ) (𝐽/Q, 1)
𝑟!Ω𝐽 Reg𝐽/Q

· (#𝐽 (Q)tors)2

Tam(𝐽/Q)(4.1)

as an exact positive rational number, assuming that 𝐿-rk 𝐽 ∈ {0, 1}.
Note that we can provably verify that 𝐿-rk 𝐽 ∈ {0, 1} and determine 𝐿-rk 𝐽 in this case. The Fricke

involution 𝑤𝑁 sends f to f or − 𝑓 . In the first case, the analytic order of 𝐿( 𝑓 , 𝑠) is odd, and in the second
case, it is even. In the even case, we can show that 𝐿( 𝑓 , 1) ≠ 0, and in the odd case that 𝐿 ′( 𝑓 , 1) ≠ 0 by
computing the respective value numerically to a high enough precision.

4.1. Comparing the real periods of 𝐴 𝑓 and J

Let A be an abelian variety over Q of dimension g with Néron model 𝒜 over Z. We say that a Q-basis of
H0(𝐴,Ω1) is a Néron basis for A if it is a Z basis of the image of H0 (𝒜,Ω1

𝒜/Z). Let (𝜔1, . . . , 𝜔𝑔) be a
Néron basis for A. Then 𝜔𝐴 := 𝜔1 ∧· · ·∧𝜔𝑔 is a generator of the free Z-module of rank 1H0(𝒜,Ω𝑔

𝒜/Z).
Recall that the real period of A is

Ω𝐴 :=
∫
𝐴(R)

|𝜔𝐴 | =
���∫

𝐴(R)
𝜔𝐴

���.
Let B be another abelian variety over Q of dimension g with Néron modelℬ over Z, and let 𝜋 : 𝐴 → 𝐵

be an isogeny. Since by the Néron mapping property, 𝜋 uniquely extends to the Néron models, one has
𝜋∗𝜔𝐵 = 𝑛𝜋 · 𝜔𝐴 with an integer 𝑛𝜋 . By the above, |𝑛𝜋 | = 𝑐𝜋 , where 𝑐𝜋 is defined in definition 3.3. We
now compare Ω𝐴 and Ω𝐵.

Lemma 4.1. Let 𝜋 : 𝐴 → 𝐵 be an isogeny of abelian varieties of dimension g over Q. Denote by 𝜋R the
induced morphism 𝐴(R) → 𝐵(R) on the real Lie groups. Then

Ω𝐵

Ω𝐴
=

# coker 𝜋R · 𝑐𝜋
#ker𝜋R

∈ Q>0.

Here, 𝑐𝜋 divides 𝑒(𝜋)𝑔, where 𝑒(𝜋) is the exponent of ker𝜋, #ker𝜋R divides deg 𝜋, and #coker𝜋R divides
the number #𝜋0 (𝐵(R)) of connected components of 𝐵(R), which divides 2𝑔.

Proof. The isogeny 𝜋 induces a short exact sequence of real Lie groups

0 −→ (ker𝜋) (R) −→ 𝐴(R) 𝜋R−→ 𝜋(𝐴(R)) −→ 0.

This gives, for 𝜔 ∈ H0(𝐵,Ω𝑔),∫
𝐴(R)

𝜋∗𝜔 = #ker𝜋R ·
∫

im(𝜋R)
𝜔 =

#ker𝜋R
# coker 𝜋R

∫
𝐵 (R)

𝜔,
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where the second equality uses that 𝜔 is translation-invariant (compare [57, Lemma 5.13]). Hence,

Ω𝐵

Ω𝐴
=

∫
𝐵 (R) |𝜔𝐵 |∫
𝐴(R) |𝜔𝐴 |

=
𝑐𝜋 ·

∫
𝐵 (R) |𝜔𝐵 |∫

𝐴(R) |𝜋
∗𝜔𝐵 |

=
𝑐𝜋 · # coker 𝜋R ·

∫
𝐵 (R) |𝜔𝐵 |

#ker𝜋R ·
∫
𝐵 (R) |𝜔𝐵 |

=
𝑐𝜋 · # coker 𝜋R

#ker𝜋R
.

One has #ker𝜋R | deg 𝜋 because ker𝜋R ⊆ ker𝜋. Let 𝜋′ : 𝐵
∼−→ 𝐴/ker𝜋 → 𝐴/𝐴[𝑒(𝜋)] ∼−→ 𝐴 be the

isogeny such that 𝜋′ ◦ 𝜋 is multiplication by 𝑒(𝜋). Then

𝑛𝜋′𝑛𝜋 · 𝜔𝐴 = 𝑛𝜋′ · 𝜋∗𝜔𝐵 = 𝜋∗(𝑛𝜋′ · 𝜔𝐵) = 𝜋∗𝜋′∗𝜔𝐴 = (𝜋′ ◦ 𝜋)∗𝜔𝐴 = [𝑒(𝜋)]∗𝜔𝐴 = 𝑒(𝜋)𝑔 · 𝜔𝐴,

so 𝑐𝜋 = |𝑛𝜋 | divides 𝑒(𝜋)𝑔. 𝜋R is a topological covering map, so its image is open and closed (i.e., a
union of connected components). This implies that #coker𝜋R divides #𝜋0 (𝐵(R)). Since the trace map
𝐵(C) → 𝐵(R) has image the connected component 𝐵(R)0 of the origin, it follows that 𝜋0 (𝐵(R))
is killed by 2. This implies that 𝜋0 (𝐵(R)) is isomorphic to 𝐵(R) [2]/𝐵(R)0 [2] of order dividing
4𝑔/2𝑔 = 2𝑔 [92, proof of Lemma 3.10]. �

Note that we can determine #ker𝜋R and #coker𝜋R explicitly if we have a suitable computational
representation of the isogeny 𝜋; see Section 3.1.

Remark 4.2. See [57, Lemma 5.13] for a similar statement over arbitrary completions of global fields.

4.2. Computing 𝐿(𝐽/Q, 1)/Ω𝐽

We now consider the isogeny 𝜋 : 𝐴 𝑓 → 𝐽. The formula for #X(𝐽/Q)an in the case of L-rank 0 contains
the factor 𝐿(𝐽/Q, 1)/Ω𝐽 . In this section, we explain how this quotient can be computed as a rational
number. We will then also use this later applied to a rank 0 quadratic twist of J when dealing with the
L-rank 1 case. By lemma 4.1, we have

𝐿(𝐽/Q, 1)
Ω𝐽

=
𝐿(𝐴 𝑓 /Q, 1)

Ω𝐴 𝑓

·
Ω𝐴 𝑓

Ω𝐽
=

𝐿(𝐴 𝑓 /Q, 1)
Ω𝐴 𝑓

· 1
𝑐𝜋

· #ker𝜋R
# coker 𝜋R

,

and Ω𝐴 𝑓 = 𝑐 𝑓 ·Ω′
𝐴 𝑓

, where Ω′
𝐴 𝑓

is the volume computed with respect to a Z-basis of 𝑆2 ( 𝑓 , Z) instead
of a Néron basis. This gives

𝐿(𝐽/Q, 1)
Ω𝐽

=
𝐿(𝐴 𝑓 /Q, 1)

Ω′
𝐴 𝑓

· 1
𝑐 𝑓 𝑐𝜋

· #ker𝜋R
# coker 𝜋R

.(4.2)

The quotient 𝐿𝑅(𝐴 𝑓 ) := 𝐿(𝐴 𝑓 /Q, 1)/Ω′
𝐴 𝑓

is what Magma calls the LRatio of 𝐴 𝑓 . This Magma
function computes 𝐿𝑅(𝐴 𝑓 ) ∈ Q≥0 directly using modular symbols, but this computation is very slow
and needs lots of memory when the level N of f is not very small (this seems to be caused by a
computation of an integral homology basis of the ambient modular symbols space). The computation
runs in reasonable time for 𝑁 ≤ 1000, which is enough for the L-rank zero case, but becomes infeasible
for example when 𝑁 = 67 · 72, which is the first relevant level of a suitable quadratic twist in the L-rank
one case.

So we use a numerical method instead. We compute numerical approximations to 𝐿(𝐴 𝑓 /Q, 1) and
to Ω′

𝐴 𝑓
or Ω𝐽 and recognize the quotient as a rational number of small height. (See [117] for a similar

approach in the context of elliptic curves.) To do that reliably, we need a bound for the denominator of
this quotient.
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Proposition 4.3.

𝐿𝑅(𝐴 𝑓 ) =
𝑚

#𝜋0 (𝐴 𝑓 (R)) · #𝐴 𝑓 (Q)tors
for some 𝑚 ∈ Z≥0.

Proof. By [3, Prop. 4.6], the denominator of #𝜋0 (𝐴 𝑓 (R)) · 𝐿𝑅(𝐴 𝑓 ) divides the order n of the image
in 𝐴 𝑓 of the difference of the cusps represented by 0 and ∞. This image is a rational torsion point, so
𝑛 | #𝐴 𝑓 (Q)tors. �

Corollary 4.4. Let g denote the dimension of 𝐴 𝑓 and of J. Then

𝐿(𝐽/Q, 1)
Ω𝐽

=
𝑚

4𝑔 · 𝑐 𝑓 𝑐𝜋 · #𝐽 (Q)tors
for some 𝑚 ∈ Z≥0.

Proof. Note that #𝐴 𝑓 (Q)tors divides #ker𝜋R · #𝐽 (Q)tors and that #𝜋0 (𝐴 𝑓 (R)) and #coker𝜋R both divide
2𝑔. The claim then follows from (4.2) and proposition 4.3. �

Since we can determine #𝐽 (Q)tors (an upper bound obtained from the L-series coefficients as in [3,
§3.5] would be enough) and we can compute 𝑐 𝑓 𝑐𝜋 by lemma 3.6, it suffices to compute 𝐿(𝐽/Q, 1) and
Ω𝐽 to sufficient precision so that the resulting approximation to 4𝑔 · 𝑐 𝑓 𝑐𝜋 · #𝐽 (Q)tors · 𝐿(𝐽/Q, 1)/Ω𝐽

has error < 1/2. We then round to the nearest integer to obtain the numerator m in corollary 4.4. In
practice, we use higher precision and check that the error is as small as can be expected.

4.3. The case of L-rank 0

We obtain the following formula.

Proposition 4.5. Assume that 𝐿( 𝑓 , 1) ≠ 0. Then

#X(𝐽/Q)an =
𝐿(𝐽/Q, 1)

Ω𝐽
· (#𝐽 (Q)tors)2

Tam(𝐽/Q) ∈ Q>0.

Proof. This is (4.1) for 𝑟 = 0. �

Note that all quantities in the formula in theorem 4.5 can be computed explicitly: for the first factor, see
Section 4.2, for the torsion subgroup, see [111, §11], and for the Tamagawa product, see the beginning
of this section.

4.4. The case of L-rank 1: Computing #X(𝐽/𝐾)an

In the following, we keep assuming that J is a Jacobian. In particular, J is principally polarized.
When the L-rank is 1, we first find a Heegner field K and compute the analytic order of X for 𝐽/𝐾

exactly from the BSD formula

𝐿∗(𝐽/𝐾, 1) = #X(𝐽/𝐾) ·
Ω𝐽/𝐾 Reg′

𝐽/𝐾√
|𝐷𝐾 |

𝑔 · Tam(𝐽/𝐾)
(#𝐽 (𝐾)tors)2 .

Here, the period Ω𝐽/𝐾 is defined as

Ω𝐽/𝐾 =
∫
𝐽 (C)

|𝜔 ∧ 𝜔|,(4.3)

where 𝜔 is a generator of the free rank 1Z-module of top Néron differentials on J (this works since 𝐽/𝐾
is base-changed from an abelian variety over Q). Note that this is 2𝑔 times the covolume of the period
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lattice (which is generated by the columns of the big period matrix Π𝐽 , if it is computed with respect to
a Néron basis of the invariant 1-forms).

The regulator Reg′
𝐽/𝐾 is computed with respect to heights over K. We will write Reg𝐽/𝐾 to denote the

regulator with respect to the normalized height; we then have that Reg′
𝐽/𝐾 = [𝐾 : Q]rk 𝐽 (𝐾 ) · Reg𝐽/𝐾 .

See [113]. (In the literature, the formula is often stated without making precise what ‘the regulator’ and
‘the period’ are, which can lead to confusion. See the answers to the Math Overflow question at [41]
and [32] for a discussion.) We deduce that

#X(𝐽/𝐾)an =
(#𝐽 (𝐾)tors)2

Tam(𝐽/𝐾) ·
𝐿∗(𝐽/𝐾, 1)

√
|𝐷𝐾 |

𝑔

Ω𝐽/𝐾 [𝐾 : Q]rk 𝐽 (𝐾 ) Reg𝐽/𝐾
(4.4)

=
(#𝐽 (𝐾)tors)2

Tam(𝐽/𝐾) · 𝑢2𝑔
𝐾

·
∏

𝜎 8𝝅2‖ 𝑓 𝜎 ‖2

Ω𝐽/𝐾
·
∏

𝜎 ℎ̂(𝑦𝐾,𝜎)
Reg𝐽/𝐾

,(4.5)

where 𝜎 runs through the g embeddings 𝜎 : Q( 𝑓 ) ↩→ R. The second equality follows from the Gross–
Zagier formula theorem 3.14 with

𝐿∗(𝐽/𝐾, 1) = 𝐿 (𝑔) (𝐽/𝐾, 1)
𝑔!

=
∏
𝜎

𝐿 ′( 𝑓 /𝐾𝜎 , 1),

where 𝐿( 𝑓 /𝐾𝜎 , 𝑠) = 𝐿( 𝑓 𝜎 , 𝑠)𝐿( 𝑓 𝜎 ⊗ 𝜀𝐾 , 𝑠) with the quadratic character 𝜀𝐾 associated to 𝐾 |Q.
Note that all primes p of bad reduction for 𝐽/Q split as 𝔭�̄� in K by the Heegner condition. This

implies that 𝐾𝔭 � Q𝑝 � 𝐾�̄� and so in particular that 𝑐𝔭 (𝐽/𝐾) = 𝑐𝑝 (𝐽/Q) = 𝑐�̄� (𝐽/𝐾). Therefore, the
Tamagawa product over K is the square of the Tamagawa product over Q,

Tam(𝐽/𝐾) = Tam(𝐽/Q)2.(4.6)

We now describe in a series of lemmas how to determine the last two factors in (4.5). Combining the
results gives the explicit formula in Corollary 4.13.

Lemma 4.6. Let 𝑓 ∈ N (𝑁, 𝑔). Then the Petersson norm ‖ 𝑓 ‖2 satisfies

8𝝅2‖ 𝑓 ‖2 = ‖𝜔 𝑓 ‖2 :=
∫
𝑋0 (𝑁 ) (C)

𝜔 𝑓 ∧ 𝑖𝜔 𝑓

with 𝜔 𝑓 = 2𝝅𝑖 𝑓 (𝑧) 𝑑𝑧.

Proof. See [52, §1.6]. �

We now want to relate the product of the Petersson norms to the complex period of 𝐴 𝑓 . Extending
diagram (3.4) to the left, we obtain the following diagram, where 𝐵 𝑓 = 𝐼 𝑓 𝐽0(𝑁) is the kernel of 𝜋 𝑓 :

𝐵 𝑓
� � 𝜄 𝑓

��

𝜆′
𝑓

��

𝐽0(𝑁)
𝜋 𝑓

�� �� 𝐴 𝑓

𝐵∨
𝑓 𝐽0(𝑁)∨

𝜄∨𝑓
���� 𝐴∨

𝑓
� �

𝜋∨
𝑓

��

𝜆 𝑓

��
(4.7)

Also recall the definition of 𝑑 𝑓 from (3.1).

Lemma 4.7. Let 𝑊𝑔 be the image of Sym𝑔 𝑋0 (𝑁) in 𝐽0 (𝑁) (with respect to some base divisor of degree
g). Let 𝐵 𝑓 = 𝐼 𝑓 𝐽0 (𝑁) = ker𝜋 𝑓 . Then the intersection number 𝑊𝑔 · 𝐵 𝑓 equals 𝑑 𝑓 .
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We thank Jakob Stix and Yusuf Mustopa for help with the proof.

Proof. Let 𝑚 := dim 𝐽0 (𝑁) = 𝑔(𝑋0 (𝑁)). By [4, Thm. V.1.3] (with (𝑟, 𝑑, 𝑛) ← (0, 𝑔, 𝑚)), the class of
𝑊𝑔 is 1/(𝑚 − 𝑔)! · 𝜃𝑚−𝑔, where 𝜃 is the class of the theta divisor on 𝐽0(𝑁). We write 𝑑 ′

𝑓 for the product
𝑑 ′

1 · · · 𝑑 ′
𝑔, where (𝑑 ′

1, . . . , 𝑑
′
𝑔) is the type of 𝜆′

𝑓 in diagram (4.7) above. Then

𝑑 ′
𝑓

2 = deg 𝜆′
𝑓 = #(𝐵 𝑓 ∩ ker𝜄∨𝑓 ) = #(ker𝜋 𝑓 ∩ 𝐴∨

𝑓 ) = deg 𝜆 𝑓 = 𝑑2
𝑓 ,

so 𝑑 ′
𝑓 = 𝑑 𝑓 . This implies that the intersection number is (compare [9, Thm. 3.6.3])

𝑊𝑔 · 𝐵 𝑓 =
𝜃 |𝑚−𝑔
𝐵 𝑓

(𝑚 − 𝑔)! =
(𝑚 − 𝑔)! · 𝑑 ′

𝑓

(𝑚 − 𝑔)! = 𝑑 ′
𝑓 = 𝑑 𝑓 .

�

We denote the Abel–Jacobi morphism 𝑋0 (𝑁) ↩→ 𝐽0 (𝑁) with respect to the cusp ∞ by 𝜄. Since
𝜄∗ : H0(𝐽0 (𝑁),Ω1) ∼−→ H0 (𝑋0(𝑁),Ω1) is an isomorphism, we can identify the differentials 𝜔 𝑓 𝜎 with
holomorphic (hence invariant) 1-forms on 𝐽0 (𝑁), which we also denote by 𝜔 𝑓 𝜎 . The map 𝜋 𝑓 : 𝐽0(𝑁) →
𝐴 𝑓 induces an injective homomorphism 𝜋∗

𝑓 : H0(𝐴 𝑓 (C),Ω1) → H0(𝐽0 (𝑁) (C),Ω1) whose image is
the subspace spanned by the 𝜔 𝑓 𝜎 . We write 𝜔𝐴 𝑓 ,𝜎 for the uniquely determined preimage of 𝜔 𝑓 𝜎 under
this map.

Lemma 4.8. With the notation introduced so far,∏
𝜎

‖𝜔 𝑓 𝜎 ‖2 = 𝑑 𝑓 ·
∫
𝐴 𝑓 (C)

∧
𝜎

(𝜔𝐴 𝑓 ,𝜎 ∧ 𝑖𝜔𝐴 𝑓 ,𝜎).

Proof. To simplify notation, fix a numbering 𝜎1, . . . , 𝜎𝑔 of the embeddings 𝜎 : Q( 𝑓 ) ↩→ R and write
𝜔 𝑗 for 𝜔 𝑓 𝜎𝑗 .

We first show that ∏
𝜎

‖𝜔 𝑓 𝜎 ‖2 =
∫
𝑊𝑔 (C)

𝜔1 ∧ 𝑖𝜔1 ∧ · · · ∧ 𝜔𝑔 ∧ 𝑖𝜔𝑔,

where 𝑊𝑔 is as in theorem 4.7 with base divisor 𝑔 · ∞. Consider the composition 𝑋0 (𝑁)𝑔 𝜄𝑔→ 𝐽0(𝑁)𝑔 𝑠→
𝐽0 (𝑁) with the first morphism 𝜄 × . . . × 𝜄 and s the summation morphism. This morphism has degree 𝑔!
above its image 𝑊𝑔 since it factors through the g-fold symmetric power of 𝑋0(𝑁), which is birational
to 𝑊𝑔 via s. This gives∫

𝑊𝑔 (C)
𝜔1 ∧ 𝑖𝜔1 ∧ . . . ∧ 𝜔𝑔 ∧ 𝑖𝜔𝑔 =

1
𝑔!

∫
𝑋0 (𝑁 ) (C)𝑔

(𝜄𝑔)∗𝑠∗(𝜔1 ∧ 𝑖𝜔1 ∧ · · · ∧ 𝜔𝑔 ∧ 𝑖𝜔𝑔).

Now for any invariant 1-form 𝜔 on an abelian variety, we have that 𝑠∗𝜔 =
∑𝑔

𝑘=1 pr∗𝑘 𝜔 with pr𝑘 the
kth projection 𝐽0 (𝑁)𝑔 → 𝐽0(𝑁); see [9, §1.5 (9)]. This implies

(𝜄𝑔)∗𝑠∗
(

𝑔∧
𝑗=1

𝜔 𝑗 ∧ 𝑖𝜔 𝑗

)
= (𝜄𝑔)∗

(
𝑔∧
𝑗=1

( 𝑔∑
𝑘=1

pr∗𝑘 𝜔 𝑗

)
∧

( 𝑔∑
𝑘=1

pr∗𝑘 𝑖𝜔 𝑗

))
.

We expand the right-hand side. Terms containing two factors pr∗𝑘 𝜔 𝑗 or two factors pr∗𝑘 𝑖𝜔 𝑗 with the
same k vanish since the wedge product of two holomorphic differentials on a curve vanishes. So we are

https://doi.org/10.1017/fms.2024.133 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.133


50 T. Keller and M. Stoll

left with a sum of terms of the form

± 1
𝑔!

∫
𝑋0 (𝑁 ) (C)𝑔

pr∗1 (𝜔 𝑗1 ∧ 𝑖𝜔 𝑗′1
) ∧ · · · ∧ pr∗𝑔 (𝜔 𝑗𝑔 ∧ 𝑖𝜔 𝑗′𝑔 ) = ± 1

𝑔!

𝑔∏
𝑘=1

∫
𝑋0 (𝑁 ) (C)

𝜔 𝑗𝑘 ∧ 𝑖𝜔 𝑗′
𝑘

with { 𝑗1, . . . , 𝑗𝑔} = { 𝑗 ′1, . . . , 𝑗 ′𝑔} = {1, . . . , 𝑔}. Now when 𝑗𝑘 ≠ 𝑗 ′𝑘 for some k, then the corresponding
integral vanishes since the 𝑓 𝜎 are pairwise orthogonal with respect to the Petersson inner product.
All the remaining terms have a positive sign (all relevant permutations are even) and differ only in the
ordering of the factors; in particular, there are exactly 𝑔! such terms. So we obtain∫

𝑊𝑔 (C)

∧
𝜎

(𝜔 𝑓 𝜎 ∧ 𝑖𝜔 𝑓 𝜎 ) =
∫
𝑊𝑔 (C)

𝜔1 ∧ 𝑖𝜔1 ∧ · · · ∧ 𝜔𝑔 ∧ 𝑖𝜔𝑔

=
𝑔∏
𝑗=1

∫
𝑋0 (𝑁 ) (C)

𝜔 𝑗 ∧ 𝑖𝜔 𝑗 =
∏
𝜎

‖𝜔 𝑓 𝜎 ‖2,

as desired.
We now consider 𝜋 𝑓 |𝑊𝑔 : 𝑊𝑔 → 𝐴 𝑓 . Since dim𝑊𝑔 = dim 𝐴 𝑓 = 𝑔 and by theorem 4.7, 𝑊𝑔 meets

generic cosets of 𝐵 𝑓 = ker𝜋 𝑓 transversally in 𝑊𝑔 · 𝐵 𝑓 = 𝑑 𝑓 points, we finally obtain that∏
𝜎

‖𝜔 𝑓 𝜎 ‖2 =
∫
𝑊𝑔 (C)

𝜔1 ∧ 𝑖𝜔1 ∧ · · · ∧ 𝜔𝑔 ∧ 𝑖𝜔𝑔

=
∫
𝑊𝑔 (C)

∧
𝜎

(𝜋∗
𝑓 𝜔𝐴 𝑓 ,𝜎 ∧ 𝑖𝜋∗

𝑓 𝜔𝐴 𝑓 ,𝜎)

= 𝑑 𝑓 ·
∫
𝐴 𝑓 (C)

∧
𝜎

(𝜔𝐴 𝑓 ,𝜎 ∧ 𝑖𝜔𝐴 𝑓 ,𝜎).

�

We now relate the integral on the right-hand side in lemma 4.8 to the period Ω𝐴 𝑓 /𝐾.

Lemma 4.9. One has∫
𝐴 𝑓 (C)

∧
𝜎

(𝜔𝐴 𝑓 ,𝜎 ∧ 𝑖𝜔𝐴 𝑓 ,𝜎) = disc Z[ 𝑓 ]
𝑐2
𝑓

·
∫
𝐴 𝑓 (C)

|𝜔𝐴 𝑓 ∧ 𝜔𝐴 𝑓 |

=
disc Z[ 𝑓 ]

𝑐2
𝑓

· Ω𝐴 𝑓 /𝐾 ,

where 𝜔𝐴 𝑓 is a top Néron differential on 𝐴 𝑓 , that is, a generator of H0(𝒜 𝑓 ,Ω𝑔) with 𝒜 𝑓 /Z the Néron
model of 𝐴 𝑓 , Ω𝐴 𝑓 /𝐾 :=

∫
𝐴 𝑓 (C) |𝜔𝐴 𝑓 ∧ 𝜔𝐴 𝑓 |, and 𝑐 𝑓 is the Manin constant from definition 3.4.

Over R, one has ∫
𝐴 𝑓 (R)

∧
𝜎

𝜔𝐴 𝑓 ,𝜎 = ±
√

disc Z[ 𝑓 ]
𝑐 𝑓

· Ω𝐴 𝑓 /Q.

Proof. Let ( 𝑓 𝑗 )𝑔𝑗=1 be a Z-basis of 𝑆2 ( 𝑓 , Z). Then 𝑓 =
∑

𝑗 𝑏 𝑗 𝑓 𝑗 for some 𝑏 𝑗 ∈ Z[ 𝑓 ], which form a
Z-basis of Z[ 𝑓 ] = Z[𝑎𝑛 ( 𝑓 ) : 𝑛 ≥ 1]. The matrix 𝐴 = (𝑏𝜎

𝑗 )𝜎, 𝑗 then is such that 𝐴 · ( 𝑓 𝑗 )�𝑗 = ( 𝑓 𝜎)�𝜎 ,
and it satisfies

det(𝐴)2 = det(𝑏𝜎
𝑖 )2

𝑖,𝜎 = disc Z[ 𝑓 ] .
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By the definition of 𝑐 𝑓 , we have that

|𝜋∗
𝑓 𝜔𝐴 𝑓 | = 𝑐 𝑓 · |𝜔 𝑓1 ∧ · · · ∧ 𝜔 𝑓𝑔 |,

so

|𝜔𝐴 𝑓 ∧ 𝜔𝐴, 𝑓 | = 𝑐2
𝑓 ·

��∧
𝑗

(𝜔𝐴, 𝑗 ∧ 𝑖𝜔𝐴, 𝑗 )
��,

where 𝜋∗
𝑓 𝜔𝐴, 𝑗 = 𝜔 𝑓𝑗 . We also have that∧

𝜎

(𝜔𝐴 𝑓 ,𝜎 ∧ 𝑖𝜔𝐴 𝑓 ,𝜎) = (det 𝐴)2
∧
𝑗

(𝜔𝐴, 𝑗 ∧ 𝑖𝜔𝐴, 𝑗 ).

Combining these gives the result.
The formula for 𝐴 𝑓 (R) follows in the same way, the only difference being that we do not take wedge

products with conjugate differentials; hence, we get the square root of the factor. �

We need to compare the periods Ω𝐽/𝐾 and Ω𝐴 𝑓 /𝐾 .

Lemma 4.10. One has

Ω𝐽/𝐾

Ω𝐴 𝑓 /𝐾
=

𝑐2
𝜋

deg 𝜋
,

where 𝑐𝜋 is as in definition 3.3.

Proof. Note that the top Néron differentials 𝜔𝐴 𝑓 and 𝜔𝐽 on 𝐴 𝑓 and J are related by 𝜋∗𝜔𝐽 = ±𝑐𝜋 ·𝜔𝐴 𝑓 .
Hence,

Ω𝐽/𝐾 =
∫
𝐽 (C)

|𝜔𝐽 ∧ 𝜔𝐽 | =
1

deg 𝜋

∫
𝐴 𝑓 (C)

|𝜋∗(𝜔𝐽 ∧ 𝜔𝐽 ) |

=
1

deg 𝜋

∫
𝐴 𝑓 (C)

| (𝑐𝜋 · 𝜔𝐴 𝑓 ) ∧ (𝑐𝜋 · 𝜔𝐴 𝑓 ) | =
𝑐2
𝜋

deg 𝜋
Ω𝐴 𝑓 /𝐾 .

�

Combining Lemmata 4.6 and 4.8 to 4.10 yields the following explicit expression for the second factor
in (4.5).

Corollary 4.11. One has ∏
𝜎 8𝝅2‖ 𝑓 𝜎 ‖2

Ω𝐽/𝐾
=

deg 𝜋 · 𝑑 𝑓 · disc Z[ 𝑓 ]
(𝑐 𝑓 𝑐𝜋)2 ∈ Q>0.

We now consider the third (and last) factor in (4.5).

Lemma 4.12. One has∏
𝜎 ℎ̂(𝑦𝐾,𝜎)
Reg𝐽/𝐾

=
𝐼2
𝐾,𝜋

(#𝐽 (𝐾)tors)2 · N(𝛼) · disc EndQ(𝐽)
∈ Q>0,

where 𝛼 ∈ EndQ𝐽 is defined in (3.5) and 𝐼𝐾,𝜋 is the Heegner index of J with respect to the chosen
isogeny 𝜋 : 𝐴 𝑓 → 𝐽; see (3.7).
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Proof. Since 𝛼𝜎 ℎ̂(𝑦𝐾,𝜎) = ℎ̂𝐽 ((𝜋 ◦ 𝜆 𝑓 ) (𝑦𝐾,𝜎)) (see proposition 3.16),

N(𝛼)
∏
𝜎

ℎ̂(𝑦𝐾,𝜎) =
∏
𝜎

𝛼𝜎 ℎ̂(𝑦𝐾,𝜎) =
∏
𝜎

ℎ̂𝐽 ((𝜋 ◦ 𝜆 𝑓 ) (𝑦𝐾,𝜎)).

Here, 𝜎 runs through the embeddings EndQ(𝐽) ↩→ R. Now

Reg𝐽 (EndQ(𝐽) · 𝑦𝐾,𝜋) = det(〈𝑏𝑖 · 𝑦𝐾,𝜋 , 𝑏 𝑗 · 𝑦𝐾,𝜋〉𝐽 )

with (𝑏𝑖)𝑔𝑖=1 a Z-basis of EndQ (𝐽).
But (𝜋 ◦ 𝜆 𝑓 ) (𝑦𝐾,𝜎) =

∑𝑔
𝑗=1 𝑏 𝑗 · 𝑦𝐾,𝜋 ⊗ 𝑏∗,𝜎

𝑗 , where (𝑏∗
𝑗 )
𝑔
𝑗=1 is the dual basis of EndQ(𝐽) ⊗Z R with

respect to the trace pairing (𝑎, 𝑏) ↦→ TrEndQ (𝐽 )/Z(𝑎𝑏) of EndQ(𝐽); see (3.11). Using this and the fact
that the (𝜋 ◦ 𝜆 𝑓 ) (𝑦𝐾,𝜎) are orthogonal in pairs with respect to the height pairing, we find that∏

𝜎

ℎ̂𝐽 ((𝜋 ◦ 𝜆 𝑓 ) (𝑦𝐾,𝜎)) = det(〈(𝜋 ◦ 𝜆 𝑓 ) (𝑦𝐾,𝜎1), (𝜋 ◦ 𝜆 𝑓 ) (𝑦𝐾,𝜎2)〉𝐽 )
= Reg𝐽 (EndQ(𝐽) · 𝑦𝐾,𝜋) · det(𝑏∗,𝜎

𝑗 )2

= Reg𝐽 (EndQ(𝐽) · 𝑦𝐾,𝜋) · det(𝑏𝜎
𝑗 )−2

= Reg𝐽 (EndQ(𝐽) · 𝑦𝐾,𝜋) · (disc EndQ(𝐽))−1.

Using that Reg𝐽 (EndQ(𝐽) · 𝑦𝐾,𝜋) = 𝐼2
𝐾,𝜋 Reg𝐽/𝐾 /(#𝐽 (𝐾)tors)2, we finally obtain∏

𝜎 ℎ̂(𝑦𝐾,𝜎)
Reg𝐽/𝐾

=

∏
𝜎 ℎ̂𝐽 ((𝜋 ◦ 𝜆 𝑓 ) (𝑦𝐾,𝜎))

N(𝛼) · Reg𝐽/𝐾
=

Reg𝐽 (EndQ(𝐽) · 𝑦𝐾,𝜋)
N(𝛼) · Reg𝐽/𝐾 · disc EndQ(𝐽)

=
𝐼2
𝐾,𝜋

(#𝐽 (𝐾)tors)2 · N(𝛼) · disc EndQ(𝐽)
.

�

We can now compute #X(𝐽/𝐾)an ∈ Q>0 exactly, as follows.

Corollary 4.13.

#X(𝐽/𝐾)an =
1

(𝑐 𝑓 𝑐𝜋)2 · disc Z[ 𝑓 ]
disc EndQ(𝐽) ·

( 𝐼𝐾,𝜋

Tam(𝐽/Q) · 𝑢𝑔𝐾

)2
.

Proof. This follows from using corollary 4.11 and lemma 4.12 in (4.5), noting that N(𝛼) = 𝑑 𝑓 · deg 𝜋
by (3.6). �

Since Z[ 𝑓 ] and EndQ(𝐽) both are sub-orders of the ring of integers of Q( 𝑓 ), the quotient of their
discriminants is a square. So #X(𝐽/𝐾)an is a square; this is consistent with the fact that J over K is even
in the sense of [86] since the only bad places are primes that split in K, and the curve J is the Jacobian
of is simultaneously deficient or not at both places above a bad prime p of J over Q.

Remark 4.14. Assuming Z[ 𝑓 ] = EndQ(𝐽) and 𝑢𝐾 = 1, all invariants on the right-hand side of
Corollary 4.13 are orders of finite O-modules in a natural way. It is natural to ask for a refined
BSD formula over O – namely, whether the element in the Grothendieck group of finite O-modules
corresponding to the right-hand side of Corollary 4.13 equals that defined by X(𝐽/𝐾).

4.5. Periods of quadratic twists

In order to compute #X(𝐽/Q)an in the L-rank 1 case, we also need to compute #X(𝐽𝐾 /Q)an. We can
do this as described in Section 4.3. This requires the computation of the quotient 𝐿(𝐽𝐾 /Q, 1)/Ω𝐽𝐾 .
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We do that as explained in Section 4.2. The computation of Ω𝐽𝐾 requires the period matrix of 𝐽𝐾 . We
explain in this section how we can obtain this period matrix easily from that of J. See corollary 4.17
below for a slightly more general version. We also need to determine 𝑐 𝑓 𝐾 𝑐𝜋𝐾 to obtain the bound for
the denominator. We show in corollary 4.20 that it is the same as 𝑐 𝑓 𝑐𝜋 .

The following result is a generalization of [82, Lemma 3.1 and Cor. 2.6] from elliptic curves to more
general abelian varieties. We first state a local version. We will frequently use the embedding

H0(𝒜𝐾 ,Ω1) ↩→ H0(𝐴𝐾 ,Ω1) ↩→ H0(𝐴𝐾 ,Ω1)

induced by the isomorphism 𝐴𝐾
𝐾 � 𝐴𝐾 , where 𝒜𝐾 is a Néron model of the quadratic twist 𝐴𝐾 .

Lemma 4.15. Let A be an abelian variety over Q𝑝 , where p is an odd prime; assume that A has good
reduction. Let 𝐾 |Q𝑝 be a ramified quadratic extension, given as 𝐾 = Q𝑝 (𝜛) with 𝜛2 = 𝑢𝑝, where
𝑢 ∈ Z×

𝑝 . Let 𝒜 and 𝒜𝐾 denote the Néron models of A and of its quadratic twist 𝐴𝐾 over Z𝑝 .
Then the image of H0 (𝒜𝐾 ,Ω1) in H0(𝐴𝐾 ,Ω1) is 1/𝜛 times the image of H0(𝒜,Ω1).

We thank Kęstutis Česnavicius for help with the proof.

Proof. We consider the images of H0(𝒜,Ω1) and of H0(𝒜𝐾 ,Ω1) in 𝑉 := H0(𝐴𝐾 ,Ω1), respectively;
they are free Z𝑝-submodules of V of rank 𝑔 = dim𝐾 𝑉 = dim 𝐴. The first image is the Z𝑝-dual of
𝐿 := Lie(𝒜) ↩→ Lie(𝐴𝐾 ) (i.e., it consists of the differentials 𝜔 such that 〈𝜆, 𝜔〉 ∈ Z𝑝 for all 𝜆 ∈ 𝐿
under the natural pairing between the Lie algebra (the tangent space at the origin) and V (its dual)), and
similarly for 𝐿𝐾 := Lie(𝒜𝐾 ) ↩→ Lie(𝐴𝐾 ) and the second image. To see this, note first that H0 (𝒜,Ω1

𝒜
)

is identified with H0(SpecZ𝑝 , 𝜀
∗Ω1

𝒜
), where 𝜀 is the zero section of 𝒜; see [12, §4.2, Prop. 1]. Then by

[12, §2.2, Prop. 7(b)], 𝜀∗Ω1
𝒜
= I/I2, where I is the ideal sheaf of the zero section of 𝒜. The functor of

points definition of the Lie algebra then gives that Lie(𝒜) is the Z𝑝-dual of I/I2. These identifications
are all compatible with base change to Q𝑝 , so the duality is compatible with what is happening on the
generic fiber.

It therefore suffices to show that 𝐿𝐾 = 𝜛 · 𝐿. By our assumptions, 𝐾 |Q𝑝 is tamely ramified. By [42,
Thm. 4.2], the natural map induces an isomorphism of 𝒜𝐾 with the subscheme of the restriction of
scalars 𝑅Z𝑝 [𝜛 ]/Z𝑝𝒜Z𝑝 [𝜛 ] fixed by the twisted action of Gal(𝐾 |Q𝑝). Taking the invariants under this
action commutes with forming the Lie algebra, so we obtain that 𝐿𝐾 is obtained by taking the invariants
under this twisted action on Lie(𝒜Z𝑝 [𝜛 ] ) = 𝐿 ⊗Z𝑝 Z𝑝 [𝜛]; this invariant space is exactly 𝜛 · 𝐿. �

Corollary 4.16. Let A be an abelian variety over Q and let K be a quadratic number field of odd
discriminant 𝐷𝐾 such that all primes of bad reduction for A are unramified in K. Let 𝒜 and 𝒜𝐾

denote the Néron models of A and of its quadratic twist 𝐴𝐾 over Z. Then the image of H0(𝒜𝐾 ,Ω1) in
H0(𝐴𝐾 ,Ω1) is 1/

√
𝐷𝐾 times the image of H0(𝒜,Ω1).

Proof. Fix a Néron basis (𝜔1, . . . , 𝜔𝑔) for A, where 𝑔 = dim 𝐴. Identifying invariant 1-forms on A and
on 𝐴𝐾 with their images on 𝐴𝐾 , we see that (

√
𝐷𝐾

−1
𝜔1, . . . ,

√
𝐷𝐾

−1
𝜔𝑔) is a Q-basis of the space of

invariant 1-forms on 𝐴𝐾 . Since 𝐾 |Q is unramified at all places of bad reduction of A, these 1-forms will
form a local Néron basis at all these places, and also at all places of good reduction for A at which 𝐾 |Q
is unramified. Finally, lemma 4.15 (with 𝜛 ←

√
𝐷𝐾 ) shows that they also form a local Néron basis at

all places where 𝐾 |Q is ramified. So we have obtained a (global) Néron basis for 𝐴𝐾 , and the claim
follows. �

Corollary 4.17. Let A be an abelian variety over Q and let K be a quadratic number field of odd
discriminant such that all primes of bad reduction for A are unramified in K. Let Π𝐴 be a big period
matrix for A with respect to a Néron basis of H0 (𝐴,Ω1). Then

√
𝐷𝐾

−1
Π𝐴 is a big period matrix for the

quadratic twist 𝐴𝐾 with respect to a Néron basis of H0(𝐴𝐾 ,Ω1).
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Proof. We use the Néron bases described in the proof of corollary 4.16. Fixing an embedding 𝐾 ↩→ C
and a symplectic basis of H1 (𝐴(C), Z), we see for the resulting period matrices that Π𝐴𝐾 =

√
𝐷𝐾

−1
Π𝐴.
�

We can use this result, together with the following elementary statement about abelian groups with
an involution, to relate the period of 𝐴/𝐾 to the real periods of 𝐴/Q and 𝐴𝐾 /Q when K is an imaginary
quadratic field.

Lemma 4.18.

(1) Let V be a finite dimensional F2-vector space and let 𝜄 ∈ GL(𝑉) with 𝜄2 = id𝑉 . Then

(𝑉 : (id +𝜄) (𝑉)) = #𝑉 〈 𝜄〉 .

(2) Let G be a finitely generated abelian group and let 𝜄 ∈ Aut(𝐺) with 𝜄2 = id𝐺 . Let 𝐺1 = {𝑔 + 𝜄(𝑔) :
𝑔 ∈ 𝐺} and 𝐺2 = {𝑔 − 𝜄(𝑔) : 𝑔 ∈ 𝐺}. Then

(𝐺 : 𝐺1 + 𝐺2) = #
( 𝐺

2𝐺

) 〈 𝜄〉
.

Proof.

(1) The map 𝜑 := id + 𝜄 = id − 𝜄 has kernel 𝑉 〈 𝜄〉 . Since V is finite, we have

(𝑉 : (id +𝜄) (𝑉)) = # coker 𝜑 = #ker𝜑 = #𝑉 〈 𝜄〉 .

(2) Since for each 𝑔 ∈ 𝐺, 2𝑔 = (𝑔+ 𝜄(𝑔)) + (𝑔− 𝜄(𝑔)) ∈ 𝐺1 +𝐺2, we have that 2𝐺 ⊆ 𝐺1 +𝐺2. Therefore,
using part (1),

(𝐺 : 𝐺1 + 𝐺2) =
( 𝐺

2𝐺
:

𝐺1 + 𝐺2
2𝐺

)
=

( 𝐺

2𝐺
: (id +𝜄)

( 𝐺

2𝐺

))
= #

( 𝐺

2𝐺

) 〈 𝜄〉
.

�

Corollary 4.19. Let A and K be as in corollary 4.17, with 𝐷𝐾 < 0. Then

Ω𝐴/QΩ𝐴𝐾 /Q
√
|𝐷𝐾 |

𝑔

Ω𝐴/𝐾
=

#𝐴(R) [2]
2𝑔

= #𝜋0 (𝐴(R)).

Proof. We use Π𝐴 and Π𝐴𝐾 to denote big period matrices of A and 𝐴𝐾 with respect to a Néron basis
of the invariant 1-forms. The period Ω𝐴/𝐾 is 2𝑔 times the covolume of the lattice Λ ⊆ C𝑔 (where,
as usual, 𝑔 = dim 𝐴) generated by the columns of Π𝐴 (a Néron basis of H0 (𝐴/Q,Ω1) gives a Néron
basis of H0(𝐴/𝐾,Ω1), since at the bad places of A, 𝐾 |Q is unramified and Néron models are preserved
by unramified base extension). The real periods Ω𝐴/Q and Ω𝐴𝐾 /Q are the covolumes of the lattices
in R𝑔 generated by the C|R-traces of the columns of Π𝐴 and Π𝐴𝐾 , respectively. The first lattice is
Λ1 = {𝜆 + �̄� : 𝜆 ∈ Λ}. By corollary 4.17, Π𝐴𝐾 = 𝐷−1/2

𝐾 Π𝐴 (using suitable bases), which together
with 𝐷𝐾 < 0 implies that Ω𝐴𝐾 /Q is

√
|𝐷𝐾 |

−𝑔
times the covolume of the lattice in R𝑔 generated by

the C|R-traces of the columns of
√
−1 · Π𝐴. This is the same as the covolume of Λ2 ⊆

√
−1 R𝑔, where

Λ2 = {𝜆− �̄� : 𝜆 ∈ Λ}. So Ω𝐴/QΩ𝐴𝐾 /Q
√
|𝐷𝐾 |

𝑔
is the covolume of Λ1 +Λ2 ⊆ C𝑔. Applying lemma 4.18

(2) with 𝐺 = Λ and 𝜄 the restriction of complex conjugation, we finally obtain

Ω𝐴/QΩ𝐴𝐾 /Q
√
|𝐷𝐾 |

𝑔

Ω𝐴/𝐾
=

(Λ : Λ1 + Λ2)
2𝑔

=
#(Λ/2Λ)+

2𝑔
=

#𝐴(R) [2]
2𝑔

,
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where (Λ/2Λ)+ denotes the subgroup fixed under the induced action of complex conjugation. (Note
that 𝐴(C) [2] � 1

2Λ/Λ � Λ/2Λ as a Gal(C|R)-module.) The last equality comes from the fact that
#𝐴(R)0 [2] = 2𝑔 since the connected component of the identity is a g-dimensional real torus. �

Corollary 4.20. Let 𝑓 ∈ N (𝑁, 𝑔) and let K be a quadratic number field such that 𝐷𝐾 is coprime with
2𝑁 . Let further 𝜋 : 𝐴 𝑓 → 𝐽 be an isogeny defined over Q. We write 𝑓 𝐾 and 𝜋𝐾 for the corresponding
quadratic twists of f and 𝜋, respectively. Then 𝑐 𝑓 𝐾 𝑐𝜋𝐾 = 𝑐 𝑓 𝑐𝜋 .

Proof. The map 𝜋 𝑓 : 𝐽0(𝑁) → 𝐴 𝑓 is geometrically defined, so 𝜋 𝑓 𝐾 is the same as the quadratic twist 𝜋𝐾𝑓
of 𝜋 𝑓 . Note that 𝑐 𝑓 is the index of 𝜋∗

𝑓 H0(𝒜 𝑓 ,Ω1
𝒜 𝑓 /Z) in 𝜋∗

𝑓 (𝐴 𝑓 ,Ω1) ∩ H0 (𝒥0(𝑁),Ω1
𝒥0 (𝑁 )/Z) (where,

as usual, 𝒜 𝑓 and 𝒥0 (𝑁) denote the Néron models of 𝐴 𝑓 and 𝐽0 (𝑁) over Z). Applying corollary 4.16,
we see that, considered inside H0 (𝐽0 (𝑁)𝐾 ,Ω1), the images of both spaces are multiplied by 1/

√
𝐷𝐾 by

twisting, so the index stays the same. This shows that 𝑐 𝑓 𝐾 = 𝑐 𝑓 . An analogous argument shows that
𝑐𝜋𝐾 = 𝑐𝜋 . �

4.6. The case of L-rank 1: Computing #X(𝐽/Q)an

We now show how we can compute #X(𝐽/Q)an from #X(𝐽/𝐾)an as determined in Section 4.4 and
#X(𝐽𝐾 /Q)an, which we can compute as in Section 4.3 (and using Section 4.5 to make the computation
of the ‘L-ratio’ for the quadratic twist feasible, which would otherwise be quite slow, as the level of the
twisted newform tends to be fairly large) since the L-rank of 𝐽𝐾 is zero by the Heegner hypothesis.

From the induction formula 𝐿(𝐽/𝐾, 𝑠) = 𝐿(𝐽/Q, 𝑠)𝐿(𝐽𝐾 /Q, 𝑠), we obtain

𝐿 (𝑔) (𝐽/𝐾, 1) = 𝐿 (𝑔) (𝐽/Q, 1)𝐿(𝐽𝐾 /Q, 1).

Then one computes #X(𝐽/Q)an from the relation

#X(𝐽/𝐾)an = #X(𝐽/Q)an · #X(𝐽𝐾 /Q)an

· (#𝐽 (𝐾)tors)2

(#𝐽 (Q)tors)2(#𝐽𝐾 (Q)tors)2(4.8)

· Tam(𝐽/Q) Tam(𝐽𝐾 /Q)
Tam(𝐽/𝐾) ·

Reg𝐽/Q

2𝑔 Reg𝐽/𝐾
·
Ω𝐽Ω𝐽𝐾

√
|𝐷𝐾 |

𝑔

Ω𝐽/𝐾

that we obtain from (4.4) and its analogues for 𝐽/Q and 𝐽𝐾 /Q.
As discussed at the beginning of Section 4.4, both regulators are defined in terms of the normalized

canonical height. This implies that

Reg𝐽/Q

(#𝐽 (Q)tors)2 · (#𝐽 (𝐾)tors)2

Reg𝐽/𝐾
= (𝐽 (𝐾) : 𝐽 (Q))2.

Since we have computed 𝐽 (𝐾) already, we can easily determine this index. By corollary 4.19, the last
factor is #𝐽 (R) [2]/2𝑔, assuming 𝐷𝐾 is odd.

We can evaluate the factor involving Tamagawa numbers using the following result. This is not used
in the proof of the formula in corollary 4.22 below but will be useful for the example in Appendix A.

Lemma 4.21. We have

Tam(𝐽𝐾 /Q) = Tam(𝐽/Q) ·
∏
𝑝 |𝐷𝐾

𝑐𝑝 (𝐽𝐾 /Q),
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and hence,

Tam(𝐽/Q) Tam(𝐽𝐾 /Q)
Tam(𝐽/𝐾) =

∏
𝑝 |𝐷𝐾

𝑐𝑝 (𝐽𝐾 /Q),

where 𝑐𝑝 (𝐽𝐾 /Q) = #𝐽 (F𝑝) [2] when 𝑝 | 𝐷𝐾 is an odd prime.

Proof. Since all bad primes p of J split in K, the Tamagawa numbers of 𝐽𝐾 at these primes are the same
as those of J and also agree with the two Tamagawa numbers of 𝐽/𝐾 at the primes dividing p. Since the
only further primes of bad reduction for 𝐽𝐾 are those dividing 𝐷𝐾 , we obtain the stated equalities.

The last claim follows from the fact that 𝐽𝐾 has totally unipotent reduction at p, which implies that
there is no 2-torsion in 𝒥𝐾 (F𝑝)0 (where 𝒥𝐾 is the Néron model of 𝐽𝐾 ), together with the fact that the
component group is killed by 2 since 𝐽𝐾 obtains good reduction after a quadratic extension (see [53,
Cor. 5.3.3.2]). This gives an isomorphism between 𝐽 (F𝑝) [2] � 𝒥𝐾 (F𝑝) [2] and the F𝑝-points of the
component group. �

Recall that Tam(𝐽/𝐾) = Tam(𝐽/Q)2 by (4.6). We then obtain the following.

Corollary 4.22. Keep the notations and assumptions introduced so far. If 𝐷𝐾 is odd, then

#X(𝐽/Q)an =
disc Z[ 𝑓 ]

disc EndQ(𝐽) · 4𝑔

#𝐽 (R) [2] · Tam(𝐽/Q)

·
( 𝐼𝐾,𝜋

(𝐽 (𝐾) : 𝐽 (Q)) · 𝑢𝑔𝐾

)2
·
( 𝐿(𝐽𝐾 /Q, 1)

Ω𝐽𝐾

)−1
.

Proof. Combine (4.8) with the remarks after it and with Corollary 4.13 and theorem 4.5, applied
to 𝐽𝐾. �

5. Bounding the support of the Tate–Shafarevich group

Let 𝐴/Q be an absolutely simple GL2-type abelian variety with associated newform f. In this section,
we obtain an explicit bound on the support of the Tate–Shafarevich group coming from the Heegner
point Euler system. This leads to an explicit description of a finite set of (regular) prime ideals 𝔭 of
Z[ 𝑓 ] such that X(𝐴/Q) [𝔭] = 0 for all 𝔭 not in this set. In the L-rank 0 case, we make the results of
Kolyvagin–Logachëv [64] explicit and in the L-rank 1 case those of Nekovář [80]. We first prove a result
on the vanishing of the first Galois cohomology group for irreducible 𝜌𝔭 in Section 5.1. Specializing
to the case where 𝐴 = 𝐽 is a Jacobian for simplicity (so we do not have to deal with polarizations), we
derive the explicit finite support for X(𝐽/Q) in Section 5.2; see theorems 5.6, 5.7 and 5.10.

In the following subsection, F will be a general number field and does not denote Frac Z[ 𝑓 ].

5.1. Vanishing of H1(𝐹 (𝐴[𝔭]) |𝐹, 𝐴[𝔭])

We assume that 𝔭 is a regular prime ideal of Z[ 𝑓 ] and set 𝑝 = 𝑝(𝔭). The goal of this section is to show
that the Galois cohomology group H1 (𝐹 (𝐴[𝔭]) |𝐹, 𝐴[𝔭]) vanishes when the mod𝔭 Galois representation
is irreducible (and 𝑝 > 2); see proposition 5.4. The vanishing of this group is an important input for
[64, Proposition 5.10].

Let F be a number field. (This level of generality is needed later on and is also useful for further
applications – for example, in our forthcoming work on the BSD conjecture over totally real fields with
Pip Goodman.) Let 𝐺 := Gal(𝐹 (𝐴[𝔭]) |𝐹) ↩→ 𝐺max

𝔭 with 𝐺max
𝔭 defined as in definition 2.9.

The main idea is that H1 (𝐺, 𝐴[𝔭]) = 0 if G contains a nontrivial homothety. Our arguments are
purely group cohomological, without much arithmetic input.
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Definition 5.1. A homothety in the automorphism group of a vector space V over a field K is a map of
the form 𝑣 ↦→ 𝜆𝑣 with 𝜆 ∈ 𝐾×. It is nontrivial if 𝜆 ≠ 1.

Lemma 5.2. Let V be a finite-dimensional vector space over a finite field F and let G be a subgroup of
GL(𝑉). If G contains a nontrivial homothety, then H1(𝐺,𝑉) = 0.

Proof. (Compare [67, Lemma 3].) Let 𝑔 ∈ 𝐺 be a nontrivial homothety; note that 〈𝑔〉 is a normal
subgroup of G. Consider the associated inflation-restriction exact sequence:

0 H1 (𝐺/〈𝑔〉, 𝑉 〈𝑔〉) H1(𝐺,𝑉) H1 (〈𝑔〉, 𝑉)inf res

The left-hand group is trivial since 𝑉 〈𝑔〉 = 0 (a nontrivial scalar matrix fixes no nontrivial element of a
vector space), and the right-hand group is trivial because #〈𝑔〉 | #F× and #𝑉 = #Fdim𝑉 are coprime. So
the middle group must be trivial as well. �

Lemma 5.3. Let F be a finite field of characteristic 𝑝 ≥ 3 and let 𝐺 ⊆ GL2 (F) be such that G does not
fix a unique line in F2. Then

H1 (𝐺, F2) = 0.

Proof. We proceed in a number of steps.

(1) If N is a normal subgroup in G and N fixes a unique line, then so does G. This is because G acts on
the lines fixed by N.

(2) If N is a normal subgroup in G of index prime to p, then (by inflation-restriction and since
H1(𝐺/𝑁,𝑉) = 0 for 𝑉 = (F2)𝑁 ) H1(𝑁, F2) = 0 implies H1(𝐺, F2) = 0.

(3) By (1) and (2), we can restrict to subgroups of SL2(F), observing that 𝐺 ∩ SL2(F) is a normal
subgroup of G of index dividing #F×.

(4) If #𝐺 is prime to p, then H1 (𝐺, F2) = 0. We can therefore assume that p divides #𝐺 and therefore
also #P𝐺.

(5) If G contains −𝐼 (the unique nontrivial homothety in SL2(F); note 𝑝 ≥ 3), then H1 (𝐺, F2) = 0 by
lemma 5.2. Since −𝐼 is the unique element of order 2 in SL2(F), this is the case whenever #𝐺 is
even, so in particular when #P𝐺 is even.

(6) We consult [62, Thm. 2.1], which lists all subgroups of PSL2(F). In cases (f), (i), (p) and (u), 𝑝 = 2.
In cases (b)–(e), (g), (h), (j) and (k), p does not divide #P𝐺. In cases (n), (o), (q)–(t) and (v), #P𝐺
is even. In the remaining cases (a), (l) and (m), P𝐺 is contained in a Borel subgroup and has order
divisible by p, so G fixes a unique line. In each case, either the assumptions are violated, or we can
conclude using (4) or (5). �

Proposition 5.4 (Irreducible implies trivial cohomology). Let A be an absolutely simple abelian variety
over Q of GL2-type and let 𝔭 be a regular prime ideal of EndQ(𝐴). Let F be a number field that is a
Galois extension of Q. We assume that 𝑝(𝔭) ≥ 3 and that 𝜌𝔭 |𝐺𝐹 is irreducible. Then

H1(𝐹 (𝐴[𝔭]) |𝐹, 𝐴[𝔭]) = 0.

Proof. Let G be the image of 𝜌𝔭 and let 𝐺 ′ := 𝜌𝔭 (𝐺𝐹 ), which is a normal subgroup of G. Since 𝜌𝔭 is
irreducible, G does not fix a unique line; by part (1) of the proof of lemma 5.3, this implies that 𝐺 ′ also
does not fix a unique line. Then lemma 5.3 says that

H1(𝐹 (𝐴[𝔭]) |𝐹, 𝐴[𝔭]) = H1 (𝐺 ′, F2
𝔭) = 0.

�
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5.2. Bounding the support of X(𝐴/Q)

Using our computations of 𝐺𝔭 from Section 2 and the Heegner index from Section 3, we can improve
[64] and [80] to give an explicit finite bound for the support of X(𝐴/Q) considered as a Z- or an
O-module.

We do not repeat the full proof; we only explain how to make the arguments explicit.

Assumption 5.5. Let A be a modular abelian variety of level N. We write O := EndQ(𝐴) and assume
that O is the maximal order of Q( 𝑓 ) (via an isomorphism as in (3.2)). This is no essential restriction;
compare remark 2.3 and note that the truth of the strong BSD Conjecture is an isogeny invariant by
[78, Theorem I.7.3]. (However, the support of X can change under isogenies.) Let K be a Heegner
field of odd Heegner discriminant 𝐷𝐾 ≠ −3 (in particular, 𝐷𝐾 ∉ {−3,−4,−8}) (i.e., K is an imaginary
quadratic field such that all primes dividing the level N split completely in K). Then 𝑦𝐾,𝜋 ∈ 𝐴(𝐾) is
a Heegner point, and we assume that 𝐿-rk(𝐴/𝐾) = 1 (i.e., 𝑦𝐾,𝜋 is non-torsion by the Gross–Zagier
formula). Note that 𝑦𝐾,𝜋 satisfies the Euler system relations from [64, §2] because the isogeny 𝜋 is
equivariant with respect to the action of Z[ 𝑓 ] ⊆ O; see (3.3).

For several curves among our LMFDB examples, the endomorphism ring of the Jacobian is not
maximal. However, in all these cases, there is another curve in the database whose Jacobian is isogenous
with endomorphism ring the maximal order; it then suffices to consider these other curves.

In Table 1, we collect the most important objects and constants in [64]. We specialize to the case that
A is the Jacobian J of a curve with its canonical principal polarization. In particular, since J has RM,
the Rosati involution associated to the polarization is the identity on EndQ(𝐽) ⊗Z R, which we need to
use the results in [64, §2.1]. This implies that the polarization 𝜑Λ in Table 1 is principal. Recall that
Tam(𝐽/Q) =

∏
ℓ 𝑐ℓ (𝐽/Q) is the Tamagawa product of J. The component group 𝜋0 (𝒥) of the Néron

model 𝒥/Z of 𝐽/Q is an O-module. This allows us to consider its order Tam(𝐽/Q) as the corresponding
characteristic ideal in O in the following.

Theorem 5.6 (Explicit finite support of X in the L-rank 0 case). Assume 𝐿-rk 𝐽 = 0. Suppose that 𝔭 is
a maximal ideal of O such that 𝜌𝔭 is irreducible and

𝔭 � 2 · Tam(𝐽/Q) · gcd
𝐾

(I𝐾,𝜋),

Table 1. The constants 𝑚𝑘 = 𝑚𝑘 (𝔭𝑛) and important objects occurring in the proof of [64]. The
notation ‘[𝑚]’ denotes m when 𝑝 (𝔭) = 2 and 0 otherwise..

symbol definition properties

𝑚1 𝔭𝑚1 · Sel𝔭∞ (𝐽/Q) = 0 𝑚1 = 𝑚3 + 𝑚10 + 2(𝑚9 + 𝑚11) + 𝑚13
𝑚2 ord𝔭 (AnnO (ker𝜑Λ)) 0 if 𝜑Λ principal polarization
A

∏
𝑣 AnnO (H1 (𝐾 nr

𝑣 |𝐾𝑣 , 𝐽 )) divides Tam(𝐽/𝐾 ) = Tam(𝐽/Q)2

B ord(ℎ𝐾 · 𝜆( 𝑗 (𝜋 (0)))) divides #𝐽 (𝐾 )tors
x 𝐴𝐵𝑦𝐾,𝜋 mod 𝔭𝑛𝐽 (𝐾 )
𝑚4 [1] 0 if 𝔭 � 2
𝑚6 [3𝑔] + 𝑚2/2 0 if deg 𝜑Λ = 1 and 𝔭 � 2
𝑚7 𝑔𝑚4 + 𝑚6 0 if deg 𝜑Λ = 1 and 𝔭 � 2
𝑚3 [2] + 3𝑚7 + 𝑚4 + 𝑚2

= [12𝑔 + 3] + 5𝑚2/2 0 if deg 𝜑Λ = 1 and 𝔭 � 2
𝑚9 Lemma 5.9 in [64] 0 if 𝔭 � 2 and 𝜌𝔭 is irreducible
𝑚10 𝔭𝑚10 H1 (𝐾 |Q, 𝐽 [𝔭𝑛 ] (𝐾 )) = 0 0 if 𝔭 � 2
V 𝐾 (𝐽 [𝔭𝑛+𝑚2 (𝔭) ])
𝑚11 𝔭𝑚11 H1 (𝑉 |𝐾, 𝐽 [𝔭𝑛 ]) = 0 0 if 𝜌𝔭 irreducible
𝑚13 𝑟 · 𝑥 ∈ 𝔭𝑛𝐽 (𝐾 ) =⇒ 𝑟 ∈ 𝔭𝑛−𝑚13O 0 if 𝔭 � 𝐴𝐵𝐼𝐾,𝜋
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where K runs through the Heegner fields for 𝐽/Q. Then

X(𝐽/Q) [𝔭] = 0.

Proof. Note that the arguments in [64] (there for a prime ℓ) also work for prime ideals𝔭; this is explained
in [39, §7.1]: annihilation of modules under O by p is translated to the annihilation under 𝔭 | 𝑝 using
the Chinese remainder theorem O/𝑝

∼−→
⊕

𝔭 |𝑝 O/𝔭𝑒𝔭 . We set 𝑝 := 𝑝(𝔭).
Looking at Table 1, all constants 𝑚𝑖 are 0 for 𝔭 satisfying our hypotheses.

(i) 𝑚3 = 0 because 𝔭 � 2 and the polarization is principal.
(ii) If 𝔭 � Tam(𝐽/Q), then 𝔭 � 𝐴: Let 𝑝 = 𝑝(𝔭). Let 𝑣 � 𝑝 be a finite prime of K with residue field F𝑣 .

Let 𝒥 be the Néron model of 𝐽/𝐾 . By [78, Proposition I.3.8],1

H1
nr (𝐾𝑣 , 𝐽) � H1(F𝑣 , 𝜋0 (𝒥) (F𝑣 ))

� lim−−→
𝑛

H1(F𝑣𝑛 |F𝑣 , 𝜋0 (𝒥) (F𝑣𝑛 ))

as O-modules. The last module is a subquotient of 𝜋0 (𝒥) (F𝑣𝑛 ) since F𝑣𝑛 |F𝑣 is cyclic [81,
Proposition 1.7.1]. (Note that conjecturally, Tam(𝐽/Q) divides all Heegner indices [52, Conjecture
V.(2.2)]; see also Corollary 4.13.)

(iii) If 𝔭 | 𝐵, then 𝐽 (Q) [𝔭] ≠ 0, so 𝜌𝔭 is reducible.
(iv) 𝑚9 = 0 if 𝔭 � 2 and 𝜌𝔭 is irreducible because the irreducibility implies that the p-isogeny graph is

reduced to a point; see [64, Lemma 5.9].
(v) 𝔭 � 2 implies that 𝑚10 = 0 since #Gal(𝐾 |Q) = 2 is prime to #𝐴[𝔭].

(vi) 𝜌𝔭 irreducible implies 𝑚11 = 0 by proposition 5.4 with 𝐹 = 𝐾 .
(vii) One can take 𝑚13 to be

𝑣𝔭 (I𝐾,𝜋) = 𝑣𝔭
(
CharO (𝐽 (𝐾)/O𝑦𝐾 )

)
.

This is because this choice of 𝑚13 = 𝑚13 (𝔭∞) satisfies [64, Proposition 5.12].

Hence, 𝑚1 = 0, so Sel𝔭∞ (𝐽/Q) = 0. �

To simplify notation below, we write 𝒦𝔭 ( 𝑓 ) for the set of all Heegner fields K such that 𝑎𝑛 ( 𝑓 ) �
𝜀𝐾 (𝑛)𝑎𝑛 ( 𝑓 ) (mod 𝔭) for some n coprime to N, where 𝜀𝐾 is the nontrivial quadratic Dirichlet character
associated with 𝐾 |Q. In practice, we find a Heegner field K such that 𝐾 ∈ 𝒦𝔭 ( 𝑓 ) for all 𝔭 � 2 by
checking that for some small bound B the ideal〈

𝑎𝑛 ( 𝑓 ) − 𝜀𝐾 (𝑛)𝑎𝑛 ( 𝑓 ) : (𝑛, 𝑁𝐷𝐾 ) = 1, 𝑛 ≤ 𝐵
〉

of Z[ 𝑓 ] has norm a power of 2 (note that the norm is always divisible by 2). Note that this ideal is
nonzero if f does not have CM by 𝜀𝐾 in the terminology of definition 2.46.

Theorem 5.7 (Explicit finite support of X in the L-rank 1 case). Assume that 𝐿-rk 𝐽 = 1 and 𝐽/Q
is simple and does not have CM. Suppose that 𝔭 is a maximal ideal of O such that 𝜌𝔭 is irreducible,
𝐾 ∈ 𝒦𝔭 ( 𝑓 ) and

𝔭 � 2 · Tam(𝐽/Q) · I𝐾,𝜋 .

Then

X(𝐽/Q) [𝔭] = X(𝐽/𝐾) [𝔭] = 0.

1Note the erratum at https://jmilne.org/math/Books/index.html.
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Proof. In the setting of [80], 𝐹 = Q, K is a Heegner field for 𝐽/Q and the character 𝛼 is trivial (see the
main theorem at the beginning of [80]); therefore, 𝐾 (𝛼) = 𝐾 , and hence, 𝛽 = 1 by [80, (3.1)]. According
to [80, 7.3, 7.5, 7.5.3], we have to show that our hypotheses imply 𝐶𝑖 (𝔭) = 0 for 𝑖 = 1, . . . , 6, 0 (with
𝐶𝑖 (𝔭) as defined in [80]):

(1) If 𝔭 � Tam(𝐽/Q), then 𝐶1 (𝔭) = 0 because of the definition of 𝐶1 (𝔭) in [80, Proposition 5.12] and
by the argument in the proof of theorem 5.6.

(2) If ker
(
H1 (𝐾, 𝐽 [𝔭]) res→ H1(𝐾 (𝐽 [𝔭]), 𝐽 [𝔭])

)
= 0, then 𝐶2 (𝔭) = 0 [80, Proposition 6.1.2]. By propo-

sition 5.4 with 𝐹 = 𝐾 and the inflation-restriction sequence, this holds since 𝜌𝔭 |𝐺𝐾 is irreducible
by corollary 2.36 (here, we use 𝐷𝐾 ≠ −4,−8,−3; compare Assumption 5.5).

(3) Since 𝛼 is trivial, 𝐻 = 𝐾 (𝛼) = 𝐾 in [80, §6]. Hence, there we only need to consider the Dirichlet
character 𝜂 = 𝜀𝐾 : Gal(𝐾 |Q) → {±1} of Gal(𝐾 |Q) in [80, Proposition 6.2.2]; thus, 𝐶3 (𝔭) = 0 if
𝐾 ∈ 𝒦𝔭 ( 𝑓 ).

(4) We have 𝐶4 (𝔭) = 0 because 𝛽2 = 1.
(5) By definition [80, (7.4)], 𝐶5 (𝔭) = 0 since 𝐻 = 𝐾 (𝛼) = 𝐾 .
(6) One has 𝐶6 (𝔭) := ord𝔭 deg 𝜑 with 𝜑 : 𝐽 → 𝐽∨ a polarization (for the Weil pairing) [80, (7.4)].

Hence, 𝐶6 (𝔭) = 0 because J is principally polarized.
(0) Let 𝑥 ∈ 𝐽 (𝐾) be a Heegner point. One has

𝐶0 (𝔭) := max{𝑐 ∈ Z≥0 : 𝑥 ∈ 𝐽 (𝐾)tors + 𝔭𝑐𝐽 (𝐾)} ;

see [80, (7.4)]. Hence, 𝐶0 (𝔭) = 0 if 𝔭 � I𝐾,𝜋 .

Note that these results imply X(𝐽/𝐾) [𝔭] = 0. Since 𝔭 � 2, X(𝐽/Q) [𝔭] = 0 follows. �

We use the refined information that is provided by considering Tam(𝐽/Q) as an O-ideal in the
following way.

Proposition 5.8. We assume that J is the Jacobian of a curve of genus 2. Fix an odd prime q. Let 𝒥/Z
be the Néron model of 𝐽/Q. If

(i) there is exactly one rational prime p with 𝑣𝑞 (𝑐𝑝 (𝐽/Q)) ≥ 1 and we have 𝑣𝑞 (𝑐𝑝 (𝐽/Q)) = 1 (then
𝑎𝑝 ( 𝑓 ) ∈ {±1, 0}),

(ii) 𝑞O = 𝔮𝔮′ is split in O with 𝜌𝔮′ irreducible,
(iii) 𝑣𝑞 (exp(𝐽 (Q)tors)) > 𝑣𝑞 (𝑝 − 𝑎𝑝 ( 𝑓 )), where exp(𝐽 (Q)tors) denotes the exponent of the rational

torsion subgroup of J,

then 𝑣𝔮′ (Tam(𝐽/Q)) = 0 and 𝑣𝔮 (Tam(𝐽/Q)) = 1.

Proof. Since q is odd, the q-primary part of 𝐽 (Q)tors injects into 𝒥(F𝑝). The group of F𝑝-points on
the connected component of the identity of 𝒥F𝑝 has exponent 𝑝 − 𝑎𝑝 ( 𝑓 ) since it is a product of two
copies of F×

𝑝 (when 𝑎𝑝 ( 𝑓 ) = 1) or of the norm 1 subgroup of F×
𝑝2 (when 𝑎𝑝 ( 𝑓 ) = −1) or of F𝑝 (when

𝑎𝑝 ( 𝑓 ) = 0). So (iii) implies that the q-primary part of 𝐽 (Q)tors maps nontrivially into the q-primary part
of the group of F𝑝-points of the component group, 𝜋0 (𝒥F𝑝 ) (F𝑝). By (i), the latter is the same as the
q-primary part of the ideal Tam(𝐽/Q), and it has order q, so by (ii), this q-primary part of Tam(𝐽/Q)
is either 𝔮 or 𝔮′. The map from the q-primary part of 𝐽 (Q)tors to 𝜋0 (𝒥F𝑝 ) (F𝑝) respects the action of the
endomorphism ring. Since 𝜌𝔮′ is irreducible, only 𝔮 can occur in the characteristic ideal of 𝐽 (Q)tors, so
only 𝔮 can occur in Tam(𝐽/Q). �

Examples 5.9. There are three Jacobians of curves from the LMFDB for which we need to apply
proposition 5.8 to show that the 𝔭-primary part of X(𝐽/Q) is trivial for a degree 1 prime ideal 𝔭
such that 𝜌𝔭 is irreducible. For one curve each at levels 𝑁 = 39 and 123, the Tamagawa product is 7
and 7 is split in the endomorphism ring. In both cases, there is rational 7-torsion and 𝑐3 = 7, so the
proposition applies. In the last case, 𝑁 = 133 and the Tamagawa product is 3, with 𝑐7 = 3. We have
𝑎7 = 1, so 𝑣3(7 − 𝑎7 ( 𝑓 )) = 1, but luckily, 𝐽 (Q) � Z/9, so condition (iii) above is still satisfied.
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Under stronger assumptions on 𝔭, we can even get an upper bound for #X(𝐽/𝐾) [𝔭∞].

Theorem 5.10. Assume that 𝐿 ′( 𝑓 /𝐾, 1) ≠ 0. Let 𝔭 | 𝑝 > 2 be a regular prime ideal of EndQ(𝐽) with
𝑝 � ℎ𝐾 · 𝑢𝐾 · 𝑁 . Suppose im𝜌𝔭∞ = 𝐺max

𝔭∞ . Then

Sel𝔭∞ (𝐽/𝐾) � (𝐸𝔭/O𝔭) ⊕ 𝑀 ⊕ 𝑀

with M finite of order bounded by #O𝔭/𝐼𝐾,𝜋 . Here, 𝐸𝔭 is the completion of 𝐸 = End0
Q(𝐽).

Proof. This is [55, Theorem A]. �

Note that this implies X(𝐽/𝐾) [𝔭∞] � 𝑀 ⊕ 𝑀 , so in particular,

#X(𝐽/𝐾) [𝔭∞] ≤ #(O𝔭/𝐼𝐾,𝜋)2.

theorem 5.10 requires p to be a prime of good reduction and 𝜌𝔭∞ to be surjective, which theorems 5.6
and 5.7 do not.

6. Computing X(𝐽/Q) [𝔭∞] using descent

In this section, let J be the Jacobian of a curve of genus 2 whose endomorphism ring O = EndQ(𝐽) is
an order in a real quadratic field. Let 𝔭 be a prime ideal of degree 1 of O of residue characteristic p.
Then J is modular; let N be the level.

The results of the preceding section reduce the problem of showing that #X(𝐽/Q) = #Xan (𝐽/Q)
to the verification that

𝑣𝑝 (#X(𝐽/Q)) = 𝑣𝑝 (#Xan (𝐽/Q))

for finitely many primes p. The left-hand side can be computed by studying X(𝐽/Q) [𝔭∞] for the
prime ideals 𝔭 of O dividing p. In most cases, we need to show that X(𝐽/Q) [𝔭∞] = 0, for which it
is sufficient to show that X(𝐽/Q) [𝔭] = 0. We can compute (the size of) X(𝐽/Q) [𝔭] in principle by
doing a descent (i.e., by computing the 𝔭-Selmer group Sel𝔭 (𝐽/Q) of 𝐽/Q). Recall that

Sel𝔭 (𝐽/Q) := ker
(
H1 (Q, 𝐽 [𝔭]) →

∏
𝑣

H1 (Q𝑣 , 𝐽 (Q̄𝑣 ))
)

and that the Selmer group sits in the following exact sequence:

0 −→ 𝐽 (Q)
𝔭𝐽 (Q) −→ Sel𝔭 (𝐽/Q) −→ X(𝐽/Q) [𝔭] −→ 0.

(There are analogous definitions with p in place of 𝔭.) This implies that

𝑣𝑝
(
#X(𝐽/Q) [𝔭]

)
= 𝑣𝑝 (# Sel𝔭 (𝐽/Q)) − (deg𝔭) rkO (𝐽/Q) − 𝑣𝑝 (#𝐽 (Q) [𝔭]).

So to verify that #X(𝐽/Q) [𝔭] = 0, it is sufficient to show that

dimF𝑝 Sel𝔭 (𝐽/Q) ≤ (deg𝔭) rkO (𝐽/Q) + dimF𝑝 𝐽 (Q) [𝔭] .

6.1. Dealing with 𝑝 = 2

We always need to determine #X(𝐽/Q) [2∞] since primes dividing 2 are always excluded in theorems
5.6 and 5.7. Luckily, for Jacobians of hyperelliptic curves, the size of the 2-Selmer group can be
computed fairly easily. This is described in [112] and is implemented in Magma. If this computation
shows that X(𝐽/Q) [2] = 0, then we know that #X(𝐽/Q) is odd.
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The 2-primary part of X(𝐽/Q) is somewhat special, as its cardinality can be twice a square (the
odd part, if finite, is always the square of some group). Using results of [86], we can determine whether
this is the case; in particular, the computation of 𝐽 (Q) and the 2-Selmer group is sufficient to detect
that #X(𝐽/Q) [2∞] = 2. In all cases from our database where the 2-part of #Xan (𝐽/Q) is 1 or 2, this
computation shows that #X(𝐽/Q) [2∞] has the expected value.

When #X(𝐽/Q) [2] > 2, butX(𝐽/Q) [4] = X(𝐽/Q) [2], then this can be verified by computing the
Cassels–Tate pairing on Sel2(𝐽/Q) (this is a symmetric bilinear form on the F2-vector space Sel2(𝐽/Q)
whose kernel is the preimage of 2X(𝐽/Q) [4]). A method for doing this is described in the recent
preprint [44] by Fisher and Yan, and an alternative approach will be detailed in forthcoming work by
Shukla.

There are ten cases in our database where #Xan = 4 (in all cases, #Xan ∈ {1, 2, 4}), corresponding
to the levels and isogeny classes

67𝑐, 73𝑎, 133𝑒, 211𝑎, 275𝑎, 313𝑎, 358𝑎, 640𝑎, 640𝑏, 887𝑎,

each of which occurs only once in the list. In each case, the 2-descent computation shows that
#X(𝐽/Q) [2] = 4 as expected. For the two curves at level 640 (that are quadratic twists by −1 of each
other), there exists a Richelot isogenous Jacobian 𝐽 ′, for which a 2-descent shows that X(𝐽 ′/Q) [2] = 0.
This shows that in both cases, #X(𝐽/Q) [2∞] = 4 since elements of order 4 would have to survive the
isogeny.

To deal with the remaining eight cases, we need to compute the kernel of the Cassels–Tate pairing
on X(𝐽/Q) [2] and verify that this kernel is trivial. Fortunately, Fisher and Yan [44] have computed
the pairing on the 2-Selmer groups of all Jacobians of genus 2 curves in the LMFDB with even analytic
order ofX. In particular, they have verified that #X(𝐽/Q) [2∞] = 4 in all cases where #Xan (𝐽/Q) = 4.
This finishes the verification for the 2-primary part of X in our LMFDB examples. There is one of the
‘Wang only’ curves that also has #X(𝐽/Q) [2] = #X(𝐽/Q)an = 4 (the curve with label 125B); Tom
Fisher has kindly checked for us using the code from [44] that #X(𝐽/Q) [2∞] = 4 for this curve as well.

6.2. Odd primes

We will now assume that 𝔭 is a prime ideal of O dividing an odd prime. We will also assume that
deg𝔭 = 1, as for primes of degree 2, the computation tends to get fairly involved. The situation is then
analogous to that of a full p-descent (where 𝑝 = 𝑝(𝔭)) on an elliptic curve: the kernel of the isogeny is
isomorphic to Z/𝑝 × Z/𝑝 as a group, and it carries a Weil pairing. How to do a p-descent on an elliptic
curve is analyzed in detail in [93]; most of what is done below builds on this analysis. For the general
theory of how to perform descent computations, see [16]. We assume that the prime ideal 𝔭 is principal,
generated by a prime element 𝜛. This ensures that 𝐽/𝐽 [𝔭] � 𝐽 via the multiplication-by-𝜛 map. This
assumption is satisfied in all the examples that we have considered.

We now assume in addition that 𝜌𝔭 is reducible; this is the most common situation when the general
results do not allow us to conclude that X(𝐽/Q) [𝔭] = 0. We then have an exact sequence of Galois
modules

0 −→ 𝑀1 −→ 𝐽 [𝔭] −→ 𝑀2 −→ 0,

where 𝑀1 and 𝑀2 are one-dimensional Galois modules corresponding to characters with values in F×
𝑝 .

A frequently occurring case is that 𝐽 [𝔭] contains a rational point of order p; then 𝑀1 � Z/𝑝, and
the action on 𝑀2 is via the cyclotomic character 𝜒𝑝 . Let 𝐴 = 𝐽/𝑀1 be the isogenous abelian surface;
write 𝜑 : 𝐽 → 𝐴 for the corresponding isogeny and 𝜓 : 𝐴 → 𝐽 for the isogeny such that 𝜓 ◦ 𝜑 = 𝜛;
its kernel is 𝜑(𝐽 [𝔭]) � 𝑀2. Then we have the associated Selmer groups Sel(𝜑) ⊆ H1(Q, 𝑀1) and
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Sel(𝜓) ⊆ H1 (Q, 𝑀2) and an exact sequence (see [93, Lemma 6.1])

0 −→ 𝑀2 (Q)
𝜑(𝐽 [𝔭] (Q)) −→ Sel(𝜑) −→ Sel𝔭 (𝐽/Q) −→ Sel(𝜓).

This allows us to bound dimF𝑝 Sel𝔭 (𝐽/Q) via

dimF𝑝 Sel𝔭 (𝐽/Q) ≤ dimF𝑝 Sel(𝜑) + dimF𝑝 Sel(𝜓) − dimF𝑝
𝑀2 (Q)

𝜑(𝐽 [𝔭] (Q)) .

Let S be a finite set of primes. For a finite Galois module M such that 𝑝𝑀 = 0, we denote
by H1 (Q, 𝑀; 𝑆) the subgroup of cohomology classes unramified outside S (i.e., mapping to zero in
H1(𝐼𝑞 , 𝑀) for all primes 𝑞 ∉ 𝑆, where 𝐼𝑞 is the inertia group at q). (Since p is odd, we can ignore the
infinite place.)

By Lemma 3.1 and the following text in [93] (the arguments carry over from elliptic curves to abelian
varieties), the Selmer group Sel(𝜃) of an isogeny 𝜃 : 𝐴1 → 𝐴2 is contained in H1 (Q, ker𝜃; 𝑆), where S
is the set of primes q such that the Tamagawa number 𝑐𝑞 (𝐴2) is divisible by p, together with p. We set

𝑆𝐽 := {𝑝} ∪ {𝑞 prime : 𝑝 | 𝑐𝑞 (𝐽)}

and define 𝑆𝐴 in a similar way. Then

𝑆𝐴 ⊆ 𝑆′
𝐽 := {𝑝} ∪ {𝑞 prime : 𝑞 | 𝑁}.

By considering the reduction type of J at q, we may be able to obtain a smaller upper bound for 𝑆𝐴.
Now let M be a one-dimensional (over F𝑝) Galois representation given by the character

𝜒 : Gal(Q|Q) → F×
𝑝 . Let 𝑀∨ := Hom(𝑀, 𝜇𝑝) be the Cartier dual, with character 𝜒𝑝𝜒−1. Let L be the

fixed field of the kernel of 𝜒𝑝𝜒−1. The degree of 𝐿/Q divides 𝑝 − 1, so is prime to p, so by inflation-
restriction, we see that

H1(Q, 𝑀) � H1(𝐿, 𝑀)Gal(𝐿/Q) � H1 (𝐿, 𝜇𝑝) (1) � (𝐿×/𝐿×𝑝) (1) ,

where the superscript (1) denotes the subspace on which the action of 𝜎 ∈ Gal(𝐿/Q) is given by
multiplying by 𝑎𝜎 / raising to the 𝑎𝜎th power, where 𝑎𝜎 = 𝜒𝑝𝜒−1 (𝜎) ∈ F×

𝑝 . We can restrict this
isomorphism to the elements that are unramified outside S. Here, 𝛼𝐿×𝑝 ∈ 𝐿×/𝐿×𝑝 is considered to
be unramified outside S when the extension 𝐿( 𝑝

√
𝛼)/𝐿 is unramified outside places above primes in

S; equivalently (when 𝑝 ∈ 𝑆), p divides all valuations 𝑣𝔮 (𝛼) for 𝔮 | 𝑞 ∉ 𝑆. Denoting the subgroup
of elements unramified outside S by 𝐿(𝑆, 𝑝), this shows that Sel(𝜑) ⊆ 𝐿1(𝑆𝐴, 𝑝) (1) and Sel(𝜓) ⊆
𝐿2 (𝑆𝐽 , 𝑝) (1) , where 𝐿1 and 𝐿2 are the fields associated to 𝑀1 and 𝑀2, respectively.

Since it occurs frequently, we give an explicit statement in the case that 𝐽 [𝔭] contains a rational point
of order p (then 𝑀1 = Z/𝑝 and 𝑀2 = 𝜇𝑝). We will use the notation

[A] :=

{
1, if A is true
0, otherwise.

Proposition 6.1. Let J be the Jacobian of a curve of genus 2 that has real multiplication; as before,
let N be its level. Let 𝔭 be a prime ideal of degree 1 of O = EndQ(𝐽) of residue characteristic 𝑝 > 2.
Assume that 𝐽 [𝔭] (Q) � Z/𝑝 and that the class number of Q(𝜇𝑝) is not divisible by p. Then

dimF𝑝 X(𝐽/Q) [𝔭] ≤ #{𝑞 prime : 𝑞 | 𝑁 and 𝑞 ≡ 1 mod 𝑝}
+ #{𝑞 prime : 𝑝 | 𝑐𝑞 (𝐽)} + [𝑝 | 𝑁] − rkO 𝐽 (Q).
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If, in addition, there is a prime ℓ ≡ 1 mod 𝑝 such that the natural map

𝑟ℓ : Q({𝑞 : 𝑝 | 𝑐𝑞 (𝐽) or 𝑞 = 𝑝 | 𝑁}, 𝑝) → Q×
ℓ /Q×𝑝

ℓ

is nontrivial and the map

𝑟 ′
ℓ : Q(𝜇𝑝) ({𝑝} ∪ {𝑞 : 𝑞 | 𝑁 and 𝑞 ≡ 1 mod 𝑝}, 𝑝) (1) → Q×

ℓ /Q×𝑝
ℓ

induced by any embedding Q(𝜇𝑝) → Qℓ is surjective, then the above inequality is strict.

Proof. Since 𝑀1 = 〈𝑃〉 � Z/𝑝, we have 𝐿1 = Q(𝜇𝑝). Similarly, since 𝑀2 � 𝜇𝑝 , we have 𝐿2 = Q. Let
𝐹 ∈ Q(𝑋)× be a function whose divisor is 𝑝𝐷, where the linear equivalence class of D is P; then the
‘descent map’ 𝛿 : 𝐽 (Q) → H1(Q, 𝑀2) � Q×/Q×𝑝 is given by evaluating F on a representative divisor
whose support is disjoint from that of D. We have the analogous map 𝛿𝑞 : 𝐽 (Q𝑞) → Q×

𝑞/Q×𝑝
𝑞 for each

prime q. By the above, Sel(𝜓 : 𝐴 → 𝐽) is contained in the unramified outside 𝑆𝐽 part of Q×/Q×𝑝 , which
is the subgroup generated by the classes of the primes in 𝑆𝐽 . When 𝑝 � 𝑁 , so that J has good reduction
at p, then we can choose F in such a way that its reduction mod p is well-defined. When evaluating 𝛿𝑝
on a point 𝑄 ∈ 𝐽 (Q𝑝), we can pick a representative divisor whose support is disjoint mod p from the
support of D; this shows that 𝐹 (𝑄) is in the image of Z×

𝑝 and hence that Sel(𝜓) ⊆ 〈𝑞 : 𝑝 | 𝑐𝑞 (𝐽)〉 in
this case. So in any case, we have

dimF𝑝 Sel(𝜓) ≤ #{𝑞 prime : 𝑝 | 𝑐𝑞 (𝐽)} + [𝑝 | 𝑁] .(6.1)

We obtain a bound on Sel(𝜑) from the inclusion Sel(𝜑) ⊆ 𝐿1 (𝑆′
𝐽 , 𝑝) (1) = Q(𝜇𝑝) (𝑆′

𝐽 , 𝑝) (1) . Since we
assume that the class number of Q(𝜇𝑝) is not divisible by p, the group Q(𝜇𝑝) (𝑆′

𝐽 , 𝑝) is generated by
the images of a primitive pth root of unity 𝜁𝑝 , a choice of fundamental units, 1 − 𝜁𝑝 , and one element
generating a suitable power of each prime ideal above a prime in 𝑆′

𝐽 . Of these, only 𝜁𝑝 and the totally
split primes contribute to the relevant eigenspace (the fundamental units come, up to index prime to
p, from the maximal real subfield, and the ideal 〈1 − 𝜁𝑝〉 and the nonsplit prime ideals have nontrivial
stabilizer), and the contribution of each totally split prime q is exactly 1. Since q is totally split in Q(𝜇𝑝)
if and only if 𝑞 ≡ 1 mod 𝑝, we obtain the bound

dimF𝑝 Sel(𝜑) ≤ dimF𝑝 Q(𝜇𝑝) (𝑆′
𝐽 , 𝑝) (1)

= 1 + #{𝑞 prime : 𝑞 | 𝑁 and 𝑞 ≡ 1 mod 𝑝}.
(6.2)

Finally, we have

dimF𝑝 X(𝐽/Q) [𝔭] = dimF𝑝 Sel(𝐽/Q) [𝔭] − dimF𝑝
𝐽 (Q)
𝔭𝐽 (Q)

≤ dimF𝑝 Sel(𝜑) + dimF𝑝 Sel(𝜓) − 1 − rkO 𝐽 (Q)
≤ #{𝑞 prime : 𝑞 | 𝑁 and 𝑞 ≡ 1 mod 𝑝}

+ #{𝑞 prime : 𝑝 | 𝑐𝑞 (𝐽)} + [𝑝 | 𝑁] − rkO 𝐽 (Q),

where we have used dim 𝐽 (Q)/𝔭𝐽 (Q) = rkO 𝐽 (Q) + dim 𝐽 (Q) [𝔭] and Equations (6.1) and (6.2).
To show the refinement, consider the kernel-cokernel exact sequence associated to 𝐽 (Qℓ)

𝜑
−→

𝐴(Qℓ)
𝜓

−→ 𝐽 (Qℓ),

0 −→ Z/𝑝 −→ 𝐽 (Qℓ) [𝔭]
𝜑

−→ 𝜇𝑝 (Qℓ) −→

−→ 𝐴(Qℓ)
𝜑(𝐽 (Qℓ))

𝜓
−→ 𝐽 (Qℓ )

𝔭𝐽 (Qℓ )
−→ 𝐽 (Qℓ)

𝜓(𝐴(Qℓ))
−→ 0.
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Since ℓ ≡ 1 mod 𝑝, dim 𝜇𝑝 (Qℓ) = 1. Since 𝑝 � ℓ, dim 𝐽 (Qℓ)/𝔭𝐽 (Qℓ) = dim 𝐽 (Qℓ) [𝔭]. These facts
imply that

dim
𝐴(Qℓ)

𝜑(𝐽 (Qℓ ))
+ dim

𝐽 (Qℓ)
𝜓(𝐴(Qℓ ))

= 2.

We note that the elements of Sel(𝜑) (respectively, Sel(𝜓)) map into the image of 𝐴(Qℓ)/𝜑(𝐽 (Qℓ)) in
H1(Qℓ , Z/𝑝) � Q×

ℓ /Q×𝑝
ℓ (respectively, into the image of 𝐽 (Qℓ )/𝜓(𝐴(Qℓ)) in H1(Qℓ , 𝜇𝑝) � Q×

ℓ /Q×𝑝
ℓ )

under 𝑟 ′
ℓ (respectively, 𝑟ℓ). If dim 𝐽 (Qℓ)/𝜓(𝐴(Qℓ)) = 0, then Sel(𝜓) is contained in the kernel of 𝑟ℓ ;

since 𝑟ℓ is assumed to be nontrivial, this implies that the bound on dim Sel(𝜓) can be reduced by 1. Other-
wise, dim 𝐴(Qℓ)/𝜑(𝐽 (Qℓ)) ≤ 1 < 2 = dim Q×

ℓ /Q×𝑝
ℓ . Since 𝑟 ′

ℓ is assumed to be surjective, this implies
that the bound on dim Sel(𝜑) can be reduced by 1. So in all cases, the bound on dim Sel(𝜑) +dim Sel(𝜓)
is reduced by 1, which gives a corresponding improvement for the bound on dimX(𝐽/Q) [𝔭]. �

Remark 6.2. In some cases (for example in Examples 6.10 (iii)), we can improve the bound in proposi-
tion 6.1 by 1 when 𝑝 | 𝑁 . Assume that we can find enough ‘descent functions, 𝐹 ∈ Q(𝑋)× (i.e., whose
divisor is p times a divisor D such that [𝐷] ∈ 𝐽 (Q) generates 𝐽 [𝔭]) that reduce to well-defined func-
tions �̄� on 𝑋F𝑝 and such that the support of �̄� consists of smooth points on 𝑋F𝑝 and that the following
holds: if D is a divisor of degree zero on X defined over Q with reduction �̄� modulo p, then we can find
some F such that the divisor of �̄� has support disjoint from �̄�. Then the argument near the beginning
of the proof of proposition 6.1 shows that 𝐹 (𝐷) ∈ Z×

𝑝; hence,

Sel(𝜓) ⊆ Q({𝑞 prime : 𝑝 | 𝑐𝑞 (𝐽)}, 𝑝),

and so we can remove the term ‘[𝑝 | 𝑁]’ in the final bound.

We also note the following.

Lemma 6.3. If we assume additionally that rkO 𝐽 (Q) ≤ 1 in the situation above, then
dimF𝑝 X(𝐽/Q) [𝔭] is even. In particular, dimF𝑝 X(𝐽/Q) [𝔭] ≤ 1 implies that X(𝐽/Q) [𝔭] = 0.

Proof. By the general results on abelian surfaces with RM, J is modular. The additional assumption
then implies by [64] that X(𝐽/Q) is finite. Therefore, the Cassels–Tate pairing on X(𝐽/Q) is perfect.
It is also anti-symmetric, which implies (since p is odd) that its restriction to X(𝐽/Q) [𝔭∞] is perfect
and alternating. This in turn implies that X(𝐽/Q) [𝔭∞] � 𝑀 × 𝑀 for some finite O𝔭-module M. In
particular, X(𝐽/Q) [𝔭] � 𝑀 [𝔭] × 𝑀 [𝔭], and so dimF𝑝 X(𝐽/Q) [𝔭] = 2 dimF𝑝 𝑀 [𝔭]. �

Examples 6.4. For most pairs (𝑋, 𝑝) consisting of a curve X in our database of LMFDB curves and an
odd prime p such that the table in Section 2.14 says that the semisimplification of 𝜌𝔭 splits as 1 ⊕ 𝜒𝑝 ,
where 𝔭 is a prime ideal of the endomorphism ring of degree 1, the non-strict bound in proposition 6.1
together with lemma 6.3 show that X(𝐽/Q) [𝔭] = 0. The exceptions are as follows. (We frequently
indicate the isogeny class with a letter appended to the level N.)

(i) Two of the four curves at level 𝑁 = 31, where 𝑝 = 5 (one has no rational point of order 5, the other
gives a bound dimX(𝐽/Q) [𝔭] ≤ 2). This is unproblematic, since these Jacobians are isogenous
to the Jacobians of the two other curves at that level, for which the simple bound proves that
X(𝐽/Q) [𝔭] = 0. By invariance of BSD in isogeny classes, it suffices to verify strong BSD for one
of these Jacobians.

(ii) The pairs (𝑁, 𝑝) = (73𝑎, 3) and (85𝑏, 3), where there is no rational point of order 3.
(iii) The curves at level 133𝑑 with 𝑝 = 3 and at level 275𝑎 with 𝑝 = 5, where the non-strict bound only

gives dimX(𝐽/Q) [𝔭] ≤ 2.

Examples 6.5. We consider the curves listed under (ii) above. In these cases, the 𝔭-torsion (where 𝔭 is
an ideal of norm 3) sits in an exact sequence

0 −→ 𝜇3 −→ 𝐽 [𝔭] −→ Z/3Z −→ 0.
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Using the fact that 𝑀2 (Q)/𝜑(𝐽 [𝔭]) � Z/3Z in these cases and that the Tamagawa numbers at all bad
primes are not divisible by 3 (and 3 is not a bad prime, which implies that Sel(𝜓) ⊆ Q({𝑞prime : 𝑞 |
𝑁}, 3)), this leads to a general bound of the form

dimF3 X(𝐽/Q) [𝔭] ≤ dimF3 Sel(𝜓) − 1 + dimF3 Sel(𝜑) − rkO 𝐽 (Q)
≤ dimF3 Q({𝑞 prime : 𝑞 | 𝑁}, 3) − 1

+ dimF3 Q(𝜇3) ({3}, 3) (1) − rkO 𝐽 (Q)
≤ #{𝑞 prime : 𝑞 | 𝑁} − rkO 𝐽 (Q),

which evaluates to 1 and 2, respectively, for 𝑁 = 73 and 85. Using lemma 6.3, this already shows that
X(𝐽/Q) [𝔭] = 0 for 𝑁 = 73.

To improve the bound for 𝑁 = 85, we note that in this case,

Sel𝔭 (𝐽/Q) ⊆ H1 (Q, 𝐽 [𝔭]; 𝑆) ⊆ Q( 3√5) ({3}, 3) × Q(𝜇3) ({3}, 3)

and that Sel(𝜓) ⊆ Q({5, 17}, 3) maps into the first factor by the obvious map. (Compare Section 6 of
[93]; one can check that the algebra that is called D there is a product of two copies of Q( 3√5).) Since
any element involving 17 will have image ramified at 17, this shows that actually, Sel(𝜓) ⊆ Q({5}, 3)
(we even have equality here, since we know the map to Sel𝔭 (𝐽/Q) has one-dimensional kernel), thus
improving the bound by 1, which is sufficient to conclude.

Examples 6.6. We now consider the cases listed under (iii) above. For both pairs (𝑁, 𝑝), we can use
the strict bound in proposition 6.1. The non-strict bound for dimX(𝐽/Q) [𝔭] is 2 in both cases.

In the first case, (7 ·19, 3) for the curve in isogeny class 133d, we use ℓ = 7. Here, 𝑐7 = 3 and 𝑐19 = 1,
so the first condition is that Q({7}, 3) → Q×

7 /Q×3
7 is nontrivial, which is clearly the case. The second

condition is that Q(𝜇3) ({3, 7, 19}, 3) (1) → Q×
7 /Q×3

7 is surjective, which follows from the fact that Q7
does not contain a primitive ninth root of unity. So both conditions are satisfied, and the bound can be
improved to dimX(𝐽/Q) [𝔭] ≤ 1, which is sufficient to conclude that X(𝐽/Q) [𝔭] = 0 by lemma 6.3.

We now consider (52 ·11, 5) for the curve in isogeny class 275a. Here, we use ℓ = 11. Both Tamagawa
numbers are 1, so the first condition is that Q({5}, 5) → Q×

11/Q×5
11 is nontrivial. This follows from the

fact that 5 is not a fifth power in F11. The second condition is that Q(𝜇5) ({5, 11}, 5) (1) → Q×
11/Q×5

11 is
surjective. This follows in the same way as for the previous example. So we can again reduce the bound
by 1 and obtain that X(𝐽/Q) [𝔭] = 0.

We note that with some more work, one can show that in both these cases, we have Sel(𝜓) = 0.

The remaining cases (where 𝜌ss
𝔭 splits into two nontrivial characters) come from the following pairs

of level (+ isogeny class) and prime.

(125𝑎, 5), (147𝑎, 7), (245𝑎, 7), (250𝑎, 5), (275𝑏, 3)
(289𝑎, 3), (289𝑎, 17), (375𝑎, 5), (841𝑎, 29).

Examples 6.7. We consider the curve at level 𝑁 = 125 = 53 and 𝔭 = 〈
√

5〉. According to example 2.20,
(1), we have 𝜌𝔭 � 𝜒2

5 ⊕ 𝜒3
5 . This implies that

Sel𝔭 (𝐽/Q) ⊆ Q(𝜇5) ({5}, 5) (−1) ⊕ Q(
√

5) ({5}, 5) (2) ,

where the superscript (𝑚) indicates that the action is via 𝜒𝑚
5 . One finds easily that the first summand is

trivial and the second has dimension 1. Since the O-rank of 𝐽 (Q) is 1, we obtain the bound

dimF5 X(𝐽/Q) [
√

5] ≤ 0 + 1 − 1 = 0,

so X(𝐽/Q) [
√

5] = 0.
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Similarly, for the curves at levels 2 · 53 and 3 · 53, we have (for 𝔭 = 〈
√

5〉) that 𝜌ss
𝔭 � 𝜒2

5 ⊕ 𝜒3
5 . Since 2

and 3 are primitive roots mod 5, we still have that Q(𝜇5) ({𝑞, 5}, 5) (−1) is trivial and Q(
√

5) ({𝑞, 5}, 5) (1)
is one-dimensional, where 𝑞 = 2 or 3. This gives the bound

dimF5 X(𝐽/Q) [
√

5] ≤ 0 + 1 − rkO 𝐽 (Q) ≤ 1

(the rank is zero for the curve at level 2 · 53 and one for the curve at level 3 · 53), which again suffices to
conclude that X(𝐽/Q) [

√
5] = 0.

The two pairs (𝑁, 𝑝) = (172, 17) and (292, 29) can be dealt with in a similar way as (𝑁, 𝑝) = (53, 5).

Examples 6.8. We now consider (𝑁, 𝑝) = (3 ·72, 7) and (5 ·72, 7). In both cases, O = Z[
√

2], and 𝜌𝔭 is
reducible for exactly one of the two prime ideals above 7, with 𝜌ss

𝔭 � 𝜒3
7 ⊕ 𝜒4

7 . The two relevant groups
are Q(𝜇7)+({𝑞, 7}, 7) (4) and Q(

√
−7) ({𝑞, 7}, 7) (3) , with 𝑞 = 3 or 𝑞 = 5. Since both are primitive roots

mod 7, q does not contribute to the relevant eigenspaces, and it is easy to see that the first group has
dimension 1, whereas the second one is trivial. The O-rank is 1 in both cases, which directly shows that
X(𝐽/Q) [𝔭] = 0.

Examples 6.9. For (𝑁, 𝑝) = (172, 3), we have 𝜌ss
𝔭 � 𝜀17 ⊕ 𝜀−3·17, where 𝜀𝑚 denotes the quadratic

character mod m. This is one of two cases in our examples where the two characters are not powers of
𝜒𝑝 . The two relevant groups are Q(

√
−3 · 17) ({3, 17}, 3)−, which is trivial, and Q(

√
17) ({3, 17}, 3)−,

which has dimension 1. The O-rank is 1, which directly gives that X(𝐽/Q) [𝔭] = 0.
The other similar case is (𝑁, 𝑝) = (52 · 11, 3), where 𝜌ss

𝔭 � 𝜀5 ⊕ 𝜀−3·5, and we obtain the same bound
with a similar argument. (Note that 5 and 11, like 17, are primitive roots mod 3.)

Examples 6.10. There are three ‘Wang only’ curves for which a 𝔭-descent is necessary – namely,

(i) Curve 117B with 𝔭 | 7,
(ii) Curve 125B with 𝔭 | 5, and

(iii) Curve 175 with 𝔭 | 5.

In all cases, we have to show that X(𝐽/Q) [𝔭] = 0.
In case (i), we have an exact sequence

0 −→ 𝜀−3 −→ 𝐽 [𝔭] −→ 𝜀−3 · 𝜒7 −→ 0.

This case can be dealt with in a similar way as in Examples 6.8; we obtain dimX(𝐽/Q) [𝔭] ≤ 1.
In case (ii), 𝐽 [𝔭] � 1 ⊕ 𝜒5 is split. It can be dealt with similarly to Examples 6.7, leading again to

dimX(𝐽/Q) [𝔭] ≤ 1.
Finally, in case (iii), we have a non-split exact sequence

0 −→ 1 −→ 𝐽 [𝔭] −→ 𝜒5 −→ 0,

and 𝔭 = 〈
√

5〉. The non-strict bound from proposition 6.1 gives us only dimX(𝐽/Q) [𝔭] ≤ 2: we have
Sel(𝜑) ⊆ Q(𝜇5) ({5, 7}, 5) (1) = Q(𝜇5) (∅, 5) (1) , which has dimension 1, and Sel(𝜓) ⊆ Q({5, 7}, 5) of
dimension 2. We can improve the bound using remark 6.2. The functions

(8𝑥5 + 5𝑥4 + 15𝑥3 + 30𝑥2 + 15𝑥 + 4) ± (6𝑥2 + 𝑥 − 2)𝑦
(𝑥 − 𝑎)5

for 𝑎 ∈ {0,±1,±2,∞} (where we set 1/(𝑥 − ∞)5 := 1) form a suitable set of descent functions on the
model

𝑋 : 𝑦2 = 𝑥6 − 2𝑥5 − 3𝑥4 − 6𝑥3 − 14𝑥2 − 8𝑥 − 3
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of the curve, so in fact, Sel(𝜓) ⊆ Q({7}, 5) has dimension at most 1, which is enough to conclude that
X(𝐽/Q) [𝔭] = 0. (In fact, dim Sel(𝜓) = 1, since evaluating a suitable descent function on a point of
order 5 gives 72, which is a fifth power in Q5, but nontrivial in Q×

7 /Q×5
7 .)

7. Bounding X(𝐽/Q) [𝔭∞] using Iwasawa Theory

The Main Conjectures for modular forms in Iwasawa Theory imply the p-part of strong BSD under
certain conditions when the L-rank is 0 or 1; see theorem 7.3 below and [21]. For fixed p of good ordinary
reduction, we can also compute an approximation to the p-adic L-function and use the known results
on the p-adic BSD conjecture (see theorem 7.6 below) to determine or at least bound the p-valuation of
the order of X; this works even for higher rank, assuming Schneider’s conjecture on the nonvanishing
of the p-adic Schneider regulator (see [109]).

As we will only need these results in the case that p is a prime of good ordinary reduction that is
inert in Z[ 𝑓 ], we restrict to this situation in the following, although more general results are available,
which apply more generally in the case when there is exactly one prime ideal of Z[ 𝑓 ] lying above p.

This section generalizes [109] from elliptic curves to modular abelian varieties of arbitrary dimension.
The results in Sections 7.1 and 7.2 are not fully used in this paper but can be used to extend the verification
of strong BSD to examples not contained in our database.

Let f be a newform of level N with coefficient ring Z[ 𝑓 ]. We assume that 𝑎𝑝 ( 𝑓 ) is a p-adic unit
(i.e., that p is ordinary for f ). This implies that the Euler factor at p of f (equivalently, the characteristic
polynomial of the Frobenius at p on the associated compatible system of ℓ-adic Galois representations)
has exactly one root that is a p-adic unit; we denote this root by 𝛼. We use the following notation. Let
f be a newform and 𝔭 | 𝑝 a prime of Z[ 𝑓 ]. Let ℒ𝔭 ( 𝑓 , 𝑇) ∈ Q( 𝑓 )𝔭"𝑇# be the 𝔭-adic L-function of f
constructed in [5, §2.2]. If A is the abelian variety associated to f, ℒ𝔭 (𝐴,𝑇) =

∏
𝜎 : Z[ 𝑓 ]↩→R ℒ𝔭 ( 𝑓 𝜎 , 𝑇);

see [5, §2.3].

7.1. The Iwasawa–Greenberg Main Conjecture

We use the following known cases of the GL2 Iwasawa–Greenberg Main Conjecture.

Theorem 7.1 (Skinner–Urban, Skinner). Let 𝑓 ∈ 𝑆2(Γ0 (𝑁)) be a newform and 𝑝 > 2 be a prime with

(ord) 𝑣𝑝 (𝑁) ≤ 1 and |𝑎𝑝 ( 𝑓 ) |𝑝 = 1.

Let 𝔭 | 𝑝 be a finite place of Q( 𝑓 ) and Q∞ be the cyclotomic Z𝑝-extension of Q with Galois group
Γ := Gal(Q∞|Q). Let Λ := Z[ 𝑓 ]𝔭"Γ# be the Iwasawa algebra.

Assume that

(irr) 𝜌 𝑓 ,𝔭 is irreducible and
(♠) that there exists a prime 𝑞 ≠ 𝑝 with 𝑣𝑞 (𝑁) = 1 such that 𝜌 𝑓 ,𝔭 is ramified at q.

Then one has an equality

CharQ∞ ,Z[ 𝑓 ]𝔭 ( 𝑓 ) = (ℒ𝔭 ( 𝑓 , 𝑇))

of ideals in Λ. Here, CharQ∞ ,Z[ 𝑓 ]𝔭 ( 𝑓 ) is the characteristic ideal of the 𝔭-adic Selmer group of f over
Q∞ and ℒ𝔭 ( 𝑓 , 𝑇) is the 𝔭-adic L-function of f; both are defined in [107, §1.1].

Proof. See [107, Theorem 1] in the case 𝑣𝑝 (𝑁) = 0 and [106, Theorem A] in the case 𝑣𝑝 (𝑁) = 1 (by
reduction to [107] using Hida theory). (Note the footnote 1 in [106, p. 172], which says one can weaken
the condition that there exists an Z[ 𝑓 ]𝔭-basis of 𝑇 𝑓 with respect to which the image of 𝜌 𝑓 ,𝔭∞ contains
SL2 (Z𝑝) to condition (♠) for the Iwasawa Main Conjecture to hold integrally in [107, Theorem 1].) �
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Example 7.2. We expect that theorem 7.1 combined with the computation of ℒ𝔭 ( 𝑓 , 𝑇) can be used to
verify strong BSD for the Jacobian J of level 145 of the curve

𝐶 : 𝑦2 = 20𝑥5 − 19𝑥4 + 118𝑥3 − 169𝑥2 + 50𝑥 + 25

with EndQ(𝐽) � Z[
√

2]. Our algorithm gives us that #X(𝐽/Q)an = 1 and X(𝐽/Q) [𝔭] = 0 except
maybe for the two primes 𝔭 lying above 7. For them, one can compute the 𝔭-adic L-function using Sage.
(This curve is not contained in our dataset and is only an illustration of how the results in this section
can be used in the verification of the p-part of BSD when descent methods are impractical. It came
up in forthcoming work of Kaya–Masdeu–Müller–van der Put that computes Schneider regulators of
Mumford curves. A verification the p-adic BSD conjecture for this example up to high precision is likely
to be included in their article.)

7.2. Results on the p-part of BSD from Main Conjectures in Iwasawa Theory

We state a result that follows from Iwasawa Theory and shows that the p-part of BSD holds in the L-rank
0 case under fairly mild assumptions when p is inert in Z[ 𝑓 ]. Note that an explicit descent computation
is hard when p is inert and 𝜌 𝑓 , 𝑝 is irreducible, so this is useful to deal with such primes when our other
methods do not show that X(𝐴/Q) [𝑝∞] is trivial.
Theorem 7.3 (p-part of BSD in the L-rank 0 case). Let 𝐴/Q be a simple modular abelian variety
associated to a newform f of level N. Let 𝑝 > 2 be a prime inert in Z[ 𝑓 ] with
(ord) 𝑣𝑝 (𝑁) ≤ 1 and |𝑎𝑝 ( 𝑓 ) |𝑝 = 1.
Assume that

(irr) 𝜌 𝑓 , 𝑝 is irreducible and
(♠) that there exists a prime 𝑞 ≠ 𝑝 with 𝑣𝑞 (𝑁) = 1 such that 𝜌 𝑓 , 𝑝 is ramified at q.
If 𝐿(𝐴/Q, 1) ≠ 0, then the p-part of BSD holds for 𝐴/Q; that is,����𝐿(𝐴/Q, 1)

Ω𝐴

����
𝑝

=

����Tam(𝐴/Q) · #X(𝐴/Q) [𝑝∞]
#𝐴(Q)tors · #𝐴∨(Q)tors

����
𝑝

=
��Tam(𝐴/Q)

��
𝑝
·
��#X(𝐴/Q)

��
𝑝
.

Proof. This is [106, Theorem C] (the proof generalizes from elliptic curves to modular abelian varieties
because [106, Theorem B] is for general newforms, and p is inert in Z[ 𝑓 ]). Note that |#𝐴(Q)tors ·
#𝐴∨(Q)tors |𝑝 = 1 since 𝜌 𝑓 , 𝑝 is irreducible. �

Remark 7.4.
(i) We have restricted ourselves to inert primes for simplicity. (The results hold more generally if there

is exactly one prime above p.) The proofs for other primes 𝔭 would need to be adapted from the case
of elliptic curves, and one would need to define the algebraic factors in the strong BSD formula as
elements of Z[ 𝑓 ]𝔭 up to units. (It is likely that one can even define them up to squares of units over
the Heegner field as most terms are in fact squares.)

(ii) In the L-rank 1 case, there is [118, Theorem 10.3] for elliptic curves, which builds upon [118,
Theorem 9.3], which is for general newforms. These theorems have stronger assumptions than
theorem 7.3.

(iii) [19] proves the p-part in the L-rank 1 case for odd good ordinary primes p completely split in the
Heegner field K with 𝜌𝑝 reducible if 𝜌𝑝 |ss

𝐺𝐾
� 𝜑 ⊕ 𝜓 such that 𝜑|𝐺𝐾𝑣 , 𝜓 |𝐺𝐾𝑣 ≠ 1, 𝜒𝑝 for the places

𝑣 | 𝑝 of K. For example, this excludes the case 𝐴(𝐾) [𝑝] ≠ 0. The work of the first author and Mulun
Yin [60] removes the restriction on 𝜑 and 𝜓. Depending on [20] and [17], it also treats the L-rank 0
case and the case of bad multiplicative reduction. The introduction of [60] contains an example of a
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modular abelian surface over Q that illustrates the use of the results proved there to make a descent
computation for a torsion prime unnecessary.

(iv) The preprint [21] proves the p-part of strong BSD in the L-rank 0 and 1 cases also for p good
non-ordinary, but it assumes that the level N is squarefree.

(v) theorems 5.6 and 5.7 give X(𝐽/Q) [𝔭] = 0 under the assumptions there, but they do not prove the
p-part of BSD. theorem 7.3 does this, but not for non-inert primes or supersingular or bad additive
primes. Note that by the Sato–Tate conjecture, there are infinitely many p with 𝑎𝑝 = 0, and they can
be treated with [21] only when N is squarefree.

7.3. The p-adic BSD conjecture

We continue to assume that p is inert in Z[ 𝑓 ]. The coefficient of the leading term of ℒ𝑝 (𝐴,𝑇) at 𝑇 = 0
is denoted by ℒ∗

𝑝 (𝐴, 0). Recall from the introduction to this section that 𝛼 ∈ Z[ 𝑓 ]×𝔭 is the p-adic unit
root of the Euler factor of f at p. As in [5], the p-adic multiplier is

𝜀𝑝 (𝐴/Q) := NZ[ 𝑓 ]𝔭 |Z𝑝 (1 − 𝛼−1)2.

(Note that if 𝑎𝑝 = 1 and 𝑝 | 𝑁 , then 𝛼 = 1 and 𝜀𝑝 (𝐴/Q) = 0, so conjecturally there will be
an extra zero.) The p-adic regulator Reg𝑝 (𝐴/Q) is the determinant of the p-adic height pairing on
𝐴(Q) defined in [5, Definition 3.3]. According to a Conjecture of Schneider, Reg𝑝 (𝐴/Q) should be
nonzero, but this is not known in general. Assume 𝑝 > 2. Let 𝛾 ∈ 1 + 𝑝Z𝑝 be a topological generator,
the same as used in the construction of ℒ𝑝 (𝐴,𝑇). We take 𝛾 = 1 + 𝑝 in our computations. Let
Reg𝛾 (𝐴/Q) := Reg𝑝 (𝐴/Q)/log𝑝 (𝛾)𝑟 , where 𝑟 = rk 𝐴(Q). We then have the following p-adic version
of the BSD conjecture; see [5, Conjecture 1.4], generalizing [71].

Conjecture 7.5 (p-adic BSD conjecture). Let 𝐴/Q be a principally polarized modular abelian variety
and p a prime of good ordinary reduction for 𝐴/Q. Then

rk 𝐴(Q) = ord𝑇 =0 ℒ𝑝 (𝐴,𝑇)

and

ℒ∗
𝑝 (𝐴, 0) = 𝜀𝑝 (𝐴/Q) ·

#X(𝐴/Q) · Tam(𝐴/Q) · Reg𝛾 (𝐴/Q)
(#𝐴(Q)tors)2 .

We are interested in the size of the p-part of X(𝐴/Q), so it is sufficient to compare the p-adic
valuations of both sides.

The following result due to Schneider shows that the conjecture holds in some cases at least up to a
p-adic unit, but with ℒ𝑝 (𝐴/Q, 𝑇) replaced by the Iwasawa L-function ℒ

(1)
𝑝 (𝐴/Q, 𝑇) defined in [95,

§2]. Note that the latter is defined without using modularity, but in a more algebraic way.

Theorem 7.6. Let 𝐴/Q be a simple principally polarized modular abelian variety with associated
newform f. If

(i) p is a prime of good ordinary reduction,
(ii) such that the p-adic regulator Reg𝛾 (𝐴/Q) is nonzero, and

(iii) X(𝐴/Q) [𝑝∞] is finite,

then the p-adic BSD conjecture holds (up to a p-adic unit) for 𝐴/Q and ℒ
(1)
𝑝 (𝐴/Q, 𝑇):

The Iwasawa L-function ℒ
(1)
𝑝 (𝐴/Q, 𝑇) vanishes to order rk 𝐴(Q) at 𝑇 = 0, and its leading term has

p-valuation equal to that of

𝜀𝑝 (𝐴/Q) ·
#X(𝐴/Q) [𝑝∞] · Tam(𝐴/Q) · Reg𝛾 (𝐴/Q)

(#𝐴(Q)tors)2 .
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Proof. See [95, Theorem 2′]. �

We need to compare the two L-functions ℒ𝑝 (𝐴/Q, 𝑇) and ℒ
(1)
𝑝 (𝐴/Q, 𝑇).

Theorem 7.7. Let 𝑝 > 2 be a prime of good ordinary reduction for 𝐴/Q. Let 𝔭 be a prime ideal of
Z[ 𝑓 ] lying above p. Assume that the image of Gal(Q|Q(𝜇𝑝∞)) → AutZ[ 𝑓 ]𝔭 (𝑇𝔭𝐴) contains SL2 (Z𝑝)
(see Section 2.13). Then

ℒ
(1)
𝑝 (𝐴/Q, 𝑇) | ℒ𝑝 (𝐴/Q, 𝑇) ∈ Z[ 𝑓 ]𝑝"𝑇#.

Proof. See [58, Theorem 17.4 (3)]. �

Theorem 7.8. Let 𝑝 > 2 such that 𝑎𝑝 ( 𝑓 ) ∈ Z[ 𝑓 ]×𝑝 . Then

ord𝑇 =0 ℒ𝑝 ( 𝑓 , 𝑇) ≥ corkZ[ 𝑓 ]𝑝 Sel𝑝∞ (𝐴 𝑓 /Q) ≥ rkZ[ 𝑓 ] 𝐴 𝑓 (Q).

Here, the corank corkZ[ 𝑓 ]𝑝𝑀 of a discrete torsion Z[ 𝑓 ]𝑝-module is the Z[ 𝑓 ]𝑝-rank of its Z[ 𝑓 ]𝑝-
Pontrjagin dual.

Proof. See [58, Theorem 18.4]. �

Corollary 7.9. Let 𝐴/Q be a simple principally polarized modular abelian variety with associated
newform f. If

(i) 𝑝 > 2 is a prime of good ordinary reduction
(i) such that the p-adic regulator Reg𝛾 (𝐴/Q) is nonzero,

(iii) X(𝐴/Q) [𝑝∞] is finite,
(iv) the image of Gal(Q|Q(𝜇𝑝∞)) → AutZ[ 𝑓 ]𝑝 (𝑇𝑝𝐴) contains SL2 (Z𝑝), and
(v) ord𝑇 =0ℒ𝑝 ( 𝑓 𝜎 , 𝑇) ≤ rkO 𝐴(Q) for all 𝜎,

then equality holds in (7.9) and

𝑣𝑝 (#X(𝐴/Q) [𝑝∞]) ≤ 𝑣𝑝

( ∏
𝜎 ℒ∗

𝑝 ( 𝑓 𝜎 , 0) · (#𝐴(Q)tors)2

𝜀𝑝 (𝐴/Q) · Reg𝛾 (𝐴/Q) · Tam(𝐴/Q)

)
.

Proof. Combine theorems 7.6 to 7.8 . �

Note that [106, Theorems A and B] (with the case of good ordinary reduction coming from [107])
establishes equality up to units in Z[ 𝑓 ]𝑝"𝑇# in the ordinary case under some conditions like 𝜌𝑝 being
surjective.

So if we can compute the p-adic valuations of ℒ∗
𝑝 (𝐴, 0) and of Reg𝛾 (𝐴/Q), this result allows us to

bound the order of the p-part of X(𝐴/Q) from above. Note that we know by the results of Kolyvagin–
Logachëv and their extensions thatX(𝐴/Q) [𝑝∞] is finite in the cases of interest, so the main assumption
is that p is a prime of good ordinary reduction. When the L-rank is zero, then the p-adic regulator is 1,
so it remains to compute ℒ𝑝 (𝐴,𝑇). We explain in the next subsection how to do this. When the L-rank
is 1, we also need to compute the p-adic height pairing. In the case that p is a prime of good ordinary
reduction for the Jacobian of a genus 2 curve, this is accomplished in [5, §3.4]; see also [48].

7.4. Computing approximations to p-adic L-functions

We use Greenberg’s improvement [49] of the Pollack–Stevens algorithm [84] to compute the p-adic
L-function of a newform f with 𝑎𝑝 ( 𝑓 ) a p-adic unit. Our Magma implementation is based on that of
Darmon–Pollack [36] with their Magma code available at [35]. We modified the code so that it also
works with newforms with arbitrary coefficient rings, accepts newforms as input and outputs the p-adic
L-function as a p-adic power series to any specified precision for the uniformizer 𝜋 of O𝔭 and T. For
performance reasons, we specialized to weight 𝑘 = 2.

https://doi.org/10.1017/fms.2024.133 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.133


72 T. Keller and M. Stoll

7.4.1. Computing the p-stabilization of 𝜑 𝑓 if 𝑝 � 𝑁 .
The construction of the p-adic L-function via the overconvergent modular symbol algorithm of [49, 84]
needs 𝑣𝑝 (𝑁) = 1. In the case that 𝑝 � 𝑁 is a good ordinary prime, one has to p-stabilize f to a form of
level 𝑁𝑝 with the same 𝑇ℓ -eigenvalues as f and 𝑈𝑝-eigenvalue the unit root of 𝑇2−𝑎𝑝 ( 𝑓 )𝑇 + 𝑝. Note that
the p-adic L-function is defined with respect to that (p-stabilized if 𝑝 � 𝑁) lift; see [6, §§4.1, 4.2, 4.4].

Recall that 𝑎𝑝 ( 𝑓 ) ∈ Z[ 𝑓 ]×𝔭 . If 𝑝 � 𝑁 , let 𝛼 ∈ Z[ 𝑓 ]×𝔭 be the unit root of 𝑇2 − 𝑎𝑝 ( 𝑓 )𝑇 + 𝑝. Let 𝛽 be the
other root. We then p-stabilize in the sense that we replace f by its p-stabilization 𝑓𝛼 (𝑧) = 𝑓 (𝑧)−𝛽 𝑓 (𝑝𝑧)
of level 𝑁𝑝 with the same Hecke eigenvalues away from p. Otherwise (i.e., if 𝑣𝑝 (𝑁) = 1), we can directly
use the algorithm of [49, 84] to compute a lift. (The reason for the p-stabilization is that the distribution
property for the modular symbol follows if it is an eigenvector under the 𝑈𝑝-operator, but not under the
𝑇𝑝-operator.)

7.4.2. Modular symbols.
Let Δ0 be the left Z[GL2(Q)]-module Div0(P1 (Q)), where GL2(Q) acts via fractional linear transfor-
mations on P1(Q). We write an element [𝑠] − [𝑟] of Δ0 with 𝑟, 𝑠 ∈ P1 (Q) as {𝑟 → 𝑠}.

Consider the monoid

Σ0(𝑝) :=
{(

𝑎 𝑏
𝑐 𝑑

)
∈ Mat2(Z) : (𝑎, 𝑝) = 1, 𝑝 | 𝑐, 𝑎𝑑 − 𝑏𝑐 ≠ 0

}
.

Note that because 𝑝 | 𝑁 , Γ0(𝑁) ⊆ Σ0(𝑝). Let V be a right Σ0(𝑝)-module with the action of 𝑆 ∈ Σ0(𝑝)
on 𝑣 ∈ 𝑉 denoted by 𝑣 |𝑆. Then the Hecke operators

𝑇ℓ :=
(
ℓ 0
0 1

)
+

ℓ−1∑
𝑎=0

(
1 𝑎
0 ℓ

)
∈ Z[Σ0 (𝑝)], ℓ ≠ 𝑝 prime,

and

𝑈𝑝 :=
𝑝−1∑
𝑎=0

(
1 𝑎
0 𝑝

)
∈ Z[Σ0 (𝑝)]

act on V on the right, making it into a Hecke module. (The matrices constituting 𝑇ℓ ,𝑈ℓ are in Σ0(𝑝),
but not in Γ0(𝑁).) In Magma, the elements of Δ0 are called the modular symbols of Γ0(𝑁), but we refer
to the elements of the module

SymbΓ0 (𝑁 ) (𝑉) := HomZ[Γ0 (𝑁 ) ] (Δ0, 𝑉)

as the V-valued modular symbols. The abelian group HomZ(Δ0, 𝑉) is a right Z[Γ0 (𝑁)]-module, and
we write the action similarly as 𝜑|𝑆. Spelled out explicitly, the Γ0(𝑁)-equivariance means that for
𝜑 ∈ SymbΓ0 (𝑁 ) (𝑉) one has 𝜑|𝑆 = 𝜑 (i.e., 𝜑(𝑆{𝑟 → 𝑠}) |𝑆 = 𝜑{𝑟 → 𝑠} for {𝑟 → 𝑠} ∈ Δ0 and
𝑆 ∈ Γ0(𝑁)). Then SymbΓ0 (𝑁 ) (𝑉) is a right Hecke module via the left action on Δ0 and the right action
on V.

7.4.3. Computing the canonical periods (Ω±
𝑓 𝜎 )𝜎 attached to f.

We have to find canonical periods of { 𝑓 𝜎} as defined in [5, §2], unique up to Z[ 𝑓 ]×. We compute an
approximation of the periods (Ω±

𝑓 𝜎 )𝜎 with 𝜎 : Q( 𝑓 ) ↩→ R as follows: We compute the period integrals

𝑝±
𝑓 𝜎 (𝑟) := 𝝅𝑖

( ∫ 𝑖∞

𝑟
𝑓 𝜎 (𝑧) 𝑑𝑧 ±

∫ 𝑖∞

−𝑟
𝑓 𝜎 (𝑧) 𝑑𝑧

)
(i.e., over the path {𝑟 → ∞} ∈ H1(𝑋0 (𝑁) (C), {cusps}; Z)) for a finite set of 𝑟 ∈ Q such that the
{𝑟 → ∞} generate Δ0 as a Γ0(𝑁)-module to a high enough precision. By [5, §2.1, Theorem 2.2
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and 2.4], there are canonical periods (Ω±
𝑓 𝜎 )𝜎 attached to f such that 𝑝±

𝑓 𝜎/Ω
±
𝑓 𝜎 ∈ Q( 𝑓 ) and ‘being

compatible with twists’, (for a precise formulation see [5, Theorem 2.2]).
By [5, text after Remark 2.6], there is a 𝑏 ∈ Q( 𝑓 )× such that (Ω±

𝑓 𝜎 )𝜎 = (𝜎(𝑏)𝑝±
𝑓 𝜎 (𝑟))𝜎 . We

approximate a representative vector of an equivalence class (Ω±
𝑓 𝜎 )𝜎 . To compute the period integrals

𝑝±
𝑓 𝜎 (𝑟), we combine (4.2) (and the equation before it) and lemma 4.9 and get

Ω𝐽/Q =
𝑐 𝑓 𝑐𝜋√

disc Z[ 𝑓 ]
· # coker 𝜋R

#ker𝜋R
·
���∏

𝜎

Ω+
𝑓 𝜎

���.(7.1)

We compute Ω𝐽/Q as in lemma 3.7, 𝑐 𝑓 𝑐𝜋 as in lemma 3.6, and #coker𝜋R, #ker𝜋R as described in
Section 3.1. In fact, since the latter two constants are powers of 2, we do not need to compute them if
𝑝 ≠ 2. Since we work with a Z-basis (𝑔𝑖) of 𝑆2 ( 𝑓 , Z), there is no factor

√
disc Z[ 𝑓 ] when we replace∏

𝜎 Ω+
𝑓 𝜎 by the corresponding product for the (𝑔𝑖).

Assuming that Equation (7.1) holds, the canonical periods are unique up to 𝜎(𝑏) for some 𝑏 ∈ Z[ 𝑓 ]×𝔭 .
So the 𝔭-adic valuation of the leading term of the p-adic L-function is uniquely determined.

7.4.4. The modular symbol 𝜑 𝑓 .
The modular symbol associated with f is 𝜑 𝑓 ∈ HomZ[Γ0 (𝑁 ) ] (Δ0, Q( 𝑓 )), where Q( 𝑓 ) is a trivial
Γ0(𝑁)-module. It is defined as 𝜑 𝑓 {𝑟 → ∞} = 𝑝+

𝑓 (𝑟)/Ω
+
𝑓 + 𝑝−

𝑓 (𝑟)/Ω
−
𝑓 ∈ Q( 𝑓 ) and by extension

𝜑 𝑓 {𝑟 → 𝑠} = 𝜑 𝑓 {𝑟 → ∞} − 𝜑 𝑓 {𝑠 → ∞} to all paths between cusps 𝑟, 𝑠 ∈ P1 (Q). It is enough to
know 𝜑 𝑓 on a finite set of generators of Δ0 as a Z[Γ0(𝑁)]-module, which can be obtained via Manin
symbols [31, §§2.2, 2.3].

7.4.5. Overconvergent modular symbols and p-adic L-functions.
Let 𝔭 | 𝑝 be a prime ideal of Z[ 𝑓 ] inducing an embedding of Q( 𝑓 ) into the completion Q( 𝑓 )𝔭.
To approximate the distribution 𝐿𝔭 ( 𝑓 ) (see [84, §6.2]) and its associated power series ℒ𝔭 ( 𝑓 , 𝑇), we
implemented Greenberg’s improvement [49] of Pollack–Stevens’s computation of an overconvergent
modular eigenlift of the modular symbol 𝜑 𝑓 ∈ SymbΓ0 (𝑁 ) (Q( 𝑓 )) (see [84, §6.3]).

For the following, see [84, §3.1] and [49, §1]. For 𝑟 ∈ |C×
𝑝 |𝑝 , define 𝒜 [𝑟] (Q( 𝑓 )𝔭) to be the Q( 𝑓 )𝔭-

Banach space of Q( 𝑓 )𝔭-affinoid functions on

𝐵[Z𝑝 , 𝑟] := {𝑧 ∈ C𝑝 : ∃𝑎 ∈ Z𝑝 with |𝑎 − 𝑧 |𝑝 ≤ 𝑟}

endowed with the supremum norm. Let

𝒜†(Z𝑝) := lim−−→
𝑠>1

𝒜 [𝑠] (Q( 𝑓 )𝔭),

endowed with the colimit topology, denote the algebra of Q( 𝑓 )𝔭-overconvergent functions on 𝐵[Z𝑝 , 1].
The overconvergent distributions 𝒟†(Q( 𝑓 )𝔭) are defined as its continuous Q( 𝑓 )𝔭-linear dual endowed
with the strong topology.

7.4.6. The strategy to compute the distribution 𝐿𝔭 ( 𝑓 ).
We abbreviate Γ0(𝑁) by Γ in the following. The method of constructing the 𝔭-adic L-function 𝐿𝔭 ( 𝑓 )
of f as a distribution is summarized in the following diagram. Here, SymbΓ (Q( 𝑓 )) [ 𝑓 ] denotes the
subspace of SymbΓ (Q( 𝑓 )) on which the Hecke operators 𝑇𝑛 with 𝑝 � 𝑛 act as multiplication by 𝑎𝑛 ( 𝑓 ),
and the superscript ‘𝑈𝑝 = 𝛼’ means the subspace where the Hecke operator 𝑈𝑝 acts as multiplication

https://doi.org/10.1017/fms.2024.133 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.133


74 T. Keller and M. Stoll

by the unit root eigenvalue 𝛼 of the characteristic polynomial at p.

SymbΓ (𝒟†(Q( 𝑓 )𝔭)) [ 𝑓 ]𝑈𝑝=𝛼 𝒟†(Q( 𝑓 )𝔭)

SymbΓ (Q( 𝑓 )) [ 𝑓 ]𝑈𝑝=𝛼 Q( 𝑓 )𝔭

Φ 𝑓 ↦→Φ 𝑓 {0→∞}=𝐿𝔭 ( 𝑓 )

𝜌∗� 𝐿𝔭 ( 𝑓 ) ↦→
∫

Z×
𝑝

1𝐿𝔭 ( 𝑓 )

𝜑 𝑓 ↦→𝜑 𝑓 {0→∞}

To compute the distribution 𝐿𝔭 ( 𝑓 ), we start with 𝜑 𝑓 in the lower left corner and lift it via the algo-
rithm described below to a distribution valued modular symbol Φ 𝑓 ; this is the left vertical isomorphism.
Then 𝐿𝔭 ( 𝑓 ) is the evaluation Φ 𝑓 {0 → ∞} (i.e., the image under the top horizontal morphism).

7.4.7. Computing the modular symbol 𝜑±
𝑓 attached to f.

Knowing the canonical periods, we can compute 𝜑±
𝑓 {𝑟 → 𝑠} with 𝑟, 𝑠 ∈ P1(Q) as described in [117]

by computing the corresponding period integrals for all 𝑓 𝜎 and dividing by Ω±
𝑓 𝜎 and recognizing the

elements in Q( 𝑓 ) using that ∏
𝜎

(𝑋 − 𝜑±
𝑓 𝜎 {𝑟 → 𝑠}) ∈ Q[𝑋]

has rational coefficients with the denominator of the coefficient of 𝑋 [Q( 𝑓 ):Q]−𝑛 bounded by (4𝑔 · 𝑐 𝑓 𝑐𝜋 ·
#𝐽 (Q)tors)𝑛; see Section 4.2 and [117, Prop. 1].

One can compute the modular symbol associated to f up to a factor in Q( 𝑓 ) with Magma. (Note
that one has to take a suitable Q( 𝑓 )-linear combination because Magma takes a basis of 𝑆2 ( 𝑓 , Z).)
Hence, alternatively, one can compute this factor by comparing with our above computation for some
𝜑 𝑓 {𝑟 → 𝑠} ≠ 0 and scale.

7.4.8. Determining the required p-adic precision for the desired T-adic precision of ℒ𝑝 ( 𝑓 , 𝑇).
Note that a distribution 𝜇 ∈ 𝒟†(Q( 𝑓 )𝔭) is uniquely determined by its moments 𝜇(𝑥 𝑗 ), 𝑗 ≥ 0. We
represent a distribution in an approximation module A𝑀𝒟†(Z[ 𝑓 ]𝔭) by storing its j-th moment up to
precision 𝑀 + 1 − 𝑗 (i.e., as an element of Z[ 𝑓 ]𝔭/𝔭𝑀+1− 𝑗 ). To be able to compute lifts, we store the 0-th
moment up to the final precision.

To ensure the moments we consider are integral, we do the following: According to [84, Corollary
7.6, §8.3 3], to obtain a precision of 𝑛𝑝-adic digits, one needs to compute with a precision M satisfying

𝑀 − &log(𝑀 + 2)/log 𝑝' − 1 ≥ 𝑛.

We take m minimal with 𝑝𝑚 > 𝑀+1 and scale 𝜑 𝑓 by 𝑝𝑚+1. Then we perform M steps of the algorithm to
obtain the approximation to 𝑝𝑚+1Φ 𝑓 in A𝑀𝒟(Z[ 𝑓 ]𝔭). Finally, we divide by 𝑝𝑚+1.

7.4.9. Computing the lift Φ of 𝜑.
This is the key step in the computation of the p-adic L-function and a simplification of [84] due to
Greenberg [49], with the additional non-critical slope assumption, which is satisfied if there is a unit
root of the characteristic polynomial of p-Frobenius.

Let 𝜑 ∈ SymbΓ (Q( 𝑓 )) [ 𝑓 ]𝑈𝑝=𝛼 be a Hecke eigensymbol. The action of 𝛾 =
(
𝑎 𝑏
𝑐 𝑑

)
with 𝑝 | 𝑐

and 𝑝 � 𝑎 on a distribution 𝜇 is given by (𝜇 |𝛾) ( 𝑓 ) = 𝜇(𝛾 · 𝑓 ), where 𝛾 acts on the function f as
(𝛾 · 𝑓 ) (𝑧) = (𝑎 + 𝑐𝑧)2 · 𝑓 ( 𝑏+𝑑𝑧𝑎+𝑐𝑧 ).

We start with (Φ)0 := 𝜑. To lift (Φ)𝑀 from SymbΓ0 (𝑁 ) (A𝑀𝒟†(Z[ 𝑓 ]𝔭)) to precision 𝑀 + 1, we
first lift all values on the finitely many generators of Δ0 (computed using Manin symbols) arbitrarily
to precision 𝑀 + 1. The resulting function will usually not be additive, Γ0 (𝑁)-equivariant or an 𝑈𝑝-
eigensymbol anymore, but it will be after we apply the operator 𝑈𝑝 .

We stop after we have reached the precision from 7.4.8.
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7.4.10. Computing an approximation to the p-adic L-function from the distribution 𝐿𝔭 ( 𝑓 ).
To go from an approximation of 𝐿𝔭 ( 𝑓 ) to the power series ℒ𝔭 ( 𝑓 , 𝑇), we use the formulas in [84, §9].
The computation depends on the choice of a topological generator 𝛾 ∈ 1 + 𝑝Z𝑝 . We take 𝛾 = 1 + 𝑝 in
our computations.

7.5. Examples

The example below represents the only case where our other methods are not sufficient to compute
#X(𝐴/Q) [𝑝∞], so that we need to use p-adic L-functions. (Note that a 𝔭-descent would amount to a
full 3-descent in this case, which is not really feasible with current methods.)

Example 7.10. For the Jacobian J of the curve X of level 188 = 22 · 47 in our data set, the Tamagawa
product is 9 (we have 𝑐2 = 9 and 𝑐47 = 1); the prime 3 is inert in the endomorphism ring Z[(1+

√
5)/2].

To show that X(𝐽/Q) [3∞] = 0 in this case, we therefore compute the 3-adic L-function. Since 3 � 𝑁 ,
we have to 3-stabilize; see 7.4.1. Note that 𝑎3 ( 𝑓 ) = − 3+

√
5

2 is a 3-adic unit; hence, the reduction at 3 is
good ordinary. Then 𝜀3 (𝐽/Q) is a unit as well (since 𝛼 ≡ 𝑎3 ( 𝑓 ) � 1 mod 3).

We verify using propositions 2.58 and 2.59 that SL2 (Z3) is contained in the image of 𝜌 𝑓 ,3∞ .
The L-rank is 1 and 𝐽 (Q) � Z2. A computation of 3-adic heights shows that 𝑣3 (Reg3(𝐽/Q)) = 0.

Therefore, one has

𝑣3(Reg𝛾 (𝐽/Q)) = 0 − 𝑟 · 𝑣3 (log3(1 + 3)) = −2.

We thank Steffen Müller for computing the 3-adic regulator for us using the code described in [48].
Using the algorithm sketched above, we find that

ℒ3 (𝐽, 𝑇) = ℒ3( 𝑓 , 𝑇) · ℒ3 ( 𝑓 𝜏 , 𝑇)
= (𝑂 (33) + 𝑢𝑇 + 𝑂 (𝑇2)) · (𝑂 (33) + 𝑢′𝑇 + 𝑂 (𝑇2))

with 3-adic units 𝑢, 𝑢′, where 𝜏 is the nontrivial automorphism of Z[ 𝑓 ]. (The computation took 30
minutes and 214 MiB RAM on a AMD Ryzen 7 PRO 6850U.) Since rk 𝐽 (Q) = 2 and X(𝐽/Q) [3∞] is
finite, corkZ[ 𝑓 ]3 Sel3∞ (𝐽/Q) = 1, so corollary 7.9 shows that the vanishing order of ℒ3 (𝐽, 𝑇) at 𝑇 = 0
must be exactly 2 and that

𝑣3
(
#X(𝐽/Q) [3∞]

)
≤ 𝑣3

(∏
𝜎 1 · 1 · 1

1 · 3−2 · 9

)
= 0 ;

hence, X(𝐽/Q) [3∞] = 0.

8. Examples

8.1. Jacobians of genus 2 Atkin–Lehner quotients

Tables displaying the results for the Hasegawa curves can be found in [59].

8.2. All genus 2 curves with absolutely simple modular Jacobian from the LMFDB

We compute the analytic order of X using the results from Sections 3 and 4. It turns out that all of them
are 1, 2 or 4. We also discover some twists 𝐽𝐾 which have analytic order of X divisible by 32, 52 or 72.

It turns out that combining the information about the images of the residual Galois representations
from Section 2 with the Heegner indices from Section 3 (for a few examples, we have to use two Heegner
fields) and the Euler system from Section 5 prove that X(𝐽/Q) [𝔭] = 0 except in the following cases:
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◦ 𝑝(𝔭) = 2: these are dealt with in Section 6.1.
◦ Odd primes 𝔭 with 𝜌𝔭 reducible: these are dealt with in Section 6.2.
◦ One example with 𝑁 = 188 for which 3 | Tam(𝐽/Q) and 𝜌3 is irreducible: see example 7.10.

This completes the verification of strong BSD for all the 97 absolutely simple modular Jacobians in
the LMFDB.

The Heegner discriminants used in the computation were typically ≤ 51 in absolute value. The largest
Heegner discriminant used was −131 for the example of level 165. We needed two Heegner discriminants
in the examples of level 523 and 621. The Heegner point used in one of the examples of level 275 has
unusually large height (≈ 83.863). Computing the Heegner point and the Mordell–Weil group of the
Jacobian over the Heegner field are the most time-consuming computations in our verification.

8.3. Jacobians of the four remaining Wang curves

The Jacobians J of the four Wang curves of levels 65A, 117B, 125B and 175 (in the notation of [45])
also have analytic order of Sha in {1, 2, 4}. The remaining descent computations that are necessary to
finish the proof that #X(𝐽/Q) = #X(𝐽/Q)an in these cases are sketched in Examples 6.10.

A. An example with 7-torsion in X

In this appendix, which heavily relies on contributions by Sam Frengley, we verify strong BSD for a
genus 2 Jacobian J such that #X(𝐽/Q) = 72. This contrasts with the examples in our database, where
we always have #X(𝐽/Q) | 4.

A.1. Visibility

We first briefly recall some generalities about visibility of elements of Tate–Shafarevich groups of
abelian varieties, following, for example, [2, 3, 30, 43].

Let 𝐴1/𝐾 and 𝐴2/𝐾 be abelian varieties defined over a number field K. Suppose that there exist finite
Gal(𝐾 |𝐾)-submodules Δ1 ⊂ 𝐴1(𝐾) and Δ2 ⊂ 𝐴1(𝐾) equipped with an isomorphism 𝜑 : Δ1

∼−→ Δ2
of Gal(𝐾 |𝐾)-modules. Write 𝐴′

1 = 𝐴1/Δ1 and 𝐴′
2 = 𝐴2/Δ2 and let 𝜓1 : 𝐴1 → 𝐴′

1 and 𝜓2 : 𝐴2 →
𝐴′

2 be the quotient morphisms. The isomorphism 𝜑 induces an isomorphism on Galois cohomology
H1(𝐾,Δ1)

∼−→ H1 (𝐾,Δ2). We might hope that if enough ‘local coincidences’ occur at the bad primes,
then the 𝜓1 and 𝜓2-Selmer groups Sel(𝜓1) and Sel(𝜓2) may be isomorphic. In this case, if the order of
the group 𝐴1(𝐾)/𝜓1𝐴′

1 (𝐾) is smaller than the order of 𝐴2(𝐾)/𝜓2𝐴′
2(𝐾), the latter will contribute to a

discrepancy between the order of 𝐴1(𝐾)/𝜓1𝐴′
1(𝐾) and Sel(𝜓1), thereby ‘explaining’ some nontrivial

elements of X(𝐴1/𝐾) [𝜓1].
To make this idea precise, let Δ ⊂ (𝐴1 × 𝐴2) (𝐾) be the graph of the isomorphism 𝜑 and consider

the abelian variety 𝐵 = (𝐴1 × 𝐴2)/Δ . We have a pair of morphisms

𝜄 : 𝐴1 → 𝐴1 × 𝐴2 → 𝐵.

Definition A.1. We say that an element or subgroup of H1(𝐾, 𝐴1) is visible in B if it is contained in
the kernel of the homomorphism 𝜄∗ : H1(𝐾, 𝐴1) → H1(𝐾, 𝐵). We write Vis𝐵 H1 (𝐾, 𝐴1) (respectively
Vis𝐵 X(𝐴1/𝐾)) for the subgroup of H1(𝐾, 𝐴1) (respectively X(𝐴1/𝐾)) consisting of elements visible
in B.

We will use the following theorem (which is proved in [43, Theorem 2.2] (see also [2] and [3,
Appendix])), which we state in the case when 𝐾 = Q.

Theorem A.2. If 𝐴1(Q)/𝜑1𝐴′
1(Q) = 0, then the subgroup Vis𝐵 H1 (Q, 𝐴) is isomorphic to

𝐴2 (Q)/𝜑2𝐴′
2(Q). Moreover if #Δ is odd, and
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(i) all Tamagawa numbers of 𝐴1/Q and 𝐴2/Q are coprime to #Δ , and
(ii) the abelian variety B has good reduction at all primes dividing #Δ ,

then Vis𝐵 X(𝐴1/Q) � 𝐴2 (Q)/𝜑2𝐴′
2(Q).

A.2. The example

Let 𝐶/Q be the genus 2 curve given by the Weierstrass equation

𝐶 : 𝑦2 = −10(𝑥6 − 10𝑥5 + 32𝑥4 − 40𝑥3 + 38𝑥2 − 20𝑥 + 4).

Its Jacobian J is of GL2-type; the level is 𝑁 = 3200. This genus 2 curve is obtained, up to quadratic
twist, by specializing the family of genus 2 curves with

√
2-multiplication given by Bending [7, Theorem

4.1] at (𝐴, 𝑃, 𝑄) = (−10, 1,−5). This example was found by computing (for many such specializations)
twists 𝑋±

𝐽 [𝔭] (7) of the modular curve 𝑋 (7) whose K-points parameterize elliptic curves E equipped
with an isomorphism of Gal(𝐾 |𝐾)-modules 𝐽 [𝔭] � 𝐸 [7] (see, for example, [85, Section 4.4] for the
construction of these twists). The details of these calculations and further examples appear in the PhD
thesis of Sam Frengley [46] and in [47].

We begin by showing that the support of X(𝐽/Q) is contained in {7}.

Proposition A.3. The Jacobian J has O := EndQ(𝐽) � Z[
√

2] and 𝑟an = 0 = 𝑟 , 𝐽 (Q) = 0, Sel2(𝐽/Q) =
0, 𝑐2 = 𝑐5 = 1, and 𝐼Q(

√
−31) , 𝜋 = 7.

In particular, #X(𝐽/Q)an = 72, and #X(𝐽/Q) is a power of 7.

Proof. The endomorphism ring contains Z[
√

2] by construction of the curve. Since Z[
√

2] is the
maximal order of Q(

√
2), it follows that O � Z[

√
2]. A computation of the 2-Selmer group shows that

rk 𝐽 (Q) = 0 and X(𝐽/Q) [2∞] = 0. We check that 𝐿(𝐽/Q, 1) ≠ 0 by computing 𝐿(𝐽/Q, 1)/Ω𝐽 as
described in Section 4.2. The torsion subgroup of 𝐽 (Q) turns out to be trivial. The Tamagawa number
at 5 can be determined using van Bommel’s Magma code [11, §4.4]. However, Magma is unable to
compute a regular model at 2. So we computed a regular model by hand (see Sha7-curve.m for the
computation of 𝑐2) and found that the reduction type is [III∗2] in [79]. Note that this is also needed to
determine the power of 2 in the ‘compensation factor’ C in lemma 3.7, which we need for the computation
of #X(𝐽/Q)an = 72. Using the approach in Section 3, we find that 𝐼𝐾,𝜋 = 7 for 𝐾 = Q(

√
−31). As all

residual Galois representations are irreducible, the claim now follows from theorem 5.6. �

Lemma A.4. We have that #X(𝐽/Q) [7∞] | 72.

Proof. Note that 7 is split in the endomorphism ring O � Z[
√

2], so the Heegner index as an ideal of
O equals 𝔭 with 𝔭 one of the two prime ideals above 7. Using proposition 2.58, we find that the 𝔭-adic
Galois representations for these two primes have image GL2(Z7). Furthermore, 7 � ℎQ(

√
−31)𝑁 . Hence,

theorem 5.10 shows X(𝐽/𝐾) ↩→ (Z/7)2. Since [𝐾 : Q] = 2 is coprime to 7, we get X(𝐽/Q) ↩→
(Z/7)2. �

Applying theorem A.2, we can show the following.

Proposition A.5 (Sam Frengley). Let E be the elliptic curve with LMFDB label3200.a1 and Weierstrass
equation

𝐸 : 𝑦2 = 𝑥3 − 100𝑥 + 400.

There exists a prime 𝔭 | 7 in O such that 𝐽 [𝔭] � 𝐸 [7] as Gal(Q|Q)-modules. Moreover, if Δ ⊂ 𝐽 × 𝐸
is the graph of this isomorphism, then X(𝐽/Q) contains a subgroup isomorphic to (Z/7)2 which is
visible in the abelian threefold (𝐽 × 𝐸)/Δ .
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Proof. We first show that 𝐽 [𝔭] is isomorphic to 𝐸 [7] as a Gal(Q|Q)-module, following [43, Theorem
6.3]. Let K := 𝐽/{±1} be the Kummer surface of J given by the model in [18, Chapter 3] and let
𝑥𝐽 : 𝐽 → K be the quotient morphism. Similarly, let 𝑥𝐸 : 𝐸 → 𝐸/{±1} � P1 be the x-coordinate
morphism. Since the mod-7 Galois representation attached to 𝐸/Q is surjective, by [43, Proposition
6.1] to show that there exists a quadratic twist 𝐸𝑑/Q of 𝐸/Q such that 𝐽 [𝔭] is isomorphic to 𝐸𝑑 [7]
as a Gal(Q/Q)-module, it suffices to show that there exist points 𝑃 ∈ 𝐽 [𝔭] and 𝑄 ∈ 𝐸 [7] such that
Q(𝑥𝐽 (𝑃)) and Q(𝑥𝐸 (𝑄)) are isomorphic. Using the approach detailed in [43, Theorem 6.3], we give
an explicit degree 24 number field 𝐿/Q and equations for points 𝑥𝐽 (𝑃) ∈ K(𝐿) and 𝑥𝐸 (𝑄) ∈ P1 (𝐿)
which generate 𝐿/Q. For the computations, see the file congruence.m.

Finally, if 𝑑 ∈ Z is chosen to be squarefree, then d is divisible only by bad primes of E and C. As
discussed in [43, (5.2)], by [45, Section 2.1] or [72, Lemma 3], an isomorphism of Galois modules
𝐽 [𝔭] � 𝐸𝑑 [7] induces a congruence

𝑎𝑝 (𝐸𝑑)2 − 𝑡𝑝𝑎𝑝 (𝐸𝑑) + 𝑛𝑝 ≡ 0 mod 7.(A.1)

Here, 𝑡𝑝 = 𝑝 + 1 − 𝑁1 and 𝑛𝑝 = (𝑁2
1 + 𝑁2)/2 − (𝑝 + 1)𝑁1 − 𝑝, where 𝑁1 = #𝐶 (F𝑝) and 𝑁2 = #𝐶 (F𝑝2).

Note that E and C have bad reduction at 2 and 5 and good reduction at all other primes, and for each
integer 𝑑 ≠ 1 dividing 10, the congruence in (A.1) fails to hold at one of 𝑝 = 11, 17, or 23. It follows
that 𝐽 [𝔭] and 𝐸 [7] are isomorphic as Gal(Q|Q)-modules.

To show that X(𝐽/Q) contains a subgroup isomorphic to (Z/7)2, first note that the Tamagawa
numbers of 𝐸/Q are coprime to 7 and by proposition A.3 so are the Tamagawa numbers of 𝐽/Q. The
torsion subgroups of 𝐸/Q and 𝐽/Q are trivial, the rank of 𝐸/Q is 2, and the rank of 𝐽/Q is 0, again
by proposition A.3. It follows from Theorem A.2 that X(𝐽/Q) [7] contains a subgroup isomorphic to
(Z/7)2, which is visible in (𝐽 × 𝐸)/Δ . �

Combining these results, we obtain the following.

Theorem A.6. For J as above, we have #X(𝐽/Q)an = 72 = #X(𝐽/Q).

The computations with precision 462 took 57 hours and 3.3 GiB RAM on an MIT server running
Magma V2.28-3 provided to us by Andrew Sutherland. The log of N3200.m can be found in 3200.log.
The bottleneck was the computation of the Heegner point, which required 783700 Fourier coefficients
of the newform. (The remaining computations take less than 2 minutes.) Note that one must use 𝑐2 = 1
from proposition A.3 to obtain the correct value #X(𝐽/Q)an = 72; Magma cannot compute a regular
semistable model of the curve at 𝑝 = 2.

A.3. Further examples

One expects the existence of elements of order p in X in quadratic twists of 𝐴/〈𝑃〉, where 0 ≠ 𝑃 ∈
𝐴[𝑝] (𝐾) by [105].

Our computations of the analytic orders of Sha for the Jacobians J of the LMFDB examples with L-
rank 1 yield the following examples of twists of J by the first Heegner field such that there is nontrivial
p-torsion in Sha for some 𝑝 ∈ {3, 5, 7}. The number in parentheses indicates the index of the curve in
the list of LMFDB examples.

(30) The twist of the second curve with 𝑁 = 133 by 𝐷𝐾 = −31 has 𝐼𝐾 = 32 and #X(𝐽𝐾 /Q)an = 22 ·32.
(55) The twist of the first curve with 𝑁 = 275 by 𝐷𝐾 = −19 has 𝐼𝐾 = 3 and #X(𝐽𝐾 /Q)an = 22 · 32.
(57) The twist of the curve with 𝑁 = 289 by 𝐷𝐾 = −15 has 𝐼𝐾 = 3 and #X(𝐽𝐾 /Q)an = 22 · 32.
(74) The twist of the curve with 𝑁 = 523 by 𝐷𝐾 = −35 has 𝐼𝐾 = 32 and #X(𝐽𝐾 /Q)an = 22 · 34.
(77) The twist of the first curve with 𝑁 = 621 by 𝐷𝐾 = −11 has 𝐼𝐾 = 7 and #X(𝐽𝐾 /Q)an = 72.
(82) The twist of the curve with 𝑁 = 647 by 𝐷𝐾 = −11 has 𝐼𝐾 = 5 and #X(𝐽𝐾 /Q)an = 22 · 52.

To obtain these values, we computed #X(𝐽/𝐾)an for a Heegner field 𝐾 = Q(
√

𝐷) and use that
#X(𝐽/Q)an is a power of 2 for the LMFDB examples; hence, #X(𝐽𝐾 /Q)an and #X(𝐽/𝐾)an differ by
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a power of 2. By corollary 2.36, the set of 𝔭 � 2 with 𝜌𝐽/Q,𝔭 irreducible remains the same when 𝜌 is
restricted to 𝐺𝐾 . By lemma 4.21 and (4.6), the odd prime factors of Tam(𝐽𝐾 /Q) are those of Tam(𝐽/Q).

To also show that #X(𝐽𝐾 /Q) agrees with the analytic order of Sha, one has to compute
X(𝐽𝐾 /Q) [2∞], which our computation predicts to be (Z/2)2 in all of the above cases except the
curve with 𝑁 = 621. We verified this using the code from [44]. Thus, using theorems 5.7 and 5.10, the
remaining tasks for verifying strong BSD are as follows.

(30) Show that dimF𝔭 X(𝐽𝐾 /Q) [𝔭] = 0 and = 2 for the two prime ideals 𝔭 | 3, respectively.
(55) Show that dimF𝔭 X(𝐽𝐾 /Q) [𝔭] = 2 for one of the two prime ideals 𝔭 | 3. Since the Heegner index

as an O-ideal has norm 3, this shows X(𝐽𝐾 /Q) [𝔭] = 0 for the other 𝔭 | 3.
(57) Show that dimF𝔭 X(𝐽𝐾 /Q) [𝔭] = 2 for one of the two prime ideals 𝔭 | 3. Since the Heegner index

as an O-ideal has norm 3, this shows X(𝐽𝐾 /Q) [𝔭] = 0 for the other 𝔭 | 3. For one of them, one
can perform an isogeny descent.

(74) Show that X(𝐽𝐾 /Q) has a subgroup isomorphic to (Z/3)4; note that the prime 3 is inert in Z[ 𝑓 ].
(77) Show that dimF𝔭 X(𝐽𝐾 /Q) [𝔭] = 2 for one of the two prime ideals 𝔭 | 7. Since the Heegner index

as an O-ideal has norm 7, this shows X(𝐽𝐾 /Q) [𝔭] = 0 for the other 𝔭 | 7.
(82) Show that dimF𝔭 X(𝐽𝐾 /Q) [𝔭] = 2 for one of the two prime ideals 𝔭 | 5.
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