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In this paper, the problem of restoration of cloud contaminated optical images is studied in the
case when we have no information about brightness of such images in the damage region. We
propose a new variational approach for exact restoration of optical multi-band images utilising
Synthetic Aperture Radar (EOS – Spatial Data Analytics, GIS Software, Satellite Imagery – is a
cloud-based platform to derive remote sensing data and analyse satellite imagery for business and
science purposes) images of the same regions. We prove existence of solutions, propose an alternat-
ing minimisation method for computing them, prove convergence of this method to weak solutions
of the original problem and derive optimality conditions.

Keywords: Nonlinear programming, non-convex programming, applications of mathematical pro-
gramming, image processing (reconstruction), approximation methods in mathematical program-
ming.
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1 Introduction

It is well-known that optical satellite multi-band images have a high resolution and can be easily
captured by low-cost cameras. However, they are often corrupted because of poor weather condi-
tions, such as rain, clouds, fog and dust conditions. Moreover, it is a typical situation that the mea-
sure of degradation of optical images is such that it cannot even rely one brightness value being
available inside the damaged regions. As a result, some subdomains of such images become
absolutely invisible. Thus, in spite of the fact that in the literature there are many approaches to
the reconstruction of images when information of the colours is not everywhere available (see,
for instance, [23, 31, 37, 38, 40]), the traditional approaches to the exact restoration of damaged
optical images are no longer applicable in this case and it makes this problem challenging.
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However, in contrast to optical observations, radar images do not depend on reflected sunlight
and they can be used at night and under poor weather conditions. In the vegetation case, instead
of giving an indication on biophysical processes in the plant, the radar backscatter rather con-
tains information on the structure and moisture content of vegetation and the underlying soil.
Therefore, the fusion of Synthetic Aperture Radar (SAR) and optical images is very important
for classification of land cover [34] and estimation of soil moisture to remove vegetation cover
effects from radar backscattering coefficient [19, 20, 36]. At the same time, because of the dis-
tinct natures of SAR and optical images, there exist a huge radiometric difference between optical
and synthetic aperture of radar images.

It is well-known that different wavelengths encode different object properties, therefore lead-
ing to significant intensity differences between SAR and optical satellite images for the same
object. Because of this, it would be naive to suppose that the intensities in all spectral channels
of cloud contaminated optical images can be successfully recovered inside the damaged regions
at high level of accuracy through the corresponding intensities of the SAR images of this region.
At the same time, when dealing with optical and SAR images of some agricultural areas of
various shapes or/and farmland, it can be observed that the textures of such images have many
common features (see, for instance, [22]). Mainly inspired by this observation, we propose a new
variational model for exact restoration of the damaged multi-band optical satellite images using
results of their co-registration with SAR images of the same regions.

Let�⊂R
2 be a bounded image domain with Lipschitz boundary ∂�, and let D ⊂� be a Borel

set with non-empty interior and sufficiently regular boundary and such that |� \ D|> 0. We call
D the damage region of a given multi-band image �u0 = [

u1,0, u2,0, . . . , uM ,0
]t ∈ L2(� \ D; RM )

where the optical image �u0 is corrupted by clouds. As it was mentioned before, we deal with
the case where we have no information about the original image �u0 inside D. Instead of this,
we assume that a SAR image uSAR :�→R of the same region is given, and this image is well
co-registered with �u0 in� \ D. The problem is to reconstruct the intensities ui,0(x), i = 1, . . . , M ,
of the original multi-band image �u0 through a variational model starting from the knowledge of
SAR image on the subset D (the damaged region) together with the exact information of �u0 on
� \ D (the undamaged region).

Mostly motivated by the recent studies in this field [4] (see also [6, 7, 8, 9, 11] for compari-
son), we propose a new strategy for the restoration problem of cloud contaminated multi-band
optical images through their fusion with the corresponding SAR images of the same territory.
The variational approach we consider is inspired, in some sense, by the recent paper [4], where
the authors consider the minimisation of the following energy functional

u �→ 1

2
‖ (−�) s

2 u‖2
L2(�) + α

2
‖ (−�)− β

2 (u − g)‖2
L2(�) (1.1)

with 0< s< 1 and β ∈ [0, 1], where (−�)s denotes the fractional power of the Laplacian with
zero Neumann boundary conditions. Then, the first necessary and sufficient optimality condition
determines the unique minimiser u via

(−�)s u + α (−�)−β (u − g) = 0 in �,

∂νu = 0 on ∂�,

which is a linear elliptic partial differential equation that can be efficiently solved using, for
instance, the Fourier spectral method [3] or the Stinga-Torrea extension [35]. Since, from the
reconstruction point of view, it is desirable that the regularity of the solution to (1.1) is low in
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places in � where edges or discontinuities are present in u, and that is high in places where u is
smooth or contains homogeneous features, it is of interest to consider (1.1) where s :�→ [0, 1]
is not a constant. So, the choice of parameter s has a direct influence on the global regularity of
the solution to problem (1.1). However, the definition of the fractional Laplacian in terms of the
Caffarelli–Silvestre [10] or the Stinga–Torrea [39] extension is well-known only for a constant
s ∈ (0, 1), whereas such a result remains open when s(x) ∈ (0, 1) for x ∈�. So, there is no obvious
way how to correctly define the operator (−�)s(x) and for nowadays it looks as an open question.
For the details, we refer to [4].

In contrast to the standard setting of restoring colour damaged images where the starting
point is either the knowledge of the grey level of the original colour image �u0 on a given open
subset D of � (the damaged region) together with the exact information of �u0 on � \ D (the
undamaged region) or the grey level information in the damage region D ⊂� is modelled as a
nonlinear distortion of the colours, in this paper we deal with the case where we do not have any
information about �u0 inside D but instead we assume that a SAR image uSAR :�→R of the same
region is given. So, the purpose of this paper is to study the faithfulness of the reconstruction
following the proposed variational model and supply this approach by the rigorous mathematical
substantiation.

The paper is structured as follows. Section 2 contains some preliminaries and auxiliary results.
For other details related to Orlicz and variable exponent Sobolev spaces, we refer to Appendices
A–C. In Section 3, we begin with some key assumptions and after that we give a precise state-
ment of the restoration problem in the form of some constrained minimisation problems with
nonstandard growth energy functionals. We discuss the consistency issues of the proposed min-
imisation problems and the existence of the corresponding minimisers in Section 4. To prove the
existence result, mainly because of the specific form of the objective functional, we follow the
technique that was recently developed by the authors in [14, 15, 24].

In spite of the fact that the proposed minimisation problems are well-posed and possess good
approximating properties, their practical implementation to the restoration of real satellite images
is a tricky matter because of the non-convexity and complicated structure of the corresponding
optimality conditions. Therefore, our main intention in Section 5 is to present ‘an approximation
approach’, which is based on the concept of relaxation of extremal problems and their variational
convergence. With that in mind, we propose to pass to some relaxation of the original problem
using a special iterative algorithm. We show that at each step of the iteration procedure, we obtain
a strictly convex optimisation problem which admits a unique solution. It is established that the
so-defined sequence of approximations is precompact in some Hausdorff topology, and each
convergent subsequence leads to a weak solution of the original problem. Optimality conditions
for the relaxed version of a given restoration problem and their substantiation are studied in
Section 6. The experiments undertaken in this study (see Section 7) confirmed the efficacy of the
proposed method and revealed that it can acquire plausible visual performance and satisfactory
quantitative accuracy for agro scenes with rather complicated texture of background surface.

2 Preliminaries and some auxiliary results

We begin with some notation. For vectors ξ ∈R
N and η ∈R

N , (ξ , η)= ξ tη denotes the standard
vector inner product in R

N , where t denotes the transpose operator. The norm |ξ | is the Euclidean
norm given by |ξ | = √

(ξ , ξ ).
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Let �⊂R
2 be a bounded open set with a Lipschitz boundary ∂�. For any subset E ⊂�, we

denote by |E| its 2-dimensional Lebesgue measure L2(E). Let E denote the closure of E, and ∂E
stands for its boundary. We define the characteristic function χE of E by

χE(x) :=
{

1, for x ∈ E,

0, otherwise.

Let D ⊂� be a Borel set with non-empty interior and sufficiently regular boundary and such that
|� \ D|> 0. Let �u0 = [

u1,0, u2,0, . . . , uM ,0
]t ∈ L2(� \ D; RM ) be an image of interest, where each

coordinate represents the intensity of the corresponding spectral channel. We associate with �u0

the panchromatic image u (the so-called total spectral energy of �u)

u(x) = α1u1(x) + . . . αM uM (x). (2.1)

In particular, if we take into account in (2.1) just the weight coefficients for the RGB-channels
with

αR = 0.299, αG = 0.587, αB = 0.114,

then u can be interpreted as the luma component of �u and it represents the perceptual brightness
of the multispectral image �u :� \ D →R

M .
We assume that the multi-band image �u0 is corrupted by clouds, and D is the zone of missing

information. We call D the damage region. Since we have no information about the original
image u0 inside D, we assume that a SAR image uSAR :�→R of the same region is given, and
this image is well co-registered with u0 ∈ L2(� \ D; RM ) in � \ D. This means that there exists
an affine transformation F : R2 →R

2 of the form

F(x) = Bx + a, ∀ x ∈R
2, (2.2)

where

a =
[

a1

a2

]
and =

[
b11 b12

b21 b22

]

such that the SAR image after the affine transformation uSAR

(F−1(·)) and panchromatic image
u(·) could be successfully matched in � \ D (see [21] for the details).

We assume that the SAR image uSAR :�→R is a function of bounded variation, that is,
uSAR ∈ BV (�). Then, uSAR ∈ L2(�) and almost all level sets {x ∈� : uSAR(x) � λ} are sets of finite
perimeter. Hence, at almost all points of almost all level sets of uSAR ∈ BV (�) we can define a
normal vector θ (x). This vector field of normals θ (x) can be also defined as the Radon-Nikodym
derivative of the measure ∇uSAR with respect to |∇uSAR|, that is, it formally satisfies the following
relations

(θ , ∇uSAR)= |∇uSAR| and |θ |� 1 a.e. in �.

In the sequel, we will refer to the vector field θ as the vector field of unit normals to the
topographic map of the image uSAR.

Remark 2.1 In practice, at the discrete level, θ (x, y) can be defined by the rule
θ (xi, yj) = ∇uSAR(xi,yj)

|∇uSAR(xi,yj)| when ∇uSAR(xi, yj) �= 0, and θ = 0 when ∇uSAR(xi, yj) = 0. However,
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as was mentioned in [5], a better choice for θ (x, y) would be to compute it as θ = ξ (t) for
some small value of t> 0, where ξ (t) = ∇U(t,·)

|∇U(t,·)| and U(t,x,y) is a solution of the following
initial-boundary value problem with 1-Laplacian in the right hand side

∂U

∂t
= div

( ∇U

|∇U |
)

, t ∈ (0, +∞), (x, y) ∈�, (2.3)

U(0, x, y) = uSAR(x, y), (x, y) ∈�, (2.4)

∂U(0, x, y)

∂ν
= 0, t ∈ (0, +∞), (x, y) ∈ ∂�. (2.5)

As a result, for any t> 0, there can be found a vector field

ξ ∈ L∞(�; R2) with ‖ξ (t)‖L∞(�;R2) � 1

such that

(ξ (t), ∇U(t, ·))= |∇U(t, ·)| in �, ξ (t) · ν = 0 on ∂�, (2.6)

and Ut(t, x, y) = div ξ (t, x, y) in the sense of distributions on � for a.a. t> 0.
We notice that following this procedure, for small value of t> 0, we do not distort the geometry

of the function uSAR(x, y) in an essential way. Moreover, it can be shown that this regularisation
of the vector field θ satisfies condition div θ ∈ L2(�).

Since the main problem we are going to consider in this article is to reconstruct the original
multi-band image �u0 ∈ L2(� \ D; RM ) in the damage region D using the knowledge of geometri-
cal texture of the SAR image uSAR ∈ BV (�) on the subset D together with the exact information
about this image in� \ D (the undamaged region), we associate with each spectral channel of the
restored optical image �u = [u1, u2, . . . , uM ]t :�→R

M the so-called texture index pi :�→R

following the rule

pi(x) := F(ui(x)) = 1 + g (|(∇Gσ ∗ ui) (x)|) , ∀ x ∈�, ∀ i = 1, . . . , M , (2.7)

where g:[0, ∞) → (0, ∞) is an edge-stopping function which we take in the form of the Cauchy
law g(t) = 1

1+(t/a)2 with an appropriate a> 0, (∇Gσ ∗ ui) (x) denotes the convolution of function
ui with the two-dimensional Gaussian filter kernel Gσ ,

Gσ (x) = 1

2πσ 2
e
− |x|2

2σ2 , x ∈R
2, (2.8)

(∇Gσ ∗ ui) (x) :=
∫
�

∇Gσ (x − y)ui(y) dy, ∀ x ∈�. (2.9)

Here, the parameter σ>0 determines the spatial size of the image details which are removed
by this 2D filter. By default, we assume that the functions ui are extended by zero outside of
domain �.

As follows from (2.7), the magnitude g (|(∇Gσ ∗ ui) (x)|) is close to one at those points, where
the spectral intensity ui is slowly varying, and this value is close to zero at the edges of ui. In
view of this, the function pi(x) can be interpreted as a characteristic of texture of the image �u in
its i-th spectral channel. The following result plays a crucial role in the sequel.
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Lemma 2.1 Let {vk}k∈N ⊂ L∞(�) be a sequence of measurable non-negative functions such that
vk → v weakly-∗ in L∞(�) for some v ∈ L∞(�), and each element of this sequence is extended by
zero outside of �. Let {pk = 1 + g (|(∇Gσ ∗ vk)|)}k∈N be the corresponding sequence of texture
indices. Then,

pk(·) → p(·) = 1 + g (|(∇Gσ ∗ v) (·)|) uniformly in � as k → ∞,

α := 1 + δ � pk(x) � β := 2, ∀ x ∈�, ∀ k ∈N, (2.10)

with δ= a2

[
a2 + ‖Gσ‖2

C1(�−�)
sup
k∈N

‖vk‖2
L1(�)

]−1

. (2.11)

Proof. In view of the initial assumptions, the sequence {vk}k∈N is uniformly bounded in L1(�).
Hence, by smoothness of the Gaussian filter kernel Gσ , it follows that

|(∇Gσ ∗ vk) (x)|�
∫
�

|∇Gσ (x − y)| vk(y) dy � ‖Gσ‖C1(�−�)‖vk‖L1(�),

pk(x) = 1 + a2

a2 + (|(∇Gσ ∗ vk) (x)|)2

� 1 + a2

a2 + ‖Gσ‖2
C1(�−�)

‖vk‖2
L1(�)

, ∀ x ∈�,

where ‖Gσ‖C1(�−�) = max
z=x−y

x∈�,y∈�
[|Gσ (z)| + |∇Gσ (z)|]. Then, L1-boundedness of {vk}k∈N guarantees

the existence of a positive value δ ∈ (0, 1) (see (2.11)) such that estimate (2.10) holds true for all
k ∈N.

Moreover, as follows from the relations

|pk(x) − pk(y)|� a2

∣∣∣∣∣ |(∇Gσ ∗ vk) (x)|2 − |(∇Gσ ∗ vk) (y)|2(
a2 + |(∇Gσ ∗ vk) (x)|2) (

a2 + |(∇Gσ ∗ vk) (y)|2) ∣∣∣∣∣
�

2‖Gσ‖C1(�−�)‖vk‖L1(�)

a2
||(∇Gσ ∗ vk) (x)| − |(∇Gσ ∗ vk) (y)|| (2.12)

�
2‖Gσ‖C1(�−�)γ

2
1 |�|

a2

∫
�

|∇Gσ (x − z) − ∇Gσ (y − z)| dz,

∀ x, y ∈� with γ1 = sup
k∈N

‖vk‖L∞(�),

and smoothness of the function ∇Gσ (·), there exists a positive constant CG > 0 independent of k
such that

|pk(x) − pk(y)|� 2‖Gσ‖C1(�−�)γ
2
1 |�|CG

a2
|x − y|, ∀ x, y ∈�.

Setting

C := 2‖Gσ‖C1(�−�)γ
2
1 |�|CG

a2
, (2.13)
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we see that

{pk(·)} ⊂S=
{

h ∈ C0,1(�)

∣∣∣∣∣ |h(x) − h(y)|� C|x − y|, ∀ x, y, ∈�,

1<α � h(·) � β in �.

}
Since maxx∈� |pk(x)|� β and each element of the sequence {pk}k∈N has the same modulus of
continuity, it follows that this sequence is uniformly bounded and equi-continuous. Hence, by
Arzelà–Ascoli Theorem the sequence {pk}k∈N is relatively compact with respect to the strong
topology of C(�). Taking into account the estimate (2.12) and the fact that the set S is closed
with respect to the uniform convergence and

(∇Gσ ∗ vk) (x) → (∇Gσ ∗ v) (x) as k → ∞, ∀ x ∈�
by definition of the weak-∗ convergence in L∞(�), we deduce: pk(·) → p(·) uniformly in � as
k → ∞, where p(x) = 1 + g (|(∇Gσ ∗ v) (x)|) in �. The proof is complete.

3 Problem statement

The problem of restoration of cloud contaminated optical images is to reconstruct the original
multi-band image �u0 in the damage region D using the exact information about this image in
� \ D (the undamaged region) and the texture (geometry) of the corresponding SAR image on
the subset D. We begin with the following key assumptions.

Assumption 1. The cloud contaminated optical image �u0 ∈ L2(� \ D; RM ) and the correspond-
ing SAR image uSAR ∈ BV (�) are rigidly co-registered.

Assumption 2. The intensities ui of all spectral channels for the retrieved image �u are subjected
to the constraints γ0,i � ui(x) � γ1,i a.a. in �, where

γ0,i = inf
x∈�\D

ui,0, γ1,i = sup
x∈�\D

ui,0. (3.1)

Assumption 3. The topographic maps for all spectral channels ui, i ∈ {1, . . . , M} of the
retrieved image �u = [u1, u2, . . . , uM ]t :�→R

M have a similar geometrical structure to the
topographic map of the SAR image uSAR ∈ BV (�) albeit these images can have very different
intensities.

As follows from Assumption 3, all spectral channels of the retrieved image should share
the geometry of the panchromatic SAR image uSAR in D. It means that, due to the property
uSAR ∈ BV (�), for almost all points of almost all level sets of uSAR we can define a vector field
θ ∈ L∞(�, R2) such that θ (x) has the direction of the normal to the level lines of uSAR (see Remark
2.1 for the details). Therefore, the counterclockwise rotation of angle π/2, denoted by θ⊥, repre-
sents the tangent vector to the level lines of uSAR. In this case, if the spectral channels of �u share
the geometry of the panchromatic image uSAR, we have(

θ⊥, ∇ui

) = 0 a.e. in D, ∀ i ∈ {1, . . . , M} . (3.2)

We say that a function �u = [u1, u2, . . . , uM ]t :�→R
M is the result of restoration of a cloud-

corrupted image �u0 : D →R
M if for given regularisation parameters μ>0, α>1, and λ>0, each
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spectral component ui is the solution of the following constrained minimisation problem with the
nonstandard growth energy functional

(Pi) Ji(v, p) :=
∫
�

1

p(x)
|Rη∇v(x)|p(x) dx + μ

α

∫
�\D

∣∣v(x) − u0,i(x)
∣∣α dx

+ λ

∫
D

∣∣∣ (
θ⊥, ∇v) ∣∣∣α dx −→ inf

(v,p)∈�i
, (3.3)

where

• �i stands for the set of feasible solutions to the problem (3.3) which we define as follows

�i =

⎧⎪⎪⎨⎪⎪⎩(v, p)

∣∣∣∣∣∣∣∣
v ∈ W 1,p(·)(�), p ∈ C(�),

1 � γ0,i � v(x) � γ1,i a.a. in �,

p(x) = F(v(x)) in �.

⎫⎪⎪⎬⎪⎪⎭
Here, W 1,p(·)(�) is the Sobolev-Orlicz space (for the details we refer to Appendix B),

F(v(x)) = 1 + g (|(∇Gσ ∗ v) (x)|) ,

and g:[0, ∞) → (0, ∞) is the edge-stopping function which we take it in the form
g(t) = 1

1+(t/a)2 ;

• θ ∈ L∞(D, R2) is a vector field such that

|θ (x)|� 1 and (θ (x), ∇uSAR(x))R2 = |∇uSAR(x)| a.e. in D;

• Rη∇v := ∇v − η2χD (θ , ∇v) θ stands for the so-called directional gradient (see [8, 9]), and
η ∈ (0, 1) is a given threshold;

• (Gσ ∗ v) (x) denotes the convolution of function v with the two-dimensional Gaussian filter
kernel Gσ .

Let us give a short motivation to the choice of the energy functional in the form (3.3). Since

Rη∇v = ∇v in � \ D and (1 − η2)|∇v|� |Rη∇v|� |∇v| in D (3.4)

with a given η ∈ (0, 1), it follows that this term can be considered as the regularisation in the
Sobolev-Orlicz space W 1,p(·)(�). On the other side, this term plays the role of a spacial data
fidelity. Indeed, the main goal, we are going to follow in the restoration problem, is to pre-
serve the following property: the geometry of each spectral channels in the damage zone of the
retrieved image should be as close as possible to the geometry of the SAR image. Formally, it

means that relations (3.2) have to be satisfied. Hence, the magnitude
∫

D

∣∣∣ (
θ⊥, ∇v) ∣∣∣α dx must

be small enough for each spectral channel, where θ stands for the vector field of unit normals
to the topographic map of the SAR image uSAR. In fact, we impose it in the energy functional
(3.3) in the form of the last term. However, in order to enforce this property, we observe that the
expression Rη∇v can be reduced to (1 − η2)∇v in those places of the damage region D where v
is collinear to the unit normal θ and to ∇v if ∇v is orthogonal to θ . Thus, gradients of the spectral
intensities that are aligned/collinear θ are favoured as long as |θ |> 0. Moreover, this property
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is enforced by the exponent p(x). In fact, the third term basically has a similar effect as the first
one, so, in some practical implementations it can be omitted.

Since p(x) ≈ 1 in places in � where edges or discontinuities are present in the spectral
channel v, and p(x) ≈ 2 in places where v(x) is smooth or contains homogeneous features, the
main benefit of the model (3.3) is the manner in which it accommodates the local image infor-
mation. For the places where the spectral gradient is sufficiently large (i.e. likely edges), we deal
with the so-called directional TV-based diffusion [8, 9], whereas the places where the gradi-
ent is close to zero (i.e. homogeneous regions), the model becomes isotropic. Specifically, the
type of anisotropy at these ambiguous regions varies according to the strength of the gradient.
This enables the model to have a much lower dependence on the approximation schemes for the
variable exponent p(x) and other thresholds. Apparently, the idea to involve a fractional norm
of W 1,p(·)(�) with a variable exponent p(x) was firstly proposed in [7] in order to reduce the
staircasing effect in the TV image restoration problem.

As for the second term in (3.3), it is the so-called data fidelity and it forces the minimiser v in
domain � \ D to stay as close as possible to the spectral intensity of the cloud corrupted image
�u0 : D →R

M .
Thus, the proposed model (3.3) provides a completely new approach to restoration of non-

smooth multi-band optical images �u0 with the gap in damage region. The main characteristic
feature of this model is that we involve into consideration the energy functional with nonstandard
growth where the edge information for restoration of �u0 ∈ L2(� \ D; RM ) in D is accumulated in
the variable exponent p(x) and in the directional gradients Rη∇ which we derive from the SAR
data. However, in contrast to [4, 11], we do not apply any selection procedure for approximation
of the variable exponent p(x) in (3.3).

We are now in a position to define what we mean by the solution of the restoration problem.
Taking into account Assumptions (1)–(3) that we imposed above and the structure of the energy
functionals Ji :�i →R, we say that a multi-band image �u 0 = [

u0
1, u0

2, . . . , u0
M

]t
:�→R

M is
the result of restoration of the cloud contaminated optical image �u0 ∈ L2(� \ D; RM ) if, for each
index i ∈ {1, . . . , M}, the pair

(
u0

i , p0
i

)
, where p0

i = 1 + g
(∣∣(∇Gσ ∗ u0

i

)∣∣) in �, is a solution of
the constrained minimisation problem (3.3), that is,(

u0
i , p0

i

) ∈�i and Ji

(
u0

i , p0
i

) = inf
(v,p)∈�i

Ji (v, p) .

4 Existence results

Our main intention in this section is to show that constrained minimisation problem (3.3) is
consistent and admits at least one solution. Because of the specific form of the energy functional
Ji(v, p), the minimisation problem (3.3) is rather challenging (we can refer to [6, 7, 8, 11] for
some specific details).

Following in many aspects the recent studies [15, 24], we give the following existence result.

Theorem 4.1 For each i = 1, . . . , M and given μ>0, λ>0, η ∈ (0, 1), θ ∈ L∞(D, R2), and �u0 ∈
L2(� \ D; RM ), the minimisation problem (3.3) admits at least one solution (urec

i , prec
i ) ∈�i.

Proof. Since �i �= ∅ and 0 � Ji(v, p)<+∞ for all (v, p) ∈�i, it follows that there exists a
non-negative value ζ � 0 such that ζ = inf

(v,p)∈�i
Ji(v, p). Let {(vk , pk)}k∈N ⊂�i be a minimising
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sequence to the problem (3.3), that is,

(vk , pk) ∈�i, pk(x) = 1 + g (|(∇Gσ ∗ vk) (x)|) in � ∀ k ∈N, and lim
k→∞

Ji (vk , pk)= ζ .

So, without lost of generality, we can suppose that Ji (vk , pk)� ζ + 1 for all k ∈N. From this and
the initial assumptions, we deduce∫

�

|vk(x)|α dx �
∫
�

γ α1,i dx � γ α1,i|�|, ∀ k ∈N,∫
�

|Rη∇vk(x)|pk (x) dx � 2
∫
�

1

pk(x)
|Rη∇vk(x)|pk (x) dx< 2(ζ + 1), ∀ k ∈N, (4.1)

where supk∈N
[
supx∈� pk(x)

]
� 2.

Utilising the fact that vk(x) � γ1,i for almost all x ∈�, we infer the following estimate

‖vk‖L1(�) � γ1,i|�|, ∀ k ∈N.

Then arguing as in Lemma 2.1, it can be shown that pk ∈ C0,1(�) and

α := 1 + δ � pk(x) � β := 2, ∀ x ∈�, ∀ k ∈N, (4.2)

with δ = a2

a2 + ‖Gσ‖2
C1(�−�)

γ 2
1 |�|2 . (4.3)

Taking this fact into account, we deduce from (4.1), (4.2) and (B5) that

‖vk‖W1,α (�) =
(∫

�

[|vk(x)|α + |∇vk(x)|α] dx

)1/α

� (1 + |�|)1/α
(∫

�

[|vk(x)|pk (x) + |∇vk(x)|pk (x)
]

dx + 2

)1/α

by (3.4)
�

(
1 + |�|

(1 − η2)2

)1/α (∫
�

[|vk(x)|pk (x) + |Rη∇vk(x)|pk (x)
]

dx + 2

)1/α

by (4.1)
�

(
1 + |�|

(1 − η2)2

)1/α (
γ 2

1 |�| + 2ζ + 4
)1/α

uniformly with respect to k ∈N. Therefore, there exists a subsequence of {vk}k∈N, still denoted
by the same index, and a function urec

i ∈ W 1,α(�) such that

vk → urec
i strongly in Lq(�) for all q ∈ [1, α∗),

vk ⇀ urec
i weakly in W 1,α(�) as k → ∞, (4.4)

where, by Sobolev embedding theorem, α∗ = 2α
2−α = 2+2δ

1−δ > 2.
Moreover, passing to a subsequence if necessary, we have (see Proposition B.2 and

Lemma 2.1):
vk(x) → urec

i (x) a.e. in �. (4.5)

vk ⇀ urec
i weakly in Lpk (·)(�),

∇vk ⇀∇urec
i weakly in Lpk (·)(�; R2),

pk(·) → prec
i (·) = 1 + g

(∣∣(∇Gσ ∗ urec
i

)
(·)∣∣) uniformly in � as k → ∞,

where urec
i ∈ W 1,prec(·)(�) with prec(x) = 1 + g

(∣∣(∇Gσ ∗ urec
i

)
(x)

∣∣) in �.
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Since γ0,i � vk(x) � γ1,i a.a. in � for all k ∈N, it follows from (4.5) that the limit function urec
i

is also subjected to the same restriction. Thus,
(
urec

i , prec
i

)
is a feasible solution to minimisation

problem (3.3).
Let us show that (urec

i , prec
i ) is a minimiser of this problem. With that in mind, we note that in

view of the obvious inequality∣∣vk(x) − u0,i(x)
∣∣α � 2α−1

(|vk(x)|α + ∣∣u0,i(x)
∣∣α)

and the fact that u0,i ∈ L2(� \ D), we have: the sequence
{
vk(x) − u0,i(x)

}
k∈N is bounded in

Lα(� \ D) and converges weakly in Lα(� \ D) to urec
i − u0,i. Hence, by Proposition B.2 (see

(B17)), urec
i − u0,i ∈ Lprec(·)(� \ D) and

lim inf
k→∞

∫
�\D

|vk(x) − u0,i(x)|α dx �
∫
�\D

|urec
i (x) − u0,i(x)|α dx. (4.6)

As for the last terms in (3.3), in view of the weak convergence vk → urec
i in W 1,α(�) (see (4.4)),

we have

lim inf
k→∞

∫
D

∣∣∣ (
θ⊥, ∇vk

) ∣∣∣α dx �
∫

D

∣∣∣ (
θ⊥, ∇urec

i

) ∣∣∣α dx dx. (4.7)

It remains to notice that due to the properties (4.1), (4.4) and the fact that θ ∈ L∞(D, R2), the
sequence

{|Rη∇vk| ∈ Lpk (·)(�)
}

k∈N is bounded and weakly convergence to |Rη∇urec
i | in Lα(�).

Hence, by Proposition B.2, the following lower semicontinuous property

lim inf
k→∞

∫
�

1

pk(x)
|Rη∇vk(x)|pk (x) dx �

∫
�

1

p(x)
|Rη∇urec

i (x)|p(x) dx (4.8)

holds true.
As a result, utilising relations (4.6), (4.7) and (4.8), we finally obtain

ζ = inf
(v,p)∈�i

Ji(v, p) = lim
k→∞

Ji (vk , pk)= lim inf
k→∞

Ji(vk , pk) � Ji(u
rec
i , prec

i ).

Thus, (urec
i , prec

i ) is a minimiser to the problem (3.3), whereas its uniqueness remains as an
open question.

5 Iterative algorithm based on the variational convergence of extremal problems

It is clear that because of the nonstandard energy functional and its non-convexity, constrained
minimisation problem (3.3) is not trivial in its practical implementation. The main difficulty in
its study comes from the state constraints

1 � γ0,i � v(x) � γ1,i a.a. in �, p(x) = 1 + g (|(∇Gσ ∗ v) (x)|)

that we impose on the set of feasible solutions �i. This motivates us to pass to some relaxation
(we refer to [16, 28, 33] where the similar approach has been utilised). In view of this, we
propose the following iteration procedure which is based on the concept of relaxation of extremal
problems and their variational convergence [25, 26, 27, 30].

https://doi.org/10.1017/S0956792522000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000031


88 C. D’Apice et al.

At the first step, we set up

p0(x) =
{

1 + g
(∣∣(∇Gσ ∗ u0,i

)
(x)

∣∣) , if x∈� \ D,

1 + g (|(∇Gσ ∗ uSAR) (x)|) , if x∈D,

}
(5.1)

u0 = Argmin
v∈Bi,p0(·)

Ji(v, p0(·)). (5.2)

Here, Bi,p(·) = {
v ∈ W 1,p(·)(�) : 1�γ0,i � v(x) � γ1,i a.a. in �

}
.

Then, for each k � 1, we set

pk(x) = 1 + g
(∣∣(∇Gσ ∗ uk−1

)
(x)

∣∣) , ∀ x ∈�, uk = Argmin
v∈Bi,pk (·)

Ji(v, pk(·)). (5.3)

Before proceeding further, we set

S=
{

h ∈ C(�)

∣∣∣∣∣ |h(x) − h(y)|� C|x − y|, ∀ x, y ∈�,

α := 1 + δ � h(x) � β := 2, ∀ x ∈�,

}
(5.4)

where C> 0 and δ > 0 are defined by (2.13) and (4.3), respectively.
Arguing as in the proof of Theorem 4.1 and using the convexity arguments, it can be

shown that, for each p(·) ∈S, there exists a unique element u0,p(·)
i ∈Bi,p(·) such that u0,p(·)

i =
Argminv∈Bi,p(·) Ji(v, p(·)). Moreover, it can be shown that, for given i = 1, . . . , M , μ> 0, λ>0,

η ∈ (0, 1), uSAR ∈ BV (�), and �u0 ∈ L2(� \ D, RM ), the sequence
{
uk ∈ W 1,pk (·)(�)

}
k∈N is compact

with respect to the weak topology of W 1,α(�), whereas the exponents {pk}k∈N are compact with
respect to the strong topology of C(�).

We say that a pair (̂ui, p̂i) is a weak solution to the original problem (3.3) if

ûi = Argmin
v∈Bp̂i(·)

Ji(v, p̂i(·)), ûi ∈Bi,̂pi(·),

p̂i(x) = 1 + g (|(∇Gσ ∗ ûi) (x)|) , ∀ x ∈�.

(5.5)

Remark 5.1 The relation between a weak solution and a solution to the problem (3.3) is very
intricate. Since the uniqueness of solutions to (3.3) is a rather questionable option, it follows that,
in principle, these definitions can lead to the different pairs in �i. As immediately follows from
(5.5), a weak solution is a merely feasible one to the original problem. However, if the problem
(3.3) admits a unique solution (u0

i , p0
i ) ∈�i, then (5.5) implies that this pair is a weak solution.

On the other hand, if (u∗
i , p∗

i ) ∈�i is some solution to (3.3), then setting in (5.1) p0(x) = p∗
i (x) for

all x ∈�, we immediately arrive at the conclusion: (uk , pk) = (u∗
i , p∗

i ) for all k ∈N and, therefore,
(u∗

i , p∗
i ) is a weak solution to the above problem.

Our main goal in this section is to establish the existence of a weak solution to the original
problem (3.3) and show that it can be attained by some iterative algorithm.

We begin with some technical results.

Lemma 5.1 For given μ>0, λ>0, η ∈ (0, 1), uSAR∈BV (�) and �u0∈L2(�\D, RM ), the sequence{
uk ∈ W 1,pk (·)(�)

}
k∈N is compact with respect to the weak topology of W 1,α(�).
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Proof. To begin with, let us show that the sequence of minimisers
{
uk

}
k∈N is bounded in the

sense of condition (B10). Let û ∈ C1(�) be an arbitrary function such that γ0,i � û(x) � γ1,i in �.
Since

Ji(u
k , pk(·)) � Ji (̂u, pk(·)), ∀ k = 0, 1, 2, . . . (5.6)

and ∫
�

1

pk(x)
|Rη∇û(x)|pk (x) dx �

∫
�

1

pk(x)
|∇û(x)|pk (x) dx

�
∫
�

1

pk(x)

(
1 + ‖̂u‖C1(�)

)pk (x)
dx � |�|

α

(
1 + ‖̂u‖C1(�)

)2
,∫

�\D

1

pk(x)

∣∣̂u(x) − u0,i(x)
∣∣α dx � 2

∫
�\D

[(
1 + ‖̂u‖C1(�)

)α + ∣∣u0,i(x)
∣∣α]

dx

� 2|� \ D| (
1 + ‖̂u‖C1(�)

)α + 2|�| 2−α
2 ‖u0,i‖αL2(�)

,

it follows that

sup
k∈N

Ji(u
k , pk(·)) � sup

k∈N
Ji (̂u, pk(·)) � Ĉ

with some constant Ĉ> 0.
From this and estimate (3.4), we deduce∫

�

|uk(x)|α dx � γ α1,i|�|, ∀ k ∈N, (5.7)∫
�

|∇uk(x)|pk (x) dx � 2
∫
�

1

pk(x)
|∇uk(x)|pk (x) dx<

2

(1 − η2)2
Ĉ, ∀ k ∈N. (5.8)

Then estimate (B5) implies that the sequence
{
uk

}
k∈N is bounded in W 1,α(�). So, its weak

compactness is a direct consequence of the reflexivity of W 1,α(�).

We notice that boundedness of the sequence
{
uk

}
k∈N in W 1,α(�) and compactness of the

embedding W 1,α(�) ↪→ Lq(�) for q ∈ [
1, 2α

2−α
)

imply the existence of element u∗ ∈ W 1,α(�) such
that, up to a subsequence,

uk(x) → u∗(x) a.e. in �, (5.9)

uk ⇀ u∗ in Lα(�), and ∇uk ⇀∇u∗ in Lα(�; R2). (5.10)

Then using (5.9) and passing to the limit in two-side inequality γ0,i � uk(x) � γ1,i, we obtain

γ0,i � u∗(x) � γ1,i for a.a. x ∈�. (5.11)

Utilising this fact together with the pointwise convergence (5.9), by the Lebesgue dominated
convergence theorem, we have

lim
k→∞

F(uk(x)) = 1 + a2

a2 + ( lim
k→∞

∣∣(∇Gσ ∗ uk
)

(x)
∣∣)2

= 1 + a2

a2 +
( ∣∣∣∣(∇Gσ ∗ lim

k→∞
uk

)
(x)

∣∣∣∣ )2
= F(u∗(x)), ∀ x ∈�. (5.12)
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Since, by Arzelà–Ascoli theorem, the set
{
pk = 1 + g

(∣∣(∇Gσ ∗ uk−1
)

(x)
∣∣)}

k∈N is compact with
respect to the strong topology of C(�), it follows from (5.12) (see also the proof of Lemma 2.1)
that

pk → p∗ = F(u∗(x)) strongly in C(�) as k → ∞, and p∗ ∈S. (5.13)

Then properties (5.9)–(5.13) and Proposition B.2 imply:

u∗ ∈Bi,p∗(·) =
{

u ∈ W 1,p∗(·)(�) : 1 � γ0,i � u(x) � γ1,i a.a. in �
}

. (5.14)

Thus, (u∗, p∗) ∈Bi,p∗(·) ×S is a cluster point of iterative procedure (5.3) with respect to the
convergence (5.9)–(5.10), (5.13).

The main result of this section can be stated as follows:

Theorem 5.1 Let μ>0, λ>0, η ∈ (0, 1), uSAR∈BV (�) and �u0∈L2(�\D, RM ) be given data. Then,
for each i ∈ {1, . . . , M}, the sequence of approximated solutions

{
(uk , pk)

}
k∈N possesses the

following asymptotic properties:

uk(x) → ũi(x) a.e. in �, (5.15)

uk ⇀ ũi in Lα(�), and ∇uk ⇀∇ũi in Lα(�; R2), (5.16)

pk → p̃i = F(̃ui) strongly in C(�) as k → ∞, (5.17)

where (̃ui, p̃i) is a weak solution to the original problem (3.3), that is,

ũi ∈Bi,̃pi(·), ũi = Argmin
v∈Bi,̃pi(·)

Ji(v, p̃i(·)),

and, in addition, the following variational property holds true

lim
k→∞

Ji(u
k , pk(·)) = lim

k→∞

[
inf

v∈Bi,pk (·)
Ji(v, pk(·))

]
= inf
v∈Bi,̃pi(·)

Ji(v, p̃i(·)) = Ji (̃ui, p̃i(·)). (5.18)

Proof. Let (̃ui, p̃i) be a cluster point of the sequence
{
(uk , pk)

}
k∈N with respect to the convergence

(5.15)–(5.17). The existence of such pair immediately follows from Lemma 5.1 and reasoning
given above. Let’s assume the converse – namely, there is a function z ∈Bi,̃pi(·) such that

Ji(z, p̃i(·)) = inf
v∈Bi,̃pi(·)

Ji(v, p̃i(·))< Ji (̃ui, p̃i(·)). (5.19)

Using the procedure of the direct smoothing, we set

uε(x) = 1

ε2

∫
R2

K

(
x − s

ε

)
z̃(s) ds,

where ε > 0 is a small parameter, K is a positive compactly supported smooth function with
properties

K ∈ C∞
0 (R2),

∫
R2

K(x) dx = 1, and K(x) = K(−x),

and z̃ is zero extension of z outside of �.
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Since z ∈ W 1,̃p(·)(�) and p̃(x) � α = 1 + δ in �, it follows that z ∈ W 1,α(�). Then,

uε ∈ C∞
0 (R2) for each ε > 0,

uε → z in Lα(�), ∇uε → ∇z in Lα(�; R2) (5.20)

by the classical properties of smoothing operators (see [18]). From this, we deduce that

uε(x) → z(x) a.e. in �. (5.21)

Moreover, taking into account the estimates

uε(x) =
∫
R2

K (y) z̃(x − εy) dy � γ1,i

∫
R2

K (y) dy = γ1,i,

uε(x) �
∫

y∈ε−1(x−�)
K (y) z̃(x − εy) dy � γ0,i

∫
y∈ε−1(x−�)

K (y) dy � γ0,i,

we see that each element uε is subjected to the pointwise constraints

γ0,i � uε(x) � γ1,i a.a. in �, ∀ ε > 0.

Since, for each ε > 0, uε ∈ W 1,pk (·)(�) for all k ∈N, it follows that uε ∈Bi,pk (·), that is,
each element of the sequence {uε}ε>0 is a feasible solution to all approximating problems〈
infv∈Bi,pk (·) Ji(v, pk(·))〉. Hence,

Ji(u
k , pk(·)) � Ji(uε, pk(·)), ∀ ε > 0, ∀ k = 0, 1, . . . (5.22)

Further we notice that

lim inf
k→∞

Ji(u
k , pk(·)) � Ji (̃ui, p̃i(·)) (5.23)

by Proposition B.2 and Fatou’s lemma, and

lim
k→∞

Ji(uε, pk(·)) = lim
k→∞

∫
�

1

pk(x)
|Rη∇uε(x)|pk (x) dx

+ μ

α

∫
�\D

∣∣uε(x) − u0,i(x)
∣∣α dx + λ

∫
D

∣∣∣ (
θ⊥, ∇uε

) ∣∣∣α dx. (5.24)

Since

1

pk(x)
|Rη∇uε(x)|pk (x) → 1

p̃i(x)
|Rη∇uε(x)|̃pi(x) uniformly in � as k → ∞,

it follows from the Lebesgue dominated convergence theorem and (5.24) that

lim
k→∞

Ji(uε, pk(·)) = Ji(uε, p̃i(·)), ∀ε > 0. (5.25)

As a result, passing to the limit in (5.22) and utilising properties (5.23)–(5.25), we obtain

Ji (̃ui, p̃i(·)) � Ji(uε, p̃i(·)) =
∫
�

1

p̃i(x)
|Rη∇uε(x)|̃pi(x) dx

+ μ

α

∫
�\D

∣∣uε(x) − u0,i(x)
∣∣α dx + λ2

∫
D

∣∣∣ (
θ⊥, ∇uε

) ∣∣∣α dx, (5.26)
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for all ε > 0. Taking into account the pointwise convergence (see (5.21) and property (5.20))

|Rη∇uε(x)|̃pi(x) → |Rη∇z(x)|̃pi(x),∣∣uε(x) − u0,i(x)
∣∣α → ∣∣z(x) − u0,i(x)

∣∣α ,∣∣∣ (
θ⊥, ∇uε

) ∣∣∣α →
∣∣∣ (
θ⊥, ∇z

) ∣∣∣α
as ε→ 0, and the fact that, for ε small enough,

|Rη∇uε(x)|̃pi(x) � (1 + |∇z(·)|)̃pi(·) ∈ L1(�) a.e. in �,∣∣uε(·) − u0,i(·)
∣∣α � [

2 (1 + |z(·)|)α + 2
(
1 + ∣∣u0,i(·)

∣∣)2
]
∈ L1(�) a.e. in � \ D,∣∣∣ (

θ⊥, ∇uε
) ∣∣∣α � ‖θ‖L∞(D,R2) (1 + |∇z(·)|)̃pi(·) ∈ L1(�) a.e. in �,

we can pass to the limit in (5.26) as ε→ 0 by the Lebesgue dominated convergence theorem.
This yields

Ji (̃ui, p̃i(·)) � lim
ε→0

Ji(uε, p̃i(·)) = Ji(z, p̃i(·)).

Combining this inequality with (5.26) and (5.19), we finally get

Ji(z, p̃i(·)) = inf
v∈Bi,̃pi(·)

Ji(v, p̃i(·))< Ji (̃ui, p̃i(·)) � Ji(z, p̃i(·)),

that leads us into conflict with the initial assumption. Thus,

Ji (̃ui, p̃i(·)) = inf
v∈Bi,̃pi(·)

Ji(v, p̃i(·)) (5.27)

and, therefore, (̃ui, p̃i) is a weak solution to the original problem (3.3). As for the variational
property (5.18), it is a direct consequence of (5.27) and (5.25).

6 Optimality conditions

To characterise the solution u0,p(·) ∈Bi,p(·) of the approximating optimisation problem
〈infv∈Bi,p(·) Ji(v, p(·))〉, we check that the functional Ji(v, p(·)) is Gâteaux differentiable with
respect to v, that is,

lim
t→0

Ji(u0,p(·) + tv, p(·)) − Ji(u0,p(·), p(·))
t

=
∫
�

(|Rη∇u0,p(·)(x)|p(x)−2Rη∇u0,p(·)(x), Rη∇v(x)
)

dx

+μ

∫
�\D

∣∣u0,p(·)(x) − u0,i(x)
∣∣α−2

u0,p(·)(x)v(x) dx

+ αλ

∫
�

∣∣∣ (
θ⊥, ∇u0,p(·)) ∣∣∣α−1 (

θ⊥, ∇v)
dx, ∀ v ∈ W 1,p(·)(�). (6.1)
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To this end, we note that

|Rη∇u0,p(·)(x) + tRη∇v(x)|p(x) − |Rη∇u0,p(·)(x)|p(x)

p(x)t

→ (|Rη∇u0,p(·)(x)|p(x)−2Rη∇u0,p(·)(x), Rη∇v(x)
)

as t → 0

almost everywhere in �. Since, by convexity,

|ξ |p − |η|p � 2p
(|ξ |p−1 + |η|p−1

) |ξ − η|,

it follows that

∣∣∣∣ |Rη∇u0,p(·)(x) + tRη∇v(x)|p(x) − |Rη∇u0,p(·)(x)|p(x)

p(x)t

∣∣∣∣
� 2

(|Rη∇u0,p(·)(x) + tRη∇v(x)|p(x)−1 + |Rη∇u0,p(·)(x)|p(x)−1
) |Rη∇v(x)|

� const
(|Rη∇u0,p(·)(x)|p(x)−1 + |Rη∇v(x)|p(x)−1

) |Rη∇v(x)|. (6.2)

Taking into account that

∫
�

|Rη∇u0,p(·)(x)|p(x)−1|Rη∇v(x)| dx

by (B.18)
� 2‖Rη∇u0,p(·)(x)|p(x)−1‖Lp′(·)(�)‖Rη∇v(x)|‖Lp(·)(�)

� 2‖∇u0,p(·)(x)|p(x)−1‖Lp′(·)(�,R2)‖∇v(x)‖Lp(·)(�,R2),

and
∫
�

|∇v(x)|p(x) dx
by (B5)
� ‖∇v‖2

Lp(·)(�,R2)
+ 1, we see that the right hand side of inequality (6.2)

is an L1(�) function. Therefore,

∫
�

|Rη∇u0,p(·)(x) + tRη∇v(x)|p(x) − |Rη∇u0,p(·)(x)|p(x)

p(x)t
dx

→
∫
�

(|Rη∇u0,p(·)(x)|p(x)−2Rη∇u0,p(·)(x), Rη∇v(x)
)

dx as t → 0

by the Lebesgue dominated convergence theorem.
Utilising similar arguments to the rest terms in (3.3), we deduce that the representation (6.1)

for the Gâteaux differential of Ji(·, p(·)) at the point u0,p(·) ∈Bi,p(·) is valid.
Thus, in order to derive some optimality conditions for the minimising element u0,p(·) ∈Bi,p(·)

to the problem inf
v∈Bp(·)

Ji(v, p(·)), we note that Bi,p(·) is a non-empty convex subset of W 1,p(·)(�) and

the objective functional Ji(·, p(·)) : Bi,p(·) →R is strictly convex. Hence, the well-known classical
result (see [32, Theorem 1.1.3]) and representation (6.1) lead us to the following conclusion.
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FIGURE 1. Optical image from 2021/040.

Theorem 6.1. Let pk(·) ∈S be an exponent given by the iterative rule (5.3). Then, the unique
minimiser uk ∈Bi,pk (·) to the approximating problem inf

v∈Bi,pk (·)
Ji(v, pk(·)) is characterised by

∫
�

(∣∣∣Rη∇uk(x)
∣∣∣pk (x)−2

Rη∇uk(x), Rη∇v(x) − Rη∇uk(x)

)
dx

+μ

∫
�\D

∣∣∣uk(x) − u0,i(x)
∣∣∣α−2

uk(x)
(
v(x) − uk(x)

)
dx

+ αλ

∫
�

∣∣∣ (
θ⊥, ∇u0,p(·)) ∣∣∣α−1 (

θ⊥, ∇v − ∇uk
)

dx � 0, ∀ v ∈Bi,pk (·). (6.3)

7 Numerical experiments

In order to illustrate the proposed algorithm for the restoration of the cloud-corrupted satel-
lite multispectral optical images, we have provided some numerical experiments. As input data,
we have used a series of optical images and a radar image that were delivered from two twin
satellites, Sentinel-2A and Sentinel-2B. Each of the optical image is corrupted by clouds with a
different level of degradation (see Figures 1, 2, 3, 4). The corresponding SAR image is shown in
Figure 5.

The results of restoration after 5 iterations of the proposed algorithm are shown in Figures 6,
7, 8, 9 for η= 0.8, μ= 10, and λ= 20. As for the exponent α, we define it following the rule

(2.10) with δ= a2
[
a2 + ‖Gσ‖2

C1(�−�)
2552|�|2

]−1
and a = 0.01.

Comparing the restored images and the contaminated ones, we could see that the texture of
original images is well preserved. However, some details in the damage zones are blurred. This
problem will be addressed in the following research.
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FIGURE 2. Optical image from 2021/032.

FIGURE 3. Optical image from 2021/041.

8 Conclusion

This paper proposes a novel restoration model for the satellite optical images that is based on
their co-registration with SAR images of the same region and the solution of a special varia-
tional problem with nonstandard growth objective functional. The characteristic feature of the
restoration problem is the fact that the optical images are supposed to be corrupted and there
is a subdomain (the so-called damage region) where we do not have any information about the
brightness of such images. Instead, we propose to make use of the structure of the SAR images
of the same regions. The novelty of our approach is that we involve into consideration the objec-
tive functional with nonstandard growth p(x), where the variable exponent is unknown a priori
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FIGURE 4. Optical image from 2021/0406.

FIGURE 5. The SAR image of the same territory.

and it directly depends on the texture of an image that has to be restored. In order to study the
consistency of the proposed non-convex minimisation problem, we develop a special technique
and supply this approach by the rigorous mathematical substantiation.

However, this problem is not trivial from its practical implementation and has limited perfor-
mance from numerical point of view. With that in mind, we propose an alternating minimisation
procedure which is based on the concept of relaxation of extremal problems with the state con-
straints and their variational convergence. We show that at each step of the iteration procedure,
we obtain a strictly convex optimisation problem which admits a unique solution. It is established
that the so-defined sequence of approximations is precompact and each convergent subsequence
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FIGURE 6. Result of its restoration.

FIGURE 7. Result of its restoration.

leads to the so-called weak solutions of the original problem. So, following this way some weak
solutions of the restoration problem can be attained in the suitable topology by a special iterative
algorithm.

As for the numerical scheme for practical implementation of the proposed procedure, we use
the straightforward finite difference method (see [12] for some details) and it will be described
in the forthcoming paper. Besides of that, in the second part of this paper we mainly focus on
the solvability issues of variational inequality (6.3), its qualitative analysis and the study of its
asymptotic behaviour as k tends to ∞.
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FIGURE 8. Result of its restoration.

FIGURE 9. Result of its restoration.
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Appendix A. BV -Space

Let C∞
0 (�) be the infinitely differentiable functions with a compact support in �. By BV (�)

we denote the space of all functions u ∈ L1(�) for which their distributional derivatives are
representable by finite Borel measures in �, that is,∫

�

u
∂φ

∂xi
dx = −

∫
�

φ dDiu, ∀ φ ∈ C∞
0 (�), i = 1, 2

for some R
2-valued measure Du = (D1u, D2u) ∈M2(�). It can be shown that BV (�), endowed

with the norm

‖u‖BV (�) = ‖u‖L1(�) + |Du|(�)

is a Banach space, where

|Du|(�) :=
∫
�

d|Du| = sup

{∫
�

u div ϕ dx : ϕ ∈ C1
0(�; R2), |ϕ(x)|� 1 for x ∈�

}
(A1)

stands for the total variation of u in �. It is clear that |Du|(�) = ∫
�

|∇u| dx if u is continuously
differentiable in �.

The following embedding results for BV -function play a crucial role for qualitative analysis
of variational problems that we study in this paper.

Proposition A.1 [2, p. 378] Let � be an open bounded Lipschitz subset of R2. Then, the embed-
ding BV (�; RM ) ↪→ L2(�; RM ) is continuous and the embeddings BV (�; RM ) ↪→ Lp(�; RM ) are
compact for all p such that 1 � p< 2. Moreover, there exists a constant Cem > 0 which depends
only on � and p such that for all u in BV (�; RM ),(∫

�

|u|p dx

)1/p

� Cem‖u‖BV (�;RM ), ∀ p ∈ [1, 2].

Further information on BV -functions and their properties can be found in [1, 2].

Appendix B. On Orlicz Spaces

Let p(·) be a measurable exponent function on � such that 1<α � p(x) � β <∞ a.e. in �,
where α and β are given constants. Let p′(·) = p(·)

p(·)−1 be the corresponding conjugate exponent. It
is clear that

1 � β

β − 1︸ ︷︷ ︸
β ′

� p′(x) � α

α− 1︸ ︷︷ ︸
α′

a.e. in �,

where β ′ and α′ stand for the conjugates of constant exponents. Denote by Lp(·)(�) the set of
all measurable functions f (x) on � such that

∫
�

|f (x)|p(x) dx<∞. Then, Lp(·)(�) is a reflexive
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separable Banach space with respect to the Luxemburg norm (see [13, 17] for the details)

‖f ‖Lp(·)(�) = inf
{
λ> 0 : ρp(λ−1f ) � 1

}
, (B1)

where ρp(f ) := ∫
�

|f (x)|p(x) dx.
It is well-known that Lp(·)(�) is reflexive provided α > 1, and its dual is Lp′(·)(�), that is, any

continuous functional F = F(f ) on Lp(·)(�) has the form (see [42, Lemma 13.2])

F(f ) =
∫
�

fg dx, with g ∈ Lp′(·)(�).

3.7 As for the infimum in (B1), we have the following result (for reader’s convenience, we
furnish it with the proof).

Proposition B.1 The infimum in (B1) is attained if ρp(f )> 0. Moreover

if λ∗ := ‖f ‖Lp(·)(�) > 0, then ρp(λ−1
∗ f ) = 1. (B2)

Proof. Indeed, as follows from (B1), ‖f ‖Lp(·)(�) = 0 if and only if f (x) = 0 a.e. in�, i.e. ρp(f ) = 0.
Assume that ρp(f )> 0. We define a function ψ : [0, ∞) →R as

ψ(s) := ρp(λ−1f ) =
∫
�

|sf (x)|p(x) dx.

Since ψ(0) = 0, lim
s→∞ψ(s) = +∞, and

d

ds
ψ(s) =

∫
�

p(x)sp(x)−1|f (x)|p(x) dx> 0,

it follows that ψ =ψ(s) is a monotonically increasing function. Hence, there exists a positive
value λ∗ > 0 such that

ψ(λ−1
∗ ) = 1 and ψ(λ−1) =

∫
�

∣∣∣∣ f (x)

λ

∣∣∣∣p(x)

dx � 1 ∀ λ ∈ [λ∗, +∞).

Therefore,

inf
{
λ> 0 : ψ(λ−1) � 1

} = λ∗ and
∫
�

∣∣∣∣ f (x)

λ∗

∣∣∣∣p(x)

dx = 1. (B3)

As a result, we deduce from (B3) and (B1) that λ∗ = ‖f ‖Lp(·)(�;R2).
Taking this result and condition 1 � α � p(x) � β into account, we see that

1

λ
β
∗

∫
�

|f (x)|p(x) dx �
∫
�

∣∣∣∣ f (x)

λ∗

∣∣∣∣p(x)

dx � 1

λα∗

∫
�

|f (x)|p(x) dx,

1

λ
β
∗

∫
�

|f (x)|p(x) dx � 1 � 1

λα∗

∫
�

|f (x)|p(x) dx.
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Hence, (see [13, 17, 41] for the details)

‖f ‖α
Lp(·)(�)

�
∫
�

|f (x)|p(x) dx � ‖f ‖β
Lp(·)(�)

, if ‖f ‖Lp(·)(�) � 1,

‖f ‖β
Lp(·)(�)

�
∫
�

|f (x)|p(x) dx � ‖f ‖α
Lp(·)(�)

, if ‖f ‖Lp(·)(�) � 1, (B4)

and, therefore,

‖f ‖α
Lp(·)(�)

− 1 �
∫
�

|f (x)|p(x) dx � ‖f ‖β
Lp(·)(�)

+ 1, ∀ f ∈ Lp(·)(�), (B5)

‖f ‖Lp(·)(�) =
∫
�

|f (x)|p(x) dx, if ‖f ‖Lp(·)(�) = 1. (B6)

The following estimates are well-known (see, for instance, [13, 17, 41]): if f ∈ Lp(·)(�) then

‖f ‖Lα (�) � (1 + |�|)1/α ‖f ‖Lp(·)(�), (B7)

‖f ‖Lp(·)(�) � (1 + |�|)1/β ′ ‖f ‖Lβ (�), β ′ = β

β − 1
, ∀ f ∈ Lβ(�). (B8)

Let {pk}k∈N ⊂ C0,δ(�), with some δ ∈ (0, 1], be a given sequence of exponents. Hereinafter in
this subsection, we assume that

p, pk ∈ C0,δ(�) for k = 1, 2, . . . , and pk(·) → p(·) uniformly in � as k → ∞. (B9)

We associate with this sequence the following collection
{
fk ∈ Lpk (·)(�)

}
k∈N. The characteristic

feature of this set of functions is that each element fk lives in the corresponding Orlicz space
Lpk (·)(�). We say that the sequence

{
fk ∈ Lpk (·)(�)

}
k∈N is bounded if (see [29, Section 6.2])

lim sup
k→∞

∫
�

|fk(x)|pk (x) dx<+∞. (B10)

Definition B.1 A bounded sequence
{
fk ∈ Lpk (·)(�)

}
k∈N is weakly convergent in the variable

Orlicz space Lpk (·)(�) to a function f ∈ Lp(·)(�), where p ∈ C0,δ(�) is the limit of {pk}k∈N ⊂
C0,δ(�) in the uniform topology of C(�), if

lim
k→∞

∫
�

fkϕ dx =
∫
�

f ϕ dx, ∀ ϕ ∈ C∞
0 (R2). (B11)

We make use of the following result (we refer to [42, Lemma 13.3] for comparison) con-
cerning the lower semicontinuity property of the variable Lpk (·)-norm with respect to the weak
convergence in Lpk (·)(�).

Proposition B.2 If a bounded sequence
{
fk ∈ Lpk (·)(�)

}
k∈N converges weakly in Lα(�) to f for

some α > 1, then f ∈ Lp(·)(�), fk ⇀ f in variable Lpk (·)(�), and

lim inf
k→∞

∫
�

|fk(x)|pk (x) dx �
∫
�

|f (x)|p(x) dx. (B12)
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Proof. In view of the fact that∣∣∣∣∫
�

|fk(x)|pk (x) dx −
∫
�

p(x)

pk(x)
|fk(x)|pk (x) dx

∣∣∣∣
� ‖pk − p‖C(�)

∫
�

1

pk(x)
|fk(x)|pk (x) dx

�
‖pk − p‖C(�)

α

∫
�

|fk(x)|pk (x) dx
by (B10)→ 0 as k → ∞,

we see that

lim inf
k→∞

∫
�

|fk(x)|pk (x) dx = lim inf
k→∞

∫
�

p(x)

pk(x)
|fk(x)|pk (x) dx. (B13)

Using the Young inequality ab � |a|p/p + |b|p′
/p′, we have∫

�

p(x)

pk(x)
|fk(x)|pk (x) dx �

∫
�

p(x)fk(x)ϕ(x) dx −
∫
�

p(x)

p′
k(x)

|ϕ(x)|p′
k (x) dx, (B14)

for p′
k(x) = pk(x)/(pk(x) − 1) and any ϕ ∈ C∞

0 (R2).
Then passing to the limit in (B14) as k → ∞ and utilising property (B9) and the fact that

lim
k→∞

∫
�

fk(x)ϕ(x) dx =
∫
�

f (x)ϕ(x) dx for all ϕ ∈ Lα
′
(�), (B15)

we obtain

lim inf
k→∞

∫
�

|fk(x)|pk (x) dx �
∫
�

p(x)f (x)ϕ(x) dx −
∫
�

p(x)

p′(x)
|ϕ(x)|p′(x) dx. (B16)

Since the last inequality is valid for all ϕ ∈ C∞
0 (R2) and C∞

0 (R2) is dense subset of Lp′(·)(�),
it follows that this relation also holds true for ϕ ∈ Lp′(·)(�). So, taking ϕ = |f (x)|p(x)−2f (x), we
arrive at the announced inequality (B12). So, as a consequence of (B12) and estimate (B5), we
get: f ∈ Lp(·)(�).

To end the proof, it remains to observe that relation (B15) holds true for ϕ ∈ C∞
0 (R2) as well.

From this the weak convergence fk ⇀ f in the variable Orlicz space Lpk (·)(�) follows.

Remark B.1 Arguing in a similar manner and using, instead of (B14), the estimate

lim inf
k→∞

∫
�

1

pk(x)
|fk(x)|pk (x) dx �

∫
�

p(x)f (x)ϕ(x) dx −
∫
�

1

p′
k(x)

|ϕ(x)|p′(x) dx,

it can be shown that the lower semicontinuity property (B12) can be generalised as follows

lim inf
k→∞

∫
�

1

pk(x)
|fk(x)|pk (x) dx �

∫
�

1

p(x)
|f (x)|p(x) dx. (B17)
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The following result can be viewed as an analogous of the Hölder inequality in Lebesgue
spaces with variable exponents (for the details we refer to [13, 17]).

Proposition B.3 If f ∈ Lp(·)(�)N and g ∈ Lp′(·)(�)N , then (f , g) ∈ L1(�) and∫
�

(f , g) dx � 2‖f ‖Lp(·)(�)N ‖g‖Lp′(·)(�)N . (B18)

Appendix C. Sobolev Spaces with Variable Exponent

We recall here well-known facts concerning the Sobolev spaces with variable exponent. Let p(·)
be a measurable exponent function on � such that 1<α � p(x) � β <∞ a.e. in �, where α and
β are given constants. We associate with it the so-called Sobolev-Orlicz space

W 1,p(·)(�) :=
{

u ∈ W 1,1(�) :
∫
�

[|u(x)|p(x) + |∇u(x)|p(x)
]

dx<+∞
}

(C1)

and equip it with the norm ‖u‖
W

1,p(·)
0 (�)

= ‖u‖Lp(·)(�) + ‖∇u‖Lp(·)(�;R2).

It is well-known that, in general, unlike classical Sobolev spaces, smooth functions are not
necessarily dense in W = W 1,p(·)

0 (�). Hence, with variable exponent p = p(x) (1<α � p � β) it
can be associated another Sobolev space,

H = H1,p(·)(�) as the closure of the set C∞(�) in W 1,p(·)(�)-norm.

Since the identity W = H is not always valid, it makes sense to say that an exponent p(x) is
regular if C∞(�) is dense in W 1,p(·)(�).

The following result reveals the important property that guarantees the regularity of
exponent p(x).

Proposition C.1 Assume that there exists δ ∈ (0, 1] such that p ∈ C0,δ(�). Then the set C∞(�) is
dense in W 1,p(·)(�), and, therefore, W = H.

Proof. Let p ∈ C0,δ(�) be a given exponent. Since

lim
t→0

|t|δ log(|t|) = 0 with δ ∈ (0, 1], (C2)

it follows from the Hölder continuity of p(·) that

|p(x) − p(y)|� C|x − y|δ �
[

sup
x,y∈�

|x − y|δ
log(|x − y|−1)

]
ω(|x − y|), ∀ x, y ∈�, (C3)

where ω(t) = C/ log(|t|−1), and C> 0 is some positive constant.
Then, property (C2) implies that p(·) is a log-Hölder continuous function. So, to deduce the

density of C∞(�) in W 1,p(·)(�) it is enough to refer to Theorem 13.10 in [42].
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