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Abstract

We consider two related classes of groups. For any group G of the first of these — the
smallest class containing all finitely generated free groups and closed under cyclic amalgamations
— we show that for any l i , W 6 G w e can "effectively describe" the set of all x and y with U"
and W conjugate in G. For the second class, which consists of all groups obtained from the first
class through cyclic HNN constructions, we solve the conjugacy and power-conjugacy problems.

1. Introduction

We use the notation

(1) G* = (G,t;tS1r
1=S-l)

only for cyclic HNN constructions. Thus, in (1) we assume G to be a given
group, t a letter not occurring in G, and Si, S-i elements of the same order in
G. If G has a presentation G = (A; B), then G* can be presented by

G* = (A,t;B,tS,rl = S _,).

In this paper we consider the conjugacy problem for two closely related
classes of groups. The first is the smallest class si containing all finitely
generated (henceforth f.g.) free groups and closed under cyclic amalgam-
ations. The second class si* consists of all cyclic HNN constructions

with G G si. Since all groups in si must be torsion-free, it suffices to require
Si and S-i to be both non-trivial or both trivial here. Of course, if S1; S_i = 1,
then G * E i as well.

This work was supported in part by an AFOSR Grant.

385
© Copyright Australian Mathematical Society 1977
Copyright. Apart from any fair dealing for scholarly purposes as permitted under the Copyright Act, no part of this JOURNAL
may be reproduced by any process without written permission from the Treasurer of the Australian Mathematical Society.

https://doi.org/10.1017/S1446788700019546 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019546


386 Leif Larsen [2]

For each pair of elements U, W of the group G, let CPG(U, W) denote
the set of conjugate powers of U and W in G; that is,

CPa(U, W) = {(x, y) G Z2; U* ~ W)

where "~" denotes the conjugacy relation in G. If U" and W" are non-trivial
for some (x, y )£ CPG(U, W), then (7 and W are said to be power-conjugate
in G.

To describe the sets CPG(U, W) and some other subsets of Z2, we make
use of the notation

(r, s) + (a, />)Z = {(r + ax,s + k ) E Z 2 ; x G Z}

for any r, s, a, b G Z. In particular, we write just (a, b)Z for this set if r, s = 0.
We can now state some of our results.

THEOREM 1. All groups in si and si* have solvable generalized word
problem with respect to cyclic subgroups.

The trivial subgroup is cyclic, hence all groups in si and si* have
solvable word problem.

Throughout this paper, by "compute" we mean "effectively compute".

THEOREM 2. For any non-trivial U, W G G G si we can compute inte-
gers a,b,cu---,cn such that

CPa(U, W) = (a, b)Z U f 0 (ach - bc>)z\.

From these two theorems it follows that all groups in si have solvable
conjugacy and power-conjugacy problems.

Using a certain embedding of free products with amalgamation into
related HNN groups, as constructed by Miller & Schupp (1973), we deduce
Theorem 2 from

THEOREM 3. // U, W G G* = (G, t; tS^r1 = S-{)e si* are non-trivial
and S, and S_, are not power-conjugate in G, then we can compute integers
a, b, Ci, • • •, cn such that

CPG-(U, W) = (a, b)Z U f 0 (ac, - bc,)z\

For arbitrary groups in si* we only establish

THEOREM 4. All groups in si* have solvable conjugacy and power-
conjugacy problems.

Note that free products of f.g. groups with f.g. amalgamations, even with
the factors free, can have unsolvable conjugacy problem, see Miller (1971).
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[3] The conjugacy problem 387

Thus, to solve the conjugacy problem for such groups we need restrictions
such as: the factors free with cyclic subgroups amalgamated, Lipschutz (1966);
the factors free with the amalgamating map extending to an isomorphism of
the factors, Larsen (1976); or as in the present work. Negative results like
the above also exist for HNN groups: for example by the Miller-Schupp
embedding.

Our results generalize those of Anshel & Stebe (1974) who proved that
the groups studied by Lipschutz (1966) have solvable power-conjugacy
problem, and also, if G is such a group which is residually free and 2-free
(every 2-generator subgroup is free), then (G, f; fSif"1 = S-,) has solvable
conjugacy problem.

Let us also relate our results to those of Pietrowski (1974) about
non-cyclic one-relator groups with non-trivial center. Pietrowski proved that
such groups can be presented by

G = (au •••,am\a\' = aV, • • ; fl™"-.1 = a2r->

if GIG' is not free abelian of rank two, and by

G = (a, a,, • • -,am\ aa,a'' = am, a?1 = a?1, • • •, av^z\ = aj,™-')

otherwise. In both these we have p,, q{ i= 2 for each i, hence, the first defines a
group in si and the latter a group in si*.

The author has benefited from the referee's suggestion of using the
Miller-Schupp embedding to obtain these results more directly than in the
original.

2. Some definitions and notation

We only consider groups defined by specific presentations. This allows us
to represent elements of any group G by freely reduced words on the
generators of G and their inverses. As notation for such words we use upper
case Roman letters in the range R,--,W, together with the special symbol A
for the empty word. We also use 1 to denote the identity in arbitrary groups.

If U, W G G, then U = W means U and W define the same element of
(the abstract group) G, while U = W means U and W are identical as words.
The cyclic subgroup of G generated by U is denoted by (U).

We use

(G,*G2;Rl = R2)

to denote the free product of G, and G2 with the cyclic subgroups (/?,) and
(R2) amalgamated via Ri>-> R2. The elements R, E G, and R2B G2 are of
course assumed to be of the same order.
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388 Leif Larsen [4]

Let us now characterize si as the union

si= U sik
kBO

where si0 is the class of f.g. free groups, and for every k ̂  1, G £ sik if and
only if

for some i?< £ G, £ s£ki with k, < k for i - 1,2. This gives us a means of
proving results about si by induction on k.

Before proving results about cyclic HNN constructions

let us establish some terminology about elements of such groups. Now, let
W £ G* be a given word. If neither / nor /"' occurs in W, then W is called
t-free. If W is not /-free, then

(2) W=Wot''Wl---t'-Wn

where each W, is /-free. Here, and throughout this paper, we use e,e',ei,
etc., to denote ± 1. The number of /-symbols in W £ G* is called the t-length
of VV and denoted by l,(W). Thus, if W is given by (2), then l,(W)=n. If
W £ G* contains no subword t'W{t ' with Wi f-free and belonging to (Se),
then W is called t-reduced. If all cyclic permutations of W are f-reduced, and
W is either f-free or begins with a /-symbol, then W is called cyclically
t-reduced. Thus, if the W in (2) is cyclically /-reduced, then Wo = A. We also
say that U, WE.G* are t-parallel if they contain identical sequences of
/-exponents.

3. Conjugate powers and cyclic HNS constructions

The following result is valid for any group G.

LEMMA 5. Let U,V,WGG with (V) infinite, and suppose that
U'W-'E(V) for all igO. Then U1 / W2 implies Ux^ Wx for all x/0.

PROOF. If UVU'1 = V" implies a,b=0, then U = W; otherwise
U2Wz=U{UW~x)U-\UWl) and UW'1 cannot both belong to (V).
Hence, from U2 / W2 it follows that UVU~' = V" for some minimal a > 0.

In part for later use, let us prove

CLAIM. Let z be given and set q = b/a. Then, if U'V'W = Vz> for
every i g l , it follows that
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[5] The conjugacy problem 389

We establish this claim by induction on i. For i = 1 it is obvious, so
suppose the result for i and consider

V2<-= u'+lV'W-'-'= UV'W~'=

This in turn implies that

hence, zi+, - z, = kb = q(z{ - z) where z{ - z = ka. Thus,

z i + i - z = z x - z + q ( z t - z ) = (\ + q + •• • + q i ) ( z 1 - z ) .

In the proof of the present lemma we have z = 0 and z, =
(l + q + • • + qi~')z, with z ^ O . From U' = W with x >0 it now follows
that zx = 0. But then

as well, yielding q = - 1 since q = 1 is impossible. Since q = - 1 yields z2 = 0,
we must have Ux/ W for all x^O if t / V W2.

Using Lemma 5 we easily prove

PROPOSITION 6. If U,W G G* = (G, t; f 5 , r ' = S_,> arc not conjugate to

elements of G, and (Si), ( S i ) are infinite, then there exist integers a, b, and c

with

CPG-(U, W) = (a, b)Z U (ac, - bc)Z.

PROOF. We may assume U and W to be cyclically /-reduced, and let
a', b' >0 be minimal with U"' and W"' of the same f-length. By Collins (1969,
Lemma 3) it follows that if (x j )£CP c . ( [ / , W), then \x \ l,(U) = \y \l,(W).
Thus, if (x, y)£ CPa-(U, W), then (|x|,|y |)G(a\6')Z. It now suffices to
prove: If (a', eb') € CPG-(U, W), yet (x,y)<E CPa-(U, W) with xy =
e | xy | / 0, then

(x,y)£(2a',2eb')ZQCPo-(U,W).

To this end, suppose that JC>0 and y = e | y | ^ 0 . Hence, x = a'z and
y = eb'z for some z >0. Now, if Ux = VW'V"1, then Uz

0 = Wz
0 where

t/0— U"' and Wo= W ' V " 1 is cyclically /-reduced. Since this implies that
UiWo'EiS-.) for every igO where U = t'U', it follows that Ul= W2

0.
Moreover, from the assumption that (a', eb') £ CPG-(U, W) it follows that
Uo/ Wo, hence z must be even.

For U,WGG* = (G,t;tS1t'
1 = S-1) and U',W'eG we now simply

write CP^U, W) for CPO-(U, W) and CP(U', W) for CPG(l/', W).
Since CP*(SU Si) = CP*(Si, Sy) for every i, y = ±1 , the following result is

easily deduced from Britton's Lemma (1963).
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LEMMA 7. If G* = (G^-jS^'1 = S_,>, with (x, y ) G CP(S,, S,) implying

1 x I = I y I / o r eiwy «, 7 = ± i, ' « c

CP,(S,,S,) = U^ CP(S,,S,).

As a technical aid we need

LEMMA 8. Let G* = (G, t; tSit' = S-,) and suppose that

(x,.y)G CP(St, Si) implies \x\ = \y\ for i = ±1. Now, if (x, y) G CP*(SU S,)

and V G G * is of minimal t-length such that S" = VS\ V"', fnen V c a n contain

at most one subword of the form t~eVat' with Vo t-free.

PROOF. Since t'Vj'S't'VoU' = S ' implies |z | = |z ' | , such subwords
of V are only needed to change the sign of powers 5^ occurring in the
f-reductions of VSiV. Clearly, at most one such change is necessary.

The following result plays an important role in the proof of Theorem 4.

LEMMA 9. / / G* = (G, t; tS,r' = S-,), (a, b)& CP{SU S_,)

| a | ^ | f c | , all ( * , y ) e C P ( S 1 , S _ 1 ) sans/y ( | x | , | y | ) E ( | a | , | 6 | ) Z , and d =

gcd(a, b) with a = kd and b = md, then
(1) { k " d , m " d ) E C P * ( S l , S 1 ) for all n g l ;
( 2 ) if ( j c , y ) G C P , ( S , , S , ) w « n | a c | ^ | y | , t h e n ( \ x \ , \ y \ ) or ( \ y \ , \ x \ )

belongs to (| k \"d, \ m |"d)Z for some n =£ 1;
(3) // ( x , - J c ) e C P . ( S , , S I ) , rnen ( z , - z ) e CP(S,,S,)U CP(S-,,S-,)

for some z with z = x or one of (x, z) and (z, x) in (k"d, m"d)Z for some n g l .

PROOF. Note that the condition on CP(SU S-,) implies that all (x, y ) E

CP(S , , S,) U CP(S-U S-t) satisfy | x | = | y |.

(1) This follows by induction on n since for every n g O we have

(kn+'d, mrt+'d) = (kna,m"b).
(2) We prove by induction on /,(V) that for every i,j= ± 1 : if SI =

VSy, V' with \x | ̂  |y |, then the conclusion of (2) holds. The result is obvious
for V f-free, so suppose that V = V't'V0 with Vo /-free and the result
established for V. From

we then get either |JC| = | Z | with | z | ^ | y | , | x | ? ^ | z | with | z | = | y | , or

| x | ̂  | z | and | z | ̂  | y |. Only the last of these need further investigation, and

by symmetry, the following two cases suffice:

CASE 1. (| x |, | z |) = (| k \"df, | m \"df) and (| z |, | y |) = (| k | dg, | m | dg) for

some /, g £ Z . Since | k |dg = | m \"df and gcd(fc, m ) = l , it follows that
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[7] The conjugacy problem 391

f=\k\f and g = | m | T - Thus, (\x\,\y\) = (\k\"df,\m\dg) =

C A S E 2 . (\z \,\x | ) = (| k \"df, \m \"df) a n d (\z\,\y\) = (\k\dg,\m\dg).

From \k\"df=\k\dg we now get g = |fc|""7- T h u s > (| y |, | JC J) =

( \ m \dg, \m\"df) = (\k\" l d \ m \f, \ m \ " ^ d \ m \ f ) . S i n c e | x | ^ | y | , w e m u s t
have n - 1 2 1.

Before continuing, let us establish

CLAIM. If / only occurs with exponent e in W and /,(W) = n g 1, then
S; = WS?W-' implies that (|x | , |y |)G (|fc \"d,\m \"d)Z if e = 1, and
( |y | , |x | )G( |k |"d , |m| ' 1d)Z if e = - 1 .

We use induction on n. Now, if W = W't'W0 with Wo /-free, then

for some z. If / = e, then | z \ = | y | and

S-,= rs'jt-* = rwsi^rw)-1

with /,(r"W") = l,(W). Thus, we need only consider / '= - e, and hence
(z ,y)eCP(S- , ,S , ) . If n = l we are done, and otherwise ( | x | , | z | )G
(\k\-'d,\m\"-1d)Z if e = 1, and (|z | , |x |)G (|k T ' d , \m \-'d)Z if e = - 1.
Since y = — e, the claim now follows from case 1 of (2).

Instead of (3), let us prove: If S' = VSj'V'1 for i = ± 1 , then there exists
a 2 as asserted in (3). We use induction on /,(V) where V is assumed to be of
minimal such length; this makes Lemma 8 applicable. If V is f-free, then we
can take z = x, so suppose that V is not f-free, and that the result holds for all
V with l,(V')< l,(V). By Lemma 8 we can write V = U'W where t does
not occur with exponent - e in U or W. Thus, we now get t /S ' t / " 1 =
WS7"W~l where all t's can be removed by f-reductions on both sides. It easily
follows from the above claim that U or W cannot be f-free. Suppose now that
(x, - x) does not belong to CP(Sh S,) U CP(S-U S-,)- Then write U = U't'U0

and W = W't'Wo with Uo and Wo f-free. From US • Ul = WS~XW ' it now
follows that U'Sl^U'y1 = W'SZ^W')'1 for some y. If e = i, then x = y and
the inductive hypothesis applies. Suppose therefore that e/ i. By symmetry,
it suffices to consider e = - 1 . Thus, (x, y)G CP(SU S_i) with
(x,-y)^CP(SuS-i) implies that (x, y)G (kd, md)Z. If now ( y , - y ) G
CP(S,,Si) for i= ± 1 , then we are done. But otherwise the inductive
hypothesis implies that (y, z) or (z, y) belongs to (k"d, m"d)Z with n g 1 for
some (z, - z )G CP(SU 5,) U CP(S-U S-,)- By Case 2 of (2) and the minimality
of /,(V), it follows that (y, z ) £ (k"d, m"d)Z. But then, by Case 1 of (2) we get
(x,z)e(k" + 'd, m"+'d)Z.
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4. Collins' Lemma and cyclic HNN constructions

Let U and W be cyclically /-reduced elements of the HNN group

with U = t'U'. By Collins' Lemma we then know that U and W are
conjugate \t\ G* \i and ot\\^ \1

U = Si.W^S:*

for some x and cyclic permutation W,, of W. Thus, if we can decide for any
T, V, W E G * whether or not any x satisfies

UTXW= T\

then we can solve the conjugacy problem for all cyclically /-reduced elements
of G* that are not /-free.

To pursue the above reasoning in a more general setting, let H and K be
subgroups of some group G, U and W elements of G, and consider

{(S, T)G H x K, USW = T (in G)}

as a subset of the group H x K (the direct product). Since this is the graph of
the function G —> G, given by V •-• UVW, restricted to the (possibly empty)
subset of H mapped into K, we use the notation

gph(U, W;H,K) = {(S, T)EHxK;USW= T}.

For any subgroup N of H x K and element (So, To)& H x K, let
N(S0, To) denote the right translate of N by (So, To). Noting that
gph(U, W, H, K) is a subgroup of H x K if and only if W = U~\ we get

LEMMA 10. // (So, To) £ gph(U, W; H, K), then

gph(U, W; H, K) = [gph(U, U-'; H, K)](S0, To).

PROOF. Since US0W = To, it follows that USW = T if and only if
USW(USQW)-1=USSo1U'l=TTo1. Hence, (S,T)G gph(U,W;H,K) if
and only if (SSo1, TT0')(= gph(U, U~';H,K); that is, if and only if (S, T)G

In this paper we only consider cyclic graphs gph(U, W; C,, C2); that is,
graphs where the subgroups d and C2 are cyclic. Moreover, if C, = (T,) and
C2 = (T2) are infinite, then we identify these with Z through T* •-» x, and
simplify t)ur notation by setting

gph(U, W; T,, T2) = {(x, y) E Z2; t/T? W = T2
y}.
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[9] The conjugacy problem 393

The following result is now immediate.

COROLLARY 11. If T,,T2EG are of infinite order and (r,s)E
gph(U, W;T,,T2), then

gph(U,W;Tl,T2) = (r,s) + (

where (a, b)Z = gph(U, U"'; 7\, T2).
In view of this corollary we say that cyclic graphs can be (effectively)

computed in G if for any U, W,TUT2G.G we can:
(1) compute the orders of Ti and T2;
(2) list all pairs of gph(U, W;(Ti),(T2)) if <T,> or (T2) is finite;
(3) compute r,s,a,b&Z with (a, b)Z = gph(U, U'1; T,, T2) and

t/T[ W = T2 if and only if gph(U, W; Tu T2) ̂  0 whenever (Tx) and <T2> are
infinite.

The following lemma is our major technical result concerning computa-
bility of cyclic graphs.

LEMMA 12. If we can compute cyclic graphs in G, then we can also
compute such graphs in the HNN group G* = (G, t; tS^t'1 = S,>.

PROOF. From the hypothesis it follows that G has solvable generalized
word problem with respect to cyclic subgroups. Thus, we can effectively
f-reduce and cyclically f-reduce elements of G*; hence, by changing U and
W if necessary we may assume that T: and T2 are cyclically f-reduced, U and
W f-reduced.

Now, if T, is r-free while T2 is not, then UT\ W = T\ implies that

For each such y we can t-reduce U~*TlW~l to obtain a f-reduced word Vy,
and then check if Vy E.(Tt) in G. Such a y is necessarily unique, and by
hypothesis we can determine the corresponding T\ = Vy. The case with the
roles of T, and T2 interchanged is similar.

Two cases remain.

CASE 1. TUT2GG. Unless U and W"1 are t-parallel we get
gph(U, W;(T,),(T2)) = 0. Suppose that U and Wl are t-parallel and
proceed by induction on /,([/)= h(W). If U and W are r-free the hypothesis
of the lemma applies, so suppose that U = U't'Uo and W = Wot~'W with Uo

and Wo r-free. Moreover, assume that gph{U', W";(r!>,<T2)) can be com-
puted for any T[, T'2E. G. Assume also that T,, T2, Si, and S_i are of infinite
order; otherwise the result is easily obtained.
If now
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394 Leif Larsen [10]

U'rUoTlWofW = T\

for some x and y, then we must have

gph(Uo, Wo; Tt,Se) = (r0, s0) + (a0, bo)Z

and

gph(U', W; S-., T2) = (r\ s') + (a1, b')Z

where all constants can be computed. Moreover, unless ao,a'^ 0, it is easy to

compute gph(U, W; Tu T2). But clearly, if

lcm(\bo\,\a'\)= mobo = m'a'>0,

then we must have

gph(U, I/"1; Tu T2) = (moao,m'b')Z.

It now remains to check if UT[W = T2 for any r, s with 0s= r < \moao\.

CASE 2. l,(T,)= k , > 0 with lcm(kl,k2)= m /̂c, for i = 1,2. Then, for
any non-trivial (JC, y) E gph(U, U~l; Tu T2) we must have

|x |fci = \y \k2 = zniikt = zm2k2

for some z > 0. From this we get x = Eizm, and y = e2zm2 for some d and e2.
Writing To= UT'l'

r"lU~l and T3 = H2"12 with To and T3 cyclically /-reduced
and To = tcT'o, it follows from UTW1 = Tl that T^ = T\. Hence, for all
( g o we must have ToT^'E (S_e). If now (S-e) is infinite, then Lemma 5
shows that we can take z = 2. If instead the order of S-e equals c < °°, then we
can bound z by c. To see this, note that To 77' = T'o TV implies T'o~' = T'f.

We have thus reduced this case to the subcase where at most one pair JC,,
x2 can satisfy UT*' W = T2

2. But such a pair jti, x2 exists if and only if a pair
x!,X2 = 0 exists such that

where xc = SimiX]+ r, with o g r{ < m* for i = 1,2. Since only finitely many
quadruples (e,, e2, rt, r2) need be considered, it suffices to show how we can
bound x[,x2^0 given that eu e2, m,, m2 = 1, and hence r,, r2 = 0.

We now assume that fei = k2 with gph(U, W; Tu T2)/ 0 if and only if
UT" W = Ty

2 for some x, y s 0. It suffices to bound x, so suppose x is large
enough so that UT\W can be f-reduced to yield U'T'W as a f-reduced
word with x ' > l . If T, = t'T\, then T2

yU'T\'W'= 1 implies that

T-lT2
y'U' = S!Jr
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for some T3 with T2=T,t'T'3, y, g 0, and z ,EZ. Also, [/'Tf'W'Tjy= 1
implies that

T1W'T2y2T^' = S'-\

for some T4 with T2 = HT 4 = TU'T", y2g0, and z2GZ. Considering t-
lengths, it follows that

for some cyclically /-reduced cyclic permutation T2 of T2. Also, since

where f, = SivT.S:*' = rS'-TiS:*1, it follows that t/'T* W = 71 if and only
if

T?'-'S-v"2= 7T'1.

Writing 2 = 2i + z2, it now follows that

for every i g 0. If the order of S-r equals c < °c, then we can bound x' — 1 by
c. If S-e is of infinite order, then consider

as in the claim used in the proof of Lemma 5. If fiS°cfj' = S-c implies
a, b = 0, then J I ' - I S I . Assume therefore that q = b/a/ 0 and

z , - z =(1 +<? + ••• 4 -^ -Mz . -z ) -

We seek a minimal x > 0 with zx = 0, that is, with

If z = 0, then x = 1 or 2 works. If Zi - z = 0, then z = 0, so suppose that
z, Z i - z ^ 0 . But then, at most one x can satisfy

To determine this x, note that q = 1 implies x = z/(z, - z), while q / 1 implies

Since all the above reductions are clearly effective, and all constants, x',
zu z2, a, and b can be computed, the result follows.

For the proof of the next proposition we need

LEMMA 13. If we can compute cyclic graphs in d and G2, then we can
also compute such graphs in G, * G2 (the free product).
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PROOF. Any word U G G, * G2 can be written in reduced form

(3) l / = [ / , • • • * / „ ;

that is, with each Ut a word in G, or G2, and if n g 2, then each Ci / 1 and
Ut, Ui+, belong to distinct factors for each 1 g i < n. Each Ut in (3) is called a
syllable of U, and the number n of these is called the syllable length of U. If
U is either empty, belong to a factor, or is of even syllable length (as a
reduced word), then U is called cyclically reduced.

Suppose now that U, W, T,, T2£ Gx * G2 and consider the graph
gph(U, W;<r,),<T2». The case with (T,) finite for i = 1 or 2 is trivial, so
suppose T, and T2 to be of infinite order. Moreover, by our hypothesis we can
reduce and cyclically reduce elements of Gx * G2\ hence, by changing U and
W if necessary, let us asssume Ti and T2 to be cyclically reduced with U and
W reduced. Now, if exactly one of T, and T2 belongs to a factor, then
UT" W = Ty

2 immediately gives a bound on | x | or | y |. This is now just like the
beginning of the last proof.

Two cases remain.

CASE 1. T, and T2 have syllable length one. Write U = Ul • • • Un and
W = Wj • • • Wm as reduced words. From UT" W = 71 it now follows that
either all of U, W, Tu and T2 belong to the same factor, thus making our
hypothesis applicable, or one of UnT", T" W,, and UnT"Wt must be trivial for
some x. Whether or not such an x, which must be unique, exists can be
decided; and if it exists, then we can also compute the pair (x, y).

CASE 2. T, has syllable length fc, > 1 for i = 1,2. It is elementary to
determine a, b^O such that gph(U, U'1; Tu T2)^ (0,0)Z if and only if
gph(U,U~l;TuT2) = (a,b)Z. Thus, as in the last proof, we need only
consider the case where at most one pair x, y can satisfy UT" W = T\. Also,
we may also here assume that kt = k2, and show how we can bound the search
for such x, y a 0. If x is large enough, then we can reduce UT'W to obtain a
reduced word U'T"'W with x '>0 . But then, from U'T'W = 71 it follows
that

for some T3 and T4 with T37^= T2= T'4T4. From this we get TJ = f"2 for
some cyclic permutation t2 of T2, which is possible only if T, = f2. Since these
reductions are effective, the result follows.

To show that cyclic graphs can be computed in all G* G si*, we make
use of the Miller-Schupp embedding
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<p: G = (G, * G2; R, = R2)^G*0 = (Go, t; tR.t1 = R2)

where Go = d * G2. This <p, which is clearly effective, is induced by:

<p(U)= tUr1 for all [ /EG,

and

<p(W)= W for all WE G2.

PROPOSITION 14. We can compute cyclic graphs in all groups of si*.

PROOF. By Lemma 12 it suffices to prove that we can compute cyclic
graphs in all G £ si. For this we use induction on k where G E sAk. Since the
result is trivial for free groups of rank one, we easily obtain the result for si0

by induction on the rank of f.g. free groups using Lemma 13. For our jnain
inductive step, if the result holds for all G'E.stfk- with k'< k, and G =
(Gi * G2; Ri = R2)E sik, then Lemma 13 establishes the result for Go =
Gi*G2, Lemma 12 establishes it for Gt = <G0, t; tRjt'1 = R2), while the
Miller-Schupp embedding establishes it for G.

Note that this proposition also yields a proof of Theorem 1. This because
U £ (V) if and only if gph (U, A; (A), < V» / 0.

5. Conjugate powers and the class d*

Before turning to the proofs of Theorems 2 and 3, let us establish

LEMMA 15. Let U,WeG* = (G,t;tSlr
1 = S-l)(Esi4* be non-trivial

and t-free where CP(S,, S_,) = (0,0)Z, and assume that Theorem 2 holds for G.
Then we can compute a,b,cu---,cnEZ such that

CP*(U, W) = (a, b)Z U [ 0 (act, - bct)z\.

PROOF. If CP*(U, W) / CP(U, W), then

for some (x, y) ^ CP(U, W), where necessarily | z | = | z'\ ^ 0 and i and / are
uniquely determined by the assumption that CP(U,St) and CP(Sh W) are
^ (0,0)Z. Since we can compute CP(U, W), we may assume that we have
computed

CP(U, St) = (a,, b,)Z U [ 0

and
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CP(S,, W) = (a2, b2)Z U I" 0 (a2e,, - b2e,)z]

with at, a2 ̂  0.

CASE 1. iVy. Then CP(U, W) = (0,0)Z, and CP*(U, W) can be con-
structed from CP(U,Si) and CP(Sh W) as follows: First, let

/J. = km{\bs\,\a2\) = mxbi = m2a2

and set (a,b) = (m1a1,m2b2). Next, define c< by

Ctfx. = lcm(\bid, |, \a2\)

for each l g i S n,, and by

Cr̂ t = km(\bi\,\a2ei-n,\)

for each «i + 1 S i g n, + n2. Setting n = rii + n2, it easily follows that

U (ach-bc,)Z\.

CASE 2. i = j . Suppose that we have computed

CP( U,W) = (a,b)u\ 0 (ac '„ - be \)Z 1

t, S-,) = (1,1) U [ U (/„ - /-)z].
and

Then, unless a/0 and CP(S _f, S _ , ) ^ (1,1)Z, we must have CP*{U, W) =
CP(C/, W). To see this, note that if (x, y)G CP*(U, W) with
(x,y)£CP(U, W), then

for some z ̂  0 with (z, - z) G CP(S-,, S-,-). Moreover, we must have (x, z) G
(a,,fc,)Z, ( - z , y)G(a 2 , 62)Z, and (x, - y)G (a, b)Z; otherwise (x, y)G
CP(U, W). Since ft = mid, = m2a2 as in Case 1, we must have (mxau m2b2)G
CP(U, W). Moreover, defining g, by

for each 1 ̂  i g n0, it follows that

(g ,m 1 a 1 , -g ,m 2 i 2 ) eCP , ( l / ) W)

for each such i. Now, if the products ab and mlalm2b2 have the same sign,
then define c" by

https://doi.org/10.1017/S1446788700019546 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019546


[15] The conjugacy problem 399

gitn.cii = c"a

for each I S i S nn. We now get

U (ac^-bc^Zl

where n - n' + n0, d = c\ for each l S i S n', and ct = c"_n for each n ' + l S

i ' g « ' + n 0 . If the products ab and mia\m2b2 have opposite signs, then

As a partial proof of Theorem 3 and 4 we have

PROPOSITION 16. Let U,WGG* = (G,t;tSj'l=S^l)G^* be cycli-
cally t-reduced and not t-free. Then we can compute a,b,cE.Z such that

CP*(U, W) = (a, b)Z\J(ac,-bc)Z.

PROOF. From the proof of Proposition 6, it suffices to prove that we can
decide for any cyclically f-reduced U',W'&G* with l,(U')= l,(W')>0
whether or not U' ~. W. By Collins' Lemma we know that U' and W are
conjugate in G* if and only if

U'= S-eW'wSz'e

for some x and cyclically ^-reduced cyclic permutation W'n of W where
U' = teU". But this is equivalent to having

(x,x)Ggph(U',(W'.)~l;S..,S..)

for some W'w. Since only finitely many W'^ need be considered, and

(x,x)e(r,s) + (

if and only if (a - b)z = s - r for some z E Z, the result follows from
Proposition 14.

We can now complete the

PROOF OF THEOREMS 2 AND 3. Because of Lemma 15 and Proposition
16, it suffices to prove Theorem 2. To prove this theorem for all G £ si we
proceed by induction on k where G G sik. The result clearly holds for f.g. free
groups, so consider G = ( d * G2; Ri = ̂ 2)6 s4k with the result established
for G, and G2. But then it must obviously hold for Go = G, * G2 too. Since the
Miller-Schupp embedding

<p:G-*Gt = (G0,t; tR,t ' = R2)

is easily seen to satisfy

CPo(U, W) = CPoicp(U), <p(W))
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for all U,W E G, the result now follows from Lemma 15 and Proposition 16.
Note that CP^R:, R2) = (0,0)Z.

For the proof of Theorem 4 we need

LEMMA 17. If G* = (G, t; tSj'1 = S_,) G si*, we can decide for any x
and y whether or not (x, y)G CP*(Si, S,).

PROOF. By Theorem 2 we can compute CP(Si,Sj) for each i,j= ± 1 .
Now, if all (x', y ')G CP(S,,S^i) satisfy |x ' | = |y' | , then Lemma 7 applies. On
the other hand, if CP(SU S ,) contains some pair (x', y') with \x'\ ^ |y ' | , then
we use Lemma 9. Suppose therefore that (a, b)E CP(S,, S_,) satisfies the
hypothesis of Lemma 9. Hence, a = kd and fc = m<i where d = gcd(a, b).

CASE 1. | * | = |y|- Only the subcase with y = — x and
(x, — x) £ CP(Si, Si) for i = ± 1 need be considered. By Lemma 9, we must
determine if (x,z) or (z,x) belongs to (k"d,m"d)Z for some n i? 1 with
(2 , - z )GCP(S l l S 1 )UCP(S- 1 ,S - 1 ) . If (x,z) = (k"df,mndf) for some / G Z ,
then | / | is bounded by |x |. Moreover, if | k | ̂  1, then n is also bounded. If
instead | k | = 1, then | m | ̂  1, and we can easily decide if (m "df, - m "df) G
CP(Si,Si) for some n g 1 and i = ± 1 . The result follows by symmetry.

CASE 2. | x | ^ | y | . Since (|x |, |y |)G (|fc \"d,\m \"d)Z with
(x, y) g(k"d,m"d)Z implies that (x, - y)G {k"d, m"d)Z, and (k"d,m"d)ZC
CP*(S,,Si), this case is thus reduced to Case 1.

We can now prove Theorem 4.

PROOF OF THEOREM 4. Let G* = (G,t; tSj1 = S_,)G si*, and suppose
that U, WE. G* are cyclically t-reduced. Now, if exactly one of U and W is
f-free, then U and W cannot be power-conjugate. If neither of U and W is
f-free, then Proposition 16 applies.

It remains to consider U, W E G. If U g- W, then U ~ W. Suppose
therefore that U + W. If still U ~ W, then

U ~ S"t ~ Sj ~ W

for some x, y and i, j . By Theorem 2 we can determine all such pairs (x, y),
and by Lemma 17 we can decide if (x, y)€E CP*(SUS,). This completes the
solution of the conjugacy problem for G*. Finally, if U and W are
power-conjugate in G, then they are also power-conjugate in G*. Further-
more, if CP(U, W) = (0,0)Z, then CP*(U, W)^(0,0)Z if and only if

for some x, z, z', and y. But this holds if and only if CP(U, S.) and CP(Sh W)
are / (0,0)Z for some i, j = ± 1.
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