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Abstract. Charles Conley has shown that for a flow on a compact metric space, a
point x is chain recurrent if and only if any attractor which contains the w- limit
set of x also contains x. In this paper we show that the same statement holds for a
continuous map of a compact metric space to itself, and additional equivalent
conditions can be given. A stronger result is obtained if the space is locally connected.
It follows, as a special case, that if a map of the circle to itself has no periodic
points then every point is chain recurrent. Also, for any homeomorphism of the
circle to itself, the chain recurrent set is either the set of periodic points or the entire
circle. Finally, we use the equivalent conditions mentioned above to show that for
any continuous map / of a compact space to itself, if the non-wandering set equals
the chain recurrent set then / does not permit fi-explosions. The converse holds on
manifolds.

1. Introduction
This paper is concerned with properties of chain recurrent points and the chain
recurrent set for continuous maps. Throughout the paper, we let X denote a compact
metric space (with metric d),/denote a continuous map from X to itself, and R(f)
denote the chain recurrent set (defined in § 2).

Our first result (proved in § 2) gives some necessary and sufficient conditions for
a point x € X to be chain recurrent. Before stating this result we recall a few
definitions. If Y is a subset of X we set

<»(Y)=r)(\Jfk(Y)).
n=0 \*>j /

If y € X, the (o limit set of y is <i>(y) = a)({y}). Following Conley, [4], we say a subset
K of X is an attractor if there is some open set Y containing K with K = «(Y).

THEOREM A. Let xe X. The following are equivalent.
(1) xtR(f).
(2) There is an open set U with xiU, f(x) e U, andf( U)c U.
(3) There is an open set U with xiU, f(x) e U, andf{ U) <= U.

https://doi.org/10.1017/S0143385700002972 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002972


322 L. Block and J. E. Franke

(4) There is an open set U with xi U, f( 0) <= U, and fk{x) € U for some positive
integer k.

(5) There is an attractor K with xiK and w(x)<= K.

We remark that in the case of flows, the equivalence of (1) and (5) was shown by
Conley (see [4, p. 37]). Similar ideas were also used by Bowen, [3], and Dowker
and Friedlander, [7], in connection with abstract OJ limit sets. In proving theorem
A we obtain the following characterization of attractors for maps, which relates
Conley's definition of attractor to that of other authors (see [8], [15] and [16] for
example).

LEMMA 3. Let K<^X. K is an attractor if and only if there is an open set U containing

K with f(U)<=Uand K = fX=o/"(

The implication (1)=>(5) of theorem A says that unless every point is chain recurrent
there is a proper subset K of X which is an attractor. In general, as an example in
§ 3 shows, there need not exist a connected attractor, even for an iterate of /
However, if X is locally connnected, we have the following.

THEOREM B. Suppose X is locally connected and x e X. The following are equivalent.
(0 xtR(f).
(2) There exists a connected open set U and positive integers n and k such that

x 2 [/,/"(£/)<= U, andfkn(x)e U.
(3) For some positive integer n, there is a connected attractor K off such that

xiK and w{x,f") c K {where (o(x,f") denotes <a{x) for the mapf).

The following corollary is easily obtained from theorem B.

COROLLARY C. Let X be connected and locally connected. The following are equivalent.
(1) R{f)*X.
(2) There is a connected, open set U with U¥= X andf(U) c U for some positive

integer n.
(3) For some positive integer n, there is a connected attractor K off" with K ̂  X.

In the special case where X is the circle either statement (2) or (3) of corollary C
immediately implies the existence of a periodic point. Thus we obtain the following.

COROLLARY D. Iff is a continuous map of the circle to itself with no periodic points
then every point is chain recurrent.

Corollary D could also be proved by using the result of Auslander and Katznelson
given in [1]. Using corollary D we prove the following result for homeomorphisms
of the circle.

COROLLARY E. Iff is a homeomorphism of the circle to itself, then R(f) is either the
circle or the set of periodic points.

Note that corollaries D and E do not hold for the non-wandering set as the example
of Denjoy ([6], [9]) shows.
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The final section of the paper (§ 4) deals with explosions of the chain recurrent
set and the non-wandering set. Let C(X, X) denote the space of continuous maps
from X to itself with the uniform topology. We say / does not permit R-explosions
if for every e > 0 there is a neighbourhood N(f) in C(X, X) such that if g e N(f)
then for any x e R(g), d(x, R(f)) < e. The expression '/does not permit ft-explosions'
is defined analogously. We emphasize that here we are looking at the C° topology
and C° explosions. Using theorem A, we prove:

THEOREM F. Iffis any continuous map of a compact metric space X to itself, thenf
does not permit R-explosions.

As an immediate corollary we have:

COROLLARY G. / / il(f) = R(f) then f does not permit ft -explosions.

In general the converse of corollary G may be false as an example in § 4 shows.
However, using a form of the closing lemma in the case where X is a manifold we
obtain:

THEOREM H. IfX is a compact topological manifold then il{f) = R(f) if and only if
f does not permit il-explosions.

Corollary G and theorem H extend similar results proved in other settings (see [10],
[11], [13], and [14]). The authors would like to thank David Hart, Zbigniew Nitecki,
and R. Clark Robinson for helpful conversations relating to this work.

2. Proof of theorem A
We first review some terminology and notation. Recall X denotes a compact metric
space and / denotes a continuous map from X to itself. If xeX and j e X a n
e-chain from x to y is a finite sequence of points {x0, x , , . . . , xn} of X with x = x0,
y = xm and d(/(Xj_,), xt) < e for i = 1 , . . . , n. We let Re(x) denote the set of y e X
such that there is an e-chain from x to y. We say x can be chained to y if y e Re(x)
for every e > 0, and x is chain recurrent if x can be chained to x. The set of all chain
recurrent points is denoted by R(f). Finally, we say a subset Y of X is positively
chain invariant if for every yeY and xeX\Y, y cannot be chained to x.

LEMMA 1. Let x e X and e>0. Re(x) is an open positively chain invariant set with

Proof. It follows easily from the definitions that Re(x) is open and positively chain
invariant. We show that f(Re(x)) <= J?£ (x). Let j> e Re(x). There is a 8 >0 with 8 < e
such that if d(y, z)<8 then d(f(y),f(z)) < e. Since y € Rc(x), there i s a z e Re(x)

with d(y, z) < 8. Let {x0,... , xn} be an e-chain from x to z. Then {x0,.. . , xmf{y)}
is an e-chain from x to f(y), so f(y) e Re{x). Thus f{Re(x)) <= Re(x). •

We will use the following lemma from [2].

LEMMA 2. Let S be a positively chain invariant subset ofX. Ifx & S andfk(x) e Sfor
some positive integer k, then xi R{f).
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LEMMA 3. Let K<= X. K is an attractor if and only if there is an open set U containing

K with f(U)<= Uand K=n7=of"(U)-
Proof. Suppose K is an attractor. There is an open set Y containing K with
K = u>{ Y). If for each positive integer i, / ' (Y) contained points outside of Y there
would be an element of w( Y) outside of Y, contradicting w( Y) c V. Thus, for some
positive integer k,fk(Y)<^ Y.

Let Yfc_i be an open set containing fk~\Y) such that /(Yk_,)c Y, and let
Yk_2,... ,Y2, and Y, be open sets such that Y, contains / ' (Y) and /(Yj) <=• Yi+l for
i=\,...,k-2. Let

U= Y,u Y2u- • -u Yk_,u Y.

Then f(U)<=U and

This proves one direction. The other direction is immediate (take Y= U). •

Proof of theorem A. The implications (2)=J>(3), (3)=>(4), and (4)=>(5) are immediate.
We prove (1)=»(2) and (5)=»(1).

(1)=»(2). For some e > 0 , x^i?f(x). Let W=Re(x). By lemma 1, W is open and
f(W)c w. Also, xiW but / (x )e W We may assume that xeW, or else the
conclusion follows with U = W. There is an open subset U of X with /(W) <= U <=
C/c W Then xg 0, f(x)G t/, and / (U)c t/.

(5)=»( 1). By lemma 3, there is an open set U with/( 0) <= U and X = (X=o/"( ^ ) -
Since xi^ K, xifm( U) for some positive integer m. Let W be an open subset of X
such that /m(t7)c We Ubutxi W. Since fm(W)cz W it follows that W is positively
chain invariant under/"1. On the other hand, as w(x)<= K, we have that/ ' (x)e U
for some positive integer / Thus, fi(x)e W for all i^j+m, and in particular,
fmk(x) G ^ for some positive integer k. By lemma 2,xi R(fm), and since R(fm) =

([2], [12]) x * * ( / ) . D

3. Proof of theorem B and corollaries

Proof of theorem B. (1)=2>(2). By hypothesis, xg/?E(x) for some e>0 . Since X is
locally connected, each component of the open set Re(x) is open. Thus, the compact
set f(Re(x)) is covered by a finite number of components of Re(x), say
Vu V2, , Vk. For each i e{ l , . . -, k} there is a unique je{l,2,...,k} such that

/(V,)c V;. It follows that (2) holds for some Ue{Vlt...,Vk}.

(3)=»(1). By (5)=>(1) of theorem A, x<£ R(fn) = R(f). D

The proof of corollary C may easily be obtained by the reader. We remark, however,
that this corollary (and theorem B as well) may be false if X is not locally connected.
To see this, we construct an example of a homeomorphism / denned on a subset
X of the plane. Let S1 denote the unit circle on the plane and let h: Sl -> S1 denote
the Denjoy homeomorphism ([6], [9]). Let K denote the non-wandering set of h,
and recall that K is homeomorphic to the Cantor set.
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Let X consist of all points (r, 0) in the plane, in polar coordinates, with 0 < r < l ,
and (1, 6) e K. In other words, X consists of the set K together with the line segments
drawn from each point of K to the origin. Note that X is compact and connected,
but not locally connected. We define a homeomorphism f:X->X by f{r,d) =
(vr, h{6)). Then K is an attractor for/ and by theorem A, R{f) consists of the set
K and the origin (which is a fixed point). Thus, for this example, statement (1) of
corollary C holds, but neither (2) nor (3) holds.

COROLLARY E. Iffis a homeomorphism of the circle to itself, then R(f) is either the
circle or the set of periodic points.

Proof. Let S' denote the circle. If every point of S1 is periodic, then the conclusion
is immediate, so we may assume that the set of periodic points of/, which we denote
by P(f), is a proper subset of S1. If P(f) = 0 , the conclusion follows from corollary
D, so we may assume that P(f) T6 0 . Since the periodic points of a homeomorphism
of S1 have at most two different periods (see [9]) and R(f) = R(f"), we may assume
that P(f) consists entirely of fixed points of / Also, again replacing / by f2 if
necessary, we may assume that / maps each component of Sl\P(f) onto itself.

Now, for each component V of Sl\P(f) there is a direction, either clockwise
or counterclockwise, such that / moves each point in V in the specified direction.
If the directions are the same for all components, then it is easy to verify that
R(f) = S\ If the directions for two components are different, let x e Sl\P{f) and
let y be in a component with the opposite direction. Let U denote the open interval
from x to y which contains/(x) and /(>>). Then xi U,f(x)e U, and/(£/)<= U. By
theorem A, x is not chain recurrent. Since x was arbitrary, R(f) = P{f). •

4. Explosions

THEOREM F. Iffis any continuous map of a compact metric space X to itself, then f
does not permit R-explosions.

Proof. Let e>0 and let Y = X\N(R(f), e), where N(R(f),e) =
{xeX: d(x, R(f)) < e}. Let y e Y. By theorem A there is an open subset Uy of X
such that f(Uy)c Uy and yiUy but/(>>)e Uy. There is an open neighbourhood Oy

of y such that f(6y)c Uy and 6yn0y = 0 .
There is a neighbourhood Ny(f) of/ in C{X, X) such that if geNy(f) then

g{Uy)cL Uy and g(Oy)c Uy. By theorem A, this implies that if ge Ny(f) then no
point of Oy is in R(g).

The set of Oy formed as above for each ye Y is an open cover of Y. Let
{Oyi,..., OyJ be a finite subcover, and let Nyi(f),..., Nyk(f) be the corresponding
neighbourhoods of/ in C(X,X) as above. Let N{f) = Nyi(f)n- ••nNyk(f). If
g e N(f) then YnR{g) = 0 . •

As an immediate corollary we have:

COROLLARY G. / / O(/) = R(f) then f does not permit ft -explosions.

Note that, in general, the converse to corollary G may be false. For example, let X
be the subset of the plane given byX = S ' u K where S1 = {(x, y) e R2: x2 + y2 = 1}
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and K = {(x, y)eU2: x = 0 and y = ±(\ -(1/n)) for some positive integer n}. Define
/i on S1 to be the north pole-south pole homeomorphism (i.e. (0,1) and (0,-1)
are fixed points of/, and for all other points (x, y) the second coordinate of/,(x, y)
is less than y). Define/, on K by/2(0, l) = (0, l),/2(0,-1) = (0,- l) , / 2(0,1-( l /n)) =
(0,1-(1/n+l)) for each . positive integer n, and /2(0, -1 +(l/n)) =
(0, -1 + (l/n -1)) for each integer n >2. There is a unique map / from X to itself
such that f\ S' =/, and / | K =/2, and / is a homeomorphism of the compact metric
space X to itself. Note that R{f) = X while fl(/) = {(0,1), (0, -1)}. The reader can
verify that / does not permit fl-explosions.

The converse to corollary G is true on topological manifolds. To prove this we
need an appropriate closing lemma for our setting. We give a simple proof, similar
to the proof for homeomorphisms given in [13] (see also [5]).

LEMMA 4. Let M be a compact topological manifold with metric d. Let N(I) be a
neighbourhood of the identity map in C(M, M). There is a S > 0 such that if
{(P\, 9i)» • • • , (Pk, <lk)} ^ a finite set of points in MxM satisfying:

(i) for each i = 1 , . . . , k, d(ph qt) < S; and
(ii) if i it), then pt * pj and qt * qs;

then there is an he N(I) with h(p() = qtfor i = 1 , . . . , k.

Proof. It is shown in [11] that the conclusion holds if the dimension of M is at least
two. In fact, in this case h can be chosen to be a homeomorphism (a diffeomorphism
if M is smooth). In the one-dimensional case one easily constructs the map h by
sending p, to q{ and extending to a piecewise linear map. In this case, of course, h
can not always be chosen to be a homeomorphism. •

LEMMA 5 (Closing Lemma). Let M be a compact topological manifold and f a
continuous map of M to itself If xeR(f) then for any neighbourhood N(f) in
C(M, M) there is a g e N(f) such that x is a periodic point of g.

Proof Let N(I) be a neighbourhood of the identity map in C(M, M) such that if
h € N(I) then h ° / e N(f). Let S > 0 be as in lemma 4, and let {x0, x , , . . . , xk} be
a 5-chain from x to x with k minimal. It is easy to verify that the set of points
{(/(xo), x\ ) , - • • , (f(xk-\), *k)} satisfies the hypothesis of lemma 4, so there is an
h e N(I) such that h(f{xt)) = xi+l for i = 0 , . . . , A: - 1. If g = h °f then g e N(f) and
x is a periodic point of g. •

Theorem H now follows immediately from corollary G and lemma 5.
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