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The low Reynolds number solution of the wind—wave interaction problem is found in
Cimarelli et al. (2023 J. Fluid Mech. vol. 956, A13), to be characterised by a skewed
pattern of small-elevation waves on the bottom of a turbulent wind where drag reduction
is caused by a wave-induced Stokes sublayer. The inhomogeneous, anisotropic and
multiscale phenomena at the basis of this interesting solution are analysed here by means
of the generalised Kolmogorov equation. It is found that the large and coherent structures
populating the wind are the result of an upward shift of the self-sustaining production
mechanisms of turbulence and of intense reverse energy cascade phenomena. The upward
shift of production and the intensification of the reverse cascade are recognised to be
the result of a periodically distributed pumping of scale energy induced by the pressure
field associated with the wave-induced Stokes sublayer. The low dissipative nature of the
wind—wave interface region is also investigated and is found to be related to a layering
effect generated by the simultaneous presence of wave-induced pressure fluctuations
and of wind-induced velocity fluctuations that interact with each other in an incoherent
manner. Finally, the theoretical framework provided by the generalised Kolmogorov
equation is also used to rigorously define two relevant cross-over scales for the filtering
formalism, the shear scale identifying the energy-containing motion and the split energy
cascade scale identifying the cross-over between forward and backward cascades. Well-
defined quantitative criteria for the definition of spatial resolution and for the selection of
turbulence closures in coarse-grained approaches to the wind—wave problem are provided.
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1. Introduction

A weather forecasting system is composed of many subsystems: the atmospheric model,
the wave model, the land-surface model and the ocean model. The coupling between these
subsystems mainly relies on transfer coefficients that regulate the fluxes of momentum
and heat between them (Charnock 1955). Of particular relevance is their behaviour at the
ocean—atmosphere interface. The reason is given by the fact that the oceans cover 71 % of
the Earth’s surface, making such interface phenomena very relevant for the atmospheric
dynamics (Sullivan & McWilliams 2010). The exchanges across the interface with oceans
abruptly affect the atmosphere and the understanding of the driving mechanisms would be
certainly fundamental to improving the reliability of the transfer coefficients and, hence,
the weather and climate prediction capabilities. Several theoretical models were proposed
to explain the wind—wave phenomena (Miles 1957; Phillips 1957) and experimental data
have provided valuable insights into the physical process (Csanady 2001; Sullivan &
McWilliams 2010; Buckley & Veron 2019). However, after decades of research efforts,
our understanding of the wind—wave problem is still recognised as extremely elusive. The
reason is the multiscale nature of the phenomena involved. Indeed, the large scales of
the turbulent wind are affected by the smaller scales of water waves which in turn are
influenced by the wind itself, thus forming a complex multiscale mechanism. Most of the
previous attempts have focused on the position-dependent behaviour of the phenomena.
However, the description in physical space alone is insufficient to capture the real
dynamics. With this aim, a more general theoretical framework has been developed,
the so-called generalised Kolmogorov equation (Hill 2002). Such an equation provides
a complete and formally precise description of both the scale- and position-dependent
dynamics and will be used in the present work to unveil fundamental phenomena at the
basis of the wind—wave interaction problem.

1.1. Approaches to the wind—wave problem
In weather prediction models, the momentum flux in the surface layer is represented as

T= ,Oaui, (1.1)
where p, is the air density and u., is the wind friction velocity. By using the law of the
wall

U 1
W _ 1 (1) , (12)
Uz, K ko

the value of u, is derived from the neutral wind velocity (corrected for non-uniform
temperature) at a reference height of 10 m, Ujoy = U (y10). Here, U(y) is the mean
velocity profile, y is the height above the surface, « is the von Karmén constant and kg
is the roughness length. The effect of stratification of the atmosphere is included by using
the Monin—Obukhov similarity theory (Monin & Obukhov 1954) which typically holds in
a surface layer height of approximately 50 m. By using (1.2) we can rewrite (1.1) as

7= psCpN U12()N, (1.3)

with Cpy = [« / In(y10/ ko) 1> being the neutral drag coefficient. The surface roughness kg
over land is considered constant or climatologically slowly varying with time following
vegetative changes. Instead, over the ocean, the surface roughness is strongly coupled
with the wind state conditions (Janssen 1989; Komen et al. 1994; Belcher & Hunt 1998).
The characterisation of momentum transfer between wind and waves reveals three main
factors that influence Cpy: the wind regime (low wind speed Ujg <4 ms~!, high speed
Uip >20ms~! and moderate wind in between); the wind—wave coupling as expressed
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by the wave age parameter, 8 =cp/u.,, with ¢, the phase speed of waves at their
peak frequency (8~ 10 for young waves, B~ 30 for old waves and fully developed
sea conditions in between); and the alignment between wind and waves. Most of the
uncertainties in the drag coefficient are found at low and high wind speeds. In low wind
speed regimes a reduction of drag is often observed and this is often attributed to the
presence of swell waves which pump momentum upward (wave-driven winds) (Hanley,
Belcher & Sullivan 2010; Edson et al. 2013; Jiang et al. 2016). Also the misalignment
between swell waves and the wind could explain the large scatter observed in swell-
dominated conditions (Patton et al. 2019; Cimarelli, Romoli & Stalio 2023). At high wind
speed a saturation of the drag coefficient with increasing Ujg is observed. This behaviour
has been attributed to various mechanisms: sea-spray generation (Troitskaya et al. 2018),
wave breaking, airflow separation (Donelan et al. 2004; Scapin et al. 2025) and local
wind—wave misalignment (Zhou et al. 2022; Manzella, Hara & Sullivan 2024).

Overall, the complex interaction between wind and waves and the many flow properties
involved in this problem (e.g. wave height, swell waves, wind fetch length, water depth)
render field observations difficult to rationalise and a consensus among the different
formulations proposed for the relevant scaling parameters in the wave boundary layer
remains elusive (Edson ef al. 2013; Curcic & Haus 2020). In this context, numerical sim-
ulations have shown promising results, especially for low to moderate wind speed where
the computational cost remains affordable (Li & Shen 2022; Wu, Popinet & Deike 2022;
Cimarelli et al. 2023). The main difficulty is due to the numerical treatment of the high
jump of fluid properties occurring at the air—water interface. To avoid such a problem the
wind field is often decoupled from the wave evolution, which is prescribed by considering
idealised (monochromatic) stationary or travelling waves (Sullivan, McWilliams & Moeng
2000; Kihara et al. 2007; Yang & Shen 2010; Druzhinin, Troitskaya & Zilitinkevich 2012).
On the contrary, a simple coupling between wind and waves can be added by considering
the air pressure distribution over the water surface and solving the nonlinear waves using
the Zakharov formulation (Zakharov 1968). Such procedure has been used both in Direct
Numerical Simulation (DNS) (Liu et al. 2010; Wang et al. 2020) and large-eddy equations
(LES) (Yang, Meneveau & Shen 2013; Hao & Shen 2019). However, assuming the water
motion as a potential flow requires the effects of viscosity, turbulence, surface tension and
wave breaking to be negligibly small. Fully coupled numerical simulations with a direct
solution of the air—water interface can overcome many problems of the above-mentioned
approaches. However, only few attempts have been performed by Yang, Deng & Shen
(2018) for studying breaking waves, by Wu et al. (2022) for the early-stage transient growth
of water waves and by Cimarelli ef al. (2023) for studying interaction phenomena at wind—
wave equilibrium. In the following we focus on Cimarelli et al. (2023), since this work
represents a further deeper analysis of their simulation.

1.2. Direct numerical simulation of turbulent wind over water waves at equilibrium

To the best of our knowledge, the simulation performed in Cimarelli et al. (2023) is the
only example of a two-phase wind-wave interaction problem where the turbulent wind
and the water waves reach an equilibrium. The flow case consists of a two-phase open
channel where an air layer interacts with an underlying water column. The flow solution is
obtained by solving the continuity and momentum equations

ou’®
—0,
0X; (1.4)
or ' ox; | ox | ox; Jo TS8R
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where u;‘ is the velocity field, p is the pressure field, t; = 2.S;; is the viscous stress tensor
with S;; the strain rate tensor and p the dynamic viscosity, fo, is the surface tension, g;
the acceleration due to gravity and p the density. In the following the indices i =1, 2, 3
correspond to the streamwise, vertical and spanwise (x, y, z)-directions and (u*, v*, w*)-
velocities and y = 0 is the average vertical position of the interface between the two fluids.
The different physical properties of the two immiscible fluids are taken into account by
solving a transport equation for the volume fraction (Hirt & Nichols 1981). The properties
of the two fluids are p, = 1, pp = 1103, 1y = 1.48%x 107> and py = 1x 1073 where the
subscripts w and a are used to denote quantities computed for water and air, respectively.
Finally, a surface tension coefficient o = 0.07 is adopted. More details about the numerical
setting, spatial resolution and domain dimensions can be found in Cimarelli et al. (2023).

The evolution of the flow is studied starting from an initial condition where the two
fluids are at rest and the air—water interface is flat. The flow is driven by a streamwise
pressure gradient, thus allowing us to study the self-development of the wind—wave
problem in a fully coupled first-principles framework. Hence, no wave pattern is imposed.
After an initial transient of wave growth and turbulent wind evolution, the flow system
reaches a statistically steady state where water waves are in equilibrium with the turbulent
wind. Thanks to the use of periodic boundary conditions, such a statistical equilibrium
state is reached for formally infinite fetch length. The obtained statistical equilibrium is
characterised by a turbulent wind at friction Reynolds Number Re., =~ 320 on top of an
almost quiescent and laminar water layer at Re;, ~ 100. A drag-reducing flow physics
has been unveiled (Cimarelli et al. 2023). This evidence and the related flow statistics
represent the starting point of the present work and are resumed in the next section for the
sake of completeness. Hereafter, flow variables are made non-dimensional by using the
wind friction length /;, =v,/u., and the wind friction velocity u,. The resulting non-
dimensional variables will be denoted with a superscript 4. The value of u, is evaluated
at the location of the maximum of the mean velocity gradient, in analogy with wall
turbulence. This location is found to be slightly above the water—wave pattern (yO+ =0.37)
with a corresponding mean velocity of U(;L =0.75.

To better understand the effects the wind—wave interaction mechanisms have on the
turbulent wind, we will compare the present wind—wave solution with that of a turbulent
channel flow at a very similar friction Reynolds number, Re; = 300. The direct numerical
simulation data of the turbulent channel have been already used in Cimarelli & De
Angelis (2011, 2012), to which the reader is referred to for the details about the numerical
settings.

1.3. Wave-induced Stokes sublayer

The direct numerical simulation reveals that the flow reaches a statistical equilibrium
consisting of a turbulent wind over an oblique pattern of water waves propagating upstream
at an angle y =38° with respect to the wind direction, see figure 1(a). The measured
wavelength is AT =296 that, due to the inclined wave pattern, leads to streamwise and
spanwise wavelengths (/ljc', /lj) = (475, 380). Despite the very small elevation of the
water—wave pattern, 8 = 0.3, the turbulent wind on top is found to be significantly
affected, see figure 1(b). In particular, by comparing the mean velocity profile with that
realised in wall turbulence (Nagaosa & Handler 2003), a significant drag reduction is
observed in the form of an upward shift of the mean velocity profile AB™ = 1.6. Both the
mean velocity and turbulent profiles agree with the presence of a near-interface weakening
of turbulence.
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Figure 1. Direct numerical simulation of the wind—wave interaction problem (Cimarelli ez al. 2023). (a) Iso-
contours of the wave elevation n*(x, z). (b) Iso-surfaces of 1, =2.5 coloured with the streamwise velocity
scaled with the top boundary velocity U;,p.

Cimarelli ef al. (2023) argued that at the basis of the near-interface weakening of
turbulence is the presence of a wave-induced Stokes sublayer. It consists of an oscillating
spanwise forcing of the near-interface turbulent wind induced by the non-sheltering
behaviour of the wind itself over the inclined water—wave pattern. Due to the low elevation
of water waves, the wind is able to follow the water—wave shape, thus accelerating on the
windward side and decelerating on the leeward side. This behaviour leads to a pressure
field that is minimum above the wave crests and maximum within the trough region.
Because the water—wave pattern is skewed with respect to the mean wind direction, these
pressure variations give rise to periodically distributed pressure gradients in both the
streamwise and spanwise directions. The latter is responsible for the generation of an
oscillating spanwise forcing, thus inducing an alternating spanwise motion that takes the
form of a streamwise travelling wave whose wavelength is A} =475 and phase speed is
¢ =—10, see figure 2. This periodically distributed spanwise forcing emulates the flow
behaviour of the so-called generalised Stokes layer that is widely recognised to reduce
the momentum transfer and, hence, drag in wall-bounded turbulence (Quadrio & Ricco
2011). In particular, Cimarelli et al. (2023) measures a penetration length of the wave-
induced Stokes sublayer of the order of ¢ =2 with an induced spanwise motion of
the order of |w|t ~1072. Let us point out that the measured reduction of streamwise
momentum transport toward the interface is rather surprising. From the one hand, Ghebali,
Chernyshenko & Leschziner (2017) tried to reproduce a similar Stokes sublayer by
simulating the flow over skewed wavy walls but no clear evidence of drag reduction has
been achieved. On the other hand, Nakanishi, Mamori & Fukagata (2012) found that drag
reduction can be achieved with streamwise travelling wall deformations only when moving
downstream, contrary to what we observe with upstream travelling wind waves. Despite
the similarities with these works, the wind—wave problem exhibits substantially different
flow properties that result in a net reduction of momentum transfer and, hence, that deserve
a deep investigation.

1.4. Motivation and goals of the work

The discovered wave-induced Stokes sublayer unveils very basic flow phenomena that
may explain some experimental evidence also in real wind—wave problems. Indeed, the
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Figure 2. Direct numerical simulation of the wind—wave interaction problem (Cimarelli e al. 2023). Iso-lines
of the wave elevation 7(x, z) (solid and dashed lines denote positive and negative values) superimposed on
iso-contours of the spanwise velocity w™ (x, z).

condition for the development of the Stokes sublayer is a misalignment of the wind with
respect to water waves. This condition often develops in field realisations because of the
presence of swell waves moving in arbitrary directions with respect to the local wind. As a
consequence, the change in the momentum flux at the air—water interface associated with
the degree of wind—wave misalignment could explain the large scatter of drag coefficient
data in field measurements. Because of the relevance of these arguments, the present
work presents a further deeper analysis of these wind—wave interaction phenomena. In
particular, given the intrinsic multiscale nature of the problem, we consider the theoretical
framework provided by the generalised Kolmogorov equation (Hill 2002). It consists of the
exact evolution equation for the second-order structure function that allows us to undertake
a detailed analysis of the turbulent processes among different scales and positions within
the flow. The aim is twofold.

(i) To provide a deeper understanding of the drag-reducing phenomena related to the
wave-induced Stokes layer. In particular: Why is the water interface less dissipative
than a rough wall? Why are larger turbulent structures generated?

(i) To establish a theoretical framework for large-eddy simulation of wind—wave flows.

2. The generalised Kolmogorov equation specialised to the wind-wave problem

Most previous works have concentrated their study of the wind—wave problem on classical
single-point statistics. However, the understanding of the local coupling mechanisms
between water waves and turbulent wind requires the use of more sophisticated tools,
able to distinguish the different scales of the problem. Indeed, the small-scale interactions
near the interface between the water and the turbulent wind are known to have a strong
impact on the larger scales transporting momentum and heat in the outer part of the wind
boundary layer. Hence, these multiscale cascade phenomena control the surface fluxes
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between the atmosphere and ocean and their understanding would have a strong impact
on climate science. The generalised Kolmogorov equation (Hill 2002) is known to address
the multiscale issue in a unified and exact theoretical framework. It allows us to track
the spatially evolving scale-by-scale cascade mechanisms propagating to and from the
water—wave surface. Recently, the formalism has been extended to account for variable
density flows (Lai, Charonko & Prestridge 2018) to study the geometrical properties of
the liquid—gas interface in two-phase flows (Thiesset et al. 2020; Gauding et al. 2022).
It is important to notice that the theoretical framework of the generalised Kolmogorov
equation is strictly related to the coarse-grained approach to the Navier—Stokes equations
with strong repercussions for closures, especially for large-eddy simulation (Cimarelli &
De Angelis 2011, 2014; Togni, Cimarelli & De Angelis 2019). The theoretical framework
is extended here for the first time to the wind—wave interaction problem.

In accordance with the two main goals of the present work, we are here interested in
addressing the multiscale phenomena of the turbulent wind. Hence, the analysis can be
conducted in a incompressible theoretical framework with constant fluid properties. By
further considering that the water waves developed at the present low Reynolds number
have a small elevation, 83} = 0.3, we have that such an incompressible framework is valid
down to the very-near interface region. Accordingly, in the present work we analyse the
behaviour of the generalised Kolmogorov equation down to y* = 1.5, i.e. sufficiently far
from the variable properties induced by the wavy motion of the air—water interface but
well within the viscous sublayer of the turbulent wind.

In the incompressible and constant properties framework, the generalised Kolmogorov
equation represents the evolution equation of the second-order moment of the two-point
velocity increment, the so-called second-order structure function qu =déu;éu;, where
Suj =u;(x', 1) —u;(x", 1) and u; = u} — (u}) is the fluctuating velocity field with (-) the
ensemble average operator. Hereafter, we will refer to the second-order structure function
as the scale energy even if such an interpretation is somewhat arguable (Hamba 2018). As
shown in the appendix of Cimarelli ef al. (2024), in its more general form the equation
reads

3(8g2)  9(8g%6u;)  9(8q2)SU; 82(8¢%)  3(8q%u:)  9(8qP\U;
<Q)+<qu1>+(Q> j V(CI) (qu'/)'i'(q}']

_2
ot or; or; or;jor; axcj 8xcj
2 3(8psu; 92(542 TR _(aU; -
4 290p3ui) v 070a7) _ s sy (290 Zogsuiiy s( 290 — ae),
o 0xg 28xcj8xcj 0x; 0x;

2.1)

where 8- and ~ denote the two-point difference and algebraic average operators and
U; = (u;) is the mean velocity field. The independent variables are time ¢, the two-point
separation vector r = x” — x” and the position vector of the mid-point x, = (x" + x”")/2.
Finally, p is the fluctuating pressure field and € = v(du;/dx;)(du;/0x;) is the turbulent
pseudo-dissipation. By considering the statistical symmetries of the turbulent wind, the
generalised Kolmogorov equation, (2.1), specialises to

(8g%8u;)  9(8q>)sU 302(8g%)  9(8g%V) 2 d(8pdv
(8q ,>+<q> _ 5, 270q7) | 3{8q7v) | 29(dpdv)

or;j ory or;or; Y p Iy
v 82(542) /90 \ Nz N

- = 205usv) [ = ) — 28ud) 8 2= ) — 4(2), 2.2)
2 dyc0yc dy dy
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where the dependence on the mid-point positions x. and z. and on time ¢ has been dropped
because of statistical homogeneity. Equation (2.2) highlights that the multi-dimensional
phenomena occurring in the turbulent wind can be described in a four-dimensional space,
the three-dimensional space of scales r plus the interface distance y,.

This multi-dimensional nature of the problem is challenging for a clear understanding
of the flow physics and reduction of the dimensionality is demanding. The most common
solution is to consider the hyperplane (r;, Y.) for ry =r, =0 because the space of
spanwise scales is the one carrying most of the information about the space of scales in
bounded flows (Cimarelli ef al. 2024). In this hyperplane, the two-point difference operator
applied to mean quantities gives a zero contribution while the two-point average operator
does not alter mean quantities. Hence, (2.2) further simplifies and reads

3(8q°5u ) 82(8q%)  3(8q%V) 2 09(8psv) v d*(8q?)
—21) —+ + — —_ — =
8rj ai’jal’j e P Oyc 2 dycdyc

—2(8usv) (aa—U)— 4(€).
y
(2.3)

Equation (2.3) describes the turbulent wind as composed of inertial and diffusive transport
mechanisms in the space of scales

9(8q%8u; 9% (84>
Tr=—M, D, =2v (9q ), (2.4)
arj arjarj
and in the interface-normal direction
3(8g%T) 2 9(8ps 82(8g*
T.— (8q7v) 2 <pv>, Dc:g <q>. 2.5)
dyc P dyc 2 9ycdye

The source and sink of these transport mechanisms are provided by turbulence production
by mean shear and by turbulent dissipation

T = —2(8usdv) (aa—U) . E=4(). (2.6)
y

Hence, (2.3) is a budget that in a symbolic form reads 7, + D, + T, + D. + & =0, where
& = I1 — E is the net source/sink of scale energy in the flow.

In order to highlight the field of fluxes of scale energy occurring in the (ry =ry =0)-
hyperplane, it is useful to recast (2.3) in a conservative form

V-¢=¢, 2.7
where the divergence operator and the scale-energy fluxes are defined as

2
Bi ¢ 3(8q*8w) — 21)@
V= gz , ¢=[ ’Z]: =l @28

) -2 v 8{8g?
D (5029 + Z(spsvy — 220000
P 2 9ye

while ¢ is an extended source term that take into account not only the net source/sink of
scale energy & but also the exchanges of scale energy towards the r # 0 and ry, # 0 spaces

dyc

2 2 2 2 2 2
g 00q%0u)  , 6a%) dGq78v) ) (547

. 2.9)
ory Oryory ory orydry

Hence, the conservative form (2.7) of the generalised Kolmogorov equation in the (r, =
ry = 0)-hyperplane highlights that a field of fluxes ¢ occurs in the two-dimensional space
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Figure 3. (a) Profiles of turbulence production —(uv)*(dU/dy)™ (solid line) and dissipation —{€)™ (dashed

line). (b) Profiles of spatial flux ()*. Wind-wave data are reported in black while channel data are reported
in red.

of spanwise scales and interface-normal positions (r;, y.) that is driven by an extended
source term ¢ determined by the net source/sink of scale energy & plus the uncovered
transports in the space of streamwise and interface-normal scales, r, and ry, respectively.

3. Large-scale asymptotic: turbulent kinetic energy budget

The generalised Kolmogorov equation restricted to the (r, =r, = 0)-hyperplane exhibits
a well-defined asymptotic behaviour at large separations r, /£ > 1, where £ is the relevant
correlation length of the flow. As an example, the second-order structure function can
be rewritten as (8q2)(rz, ve) =4(k)(ye) —2R;i (r;, Yc), where k = u;u; /2 is the turbulent
kinetic energy and R;j(r;, yc) = (u;(x, yc, 2 +1r;/2, ) uj(x, yc, 2 —rz/2, 1)) is the two-
point correlation tensor. It is then clear that, for large separations r,/¢ > 1, the trace of
the two-point correlation tensor vanishes and the second-order structure function reduces
to four times the turbulent kinetic energy, (8¢2)(r./€ > 1, y.) =4(k)(y.). As shown in
Marati, Casciola & Piva (2004), the same reasoning applies to different terms of the
generalised Kolmogorov (2.3), thus showing that it reduces within a factor of 4 to the
turbulent kinetic energy equation
vdz(k) du

d(kv) 1d{pv) . av
dy +; dy a2 = (uv)dy (€). 3.1

3.1. Sources and spatial fluxes

In figure 3(a), the profiles of turbulence production —(uv)(dU/dy) and dissipation —(€)
are reported. Analogously to what happens in wall-bounded flows, turbulence production
is mostly active in an intermediate layer, the so-called buffer layer for 7 < y™ < 50. In this
region, the production rate exceeds the dissipation rate. Hence, the buffer layer is a net
source region of turbulence. On the contrary, the very near-interface region, the so-called
viscous sublayer for y* < 7, is a net sink region of turbulence, being the site of the highest
levels of viscous dissipation and of a vanishingly small production. Another sink region for
turbulence, although weaker, is the outer flow for y* > 0.6Re.. Here, the dissipation rate
is small but prevails over the vanishing scaling of turbulence production, thus leading to a
weak sink region. Intermediate between the buffer layer and the outer region, an overlap
layer takes place for 50 < y* < 0.6Re, where production and dissipation almost balance
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each other. This equilibrium layer is also the site of the logarithmic region for the mean
velocity profile.

This behaviour of the energy source/sink mechanisms qualitatively conforms with that
commonly observed in wall-bounded flows, in agreement with laboratory experiments
under low wind conditions (Yousefi, Veron & Buckley 2021). The main difference is
indeed of a quantitative nature. In particular, we found that the peak of turbulence
production —(uv)(dU/dy) is slightly increased and shifted away, being located at y* =
13.8 against the value of y* =11.5 occurring in the channel. Turbulence production in
the wind—wave problem is found to be slightly higher than in channels in the outer part
of the buffer layer and smaller in the inner part. On the contrary, the rate of turbulence
dissipation is always slightly smaller in the wind—wave problem. Of particular interest is
its behaviour in the viscous sublayer, as better shown in the inset of figure 3(a). There,
the classical channel flow configuration exhibits a drastic increase of the rate of turbulent
dissipation (¢) by moving towards the wall where its maximum value is reached. On the
contrary, in the wind—-wave problem such an increase is absent. In particular, an almost flat
scaling of dissipation is observed for y© < 5 where it remains almost constant around the
value (€)™ =0.135. As a consequence, the maximum rate of dissipation is significantly
reduced with respect to wall-bounded turbulence, where dissipation reaches a maximum
value at the wall of the order of (¢)* =0.195. The physical origin of the near-interface
scaling of turbulent dissipation is reported in § 3.2.

By rewriting the turbulent kinetic energy budget (3.1) in a conservative form

— = —(uv)— — (€), (3.2)

it is clear that the observed wind-wave effects on the source term —(uv)(dU/dy) — (€)
also affect the spatial flux of turbulent kinetic energy

1 d(k)
() = (kv) + —(pv) —v——. (3.3)
P dy

As shown in figure 3(b), the wind-wave problem as much as wall turbulence is
characterised by a spatial flux taking its origin from the peak of energy excess provided
by the source term —(uv)(dU/dy) — (€) in the buffer layer. In particular, the spatial flux
redistributes the turbulent energy excess of the buffer layer towards inner (i) <0 and
outer () > 0 locations, thus feeding the corresponding sink regions. Even if not shown
for brevity reasons, the flux directed towards the interface is mostly driven by viscous
diffusion, () ~ —vd(k)/dy for y* < 13.8 while the flux directed towards the bulk of the
flow is mostly given by inertial mechanisms, () ~ (kv) for y* > 13.8. The pressure flux
is always directed towards the interface (pv)/p <0, but its magnitude is almost always
negligible | {pv)/pl/|(¥)] < 1.

The main differences in the spatial redistribution of turbulent kinetic energy of the
wind-wave problem with respect to wall turbulence can be attributed to the main
differences already observed for the source term. In particular, the lower dissipative
nature of the interface region with respect to the wall region is associated with a reduced
intensity of the spatial flux feeding it. On the contrary, the spatial flux feeding the outer
region is enhanced. This outer enhancement of the flux can be related to the fact that
the source —(uv)(dU/dy) — (€) is not reduced in the wind—wave problem with respect to
wall turbulence. Hence, the energy excess provided by the buffer layer that has not been
conveyed towards the interface region is instead redirected towards to outer flow regions.
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Figure 4. (a) Profiles of the covariances ((dp/dx)(du/dy)) (solid line) and ((dp/9z)(dw/dy)) (dashed line)
contributing to the scaling (3.5). (b) Profiles of the correlation functions B, (solid line) and B, (dashed line)
from (3.6). The vertical grey line denotes the outer limit of the wave-induced Stokes sublayer. Wind—wave data
are reported in black while channel data are reported in red.

3.2. Near-interface scaling of turbulent dissipation

The lower dissipative nature of the viscous sublayer in the wind—wave problem with
respect to wall turbulence is inherently related to the low-drag feature of the former
and, hence, to the wave-induced Stokes sublayer. In order to support this conjecture, it
is relevant to explicitly write the near-wall scaling of dissipation in wall turbulence

d(e)
(€)= (€)w + (d—) y+00H), (3.4)
Y Jw
where the subscript w denotes variables evaluated at the wall and
d{e) 2 ( op ou op dw
(d—) == ((—p—> + <—p—>) <0. 3.5)
y w IO 8X 3)’ BZ By

In wall turbulence, the high levels of the two covariances in (3.5) are shown in figure 4(a)
and can be associated with a flow pattern sustained by the turbulent motion populating the
bulk of the flow. Indeed, in the viscous sublayer, turbulence cannot self-sustain. Hence, the
pattern taken by the fluctuating pressure and velocity fields is externally induced as a near-
wall footprint of the most coherent structures of the buffer layer. The coherence of this
flow pattern reflects to a significant degree of anti-correlation between horizontal pressure
gradients and vertical gradients of horizontal velocities, think of the pattern of (dp/dx)
and of (du/dy) induced at the wall by streamwise velocity streaks and of (dp/dz) and
of (dw/dy) induced at the wall by quasi-streamwise vortices. To measure this degree of
anti-correlation, we compute the following correlation functions:

__ (@p/dx)(@u/dy)) __ (@p/3z)(dw/dy))

X — k) Z .

VA{(@p/0x)?)((0u/dy)?) V{(@p/92))((0w/dy)?)

As shown in figure 4(b), the degree of anti-correlation is significant for 8, while is

almost negligible for g, thus showing that the magnitude of d{e)/dy in wall turbulence

is essentially the result of the near-wall velocity and pressure patterns induced by
quasi-streamwise vortices in the buffer layer.

In the wind-wave problem the scenario is modified since we measure d{e)/dy =~ 0.

As shown in Cimarelli et al. (2023), a very thin wave-induced Stokes sublayer is found
to dominate the flow dynamics of the interface region for y™ < 2. There, the velocity
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gradients dw/dy are found to be correlated with the alternating pressure gradients dp/9dz
induced by the non-sheltering behaviour of the wind over the skewed water—wave pattern.
Hence, we might expect that, in the wave-induced Stokes sublayer, both the covariance
((dp/0z)(0w/dy)) and the correlation B, are not negligible, thus leading to a non-
negligible d(e) /dy. On the contrary, outside the Stokes sublayer for y* > 2, the alternating
pressure gradients induced by the wave pattern are still present but not the associated ve-
locity field, as demonstrated in Cimarelli ez al. (2023). As a consequence, we might expect
that the viscous sublayer for 2 < y* < 7 is dominated by pressure fluctuations induced by
the wave pattern and velocity fluctuations induced from above by the coherent structures
of the buffer layer. Since, the wave pattern and the structures of the buffer layer are not
correlated, we might expect that, for 2 < yJr <7, the correlations g, and 8, and the co-
variances ((dp/dx)(du/dy)) and ((dp/dz)(dw/dy)) are all negligible, thus explaining the
observed d(e)/dy =~ 0. As shown in figure 4(a), within the wave-induced Stokes sublayer
yt <2, d(e)/dy is not negligible because of the covariance ((dp/dz)(dw/dy)) induced
by the Stokes sublayer itself, as demonstrated by the increasing value of anti-correlation
B., see figure 4(b). On the other hand, outside the Stokes sublayer for 2 < y™ < 7, both
the covariances ((dp/dx)(du/dy)) and ((dp/dz)(dw/dy)) are negligible, thus leading to
d(e)/dy =~ 0, see again figure 4(a). The uncorrelation between the pressure and velocity
fields for 2 < y* < 7 is also demonstrated by the negligible values of B, and f;, see again
figure 4(b).

In conclusion, we conjecture that the low dissipative nature of the wind—wave
interface region is associated with the presence of a wave-induced Stokes sublayer whose
penetration length, /;F =2, is within the viscous sublayer depth, y* =7. In the wave-
induced Stokes sublayer, velocity and pressure gradients, although weak, are correlated,
both being induced by the same phenomenon of wind—-wave interaction. In the outer part
of the viscous sublayer, 2 < y* < 7, wave-induced pressure fluctuations interact with bulk-
induced velocity fluctuations in an incoherent manner. This lack of correlation of the
velocity and pressure solutions in the outer viscous sublayer is at the basis of the low
dissipative nature of the wind—wave interface region and, hence, of its low-drag feature.
This finding agrees with laboratory experiments by Yousefi et al. (2021). They found
that wind turbulence and wave-induced motions interact when the Stokes sublayer height,
evaluated as 5S+ = [/ljcr /(r c;r)] 172 exceeds the viscous sublayer. In their experiments, this
condition is verified for sufficiently high wind speeds. By substituting the wave parameters
of our DNS at low wind speed, we measure 8 ~ 3.8 which is well within the viscous
sublayer depth. Hence, the observed lack of correlation between wave-induced motions
and wind turbulence is also supported by experimental findings.

4. The multi-dimensional compound space of scales and positions
4.1. Scale energy

We start the analysis of the compound (r;, yc)-space by considering the distribution
of scale energy (8¢2), as shown in figure 5(a). The buffer layer is recognised as the
region of highest activity of turbulence. The peak activity is found to occur in a well-
defined range of intermediate scales that clearly matches the length scales of the turbulent
structures involved in the self-sustaining mechanisms of this region of the flow. From this
region of the flow, the intensity of the turbulent fluctuations shows a rapid decrease by
moving towards the interface while a more smooth decay is observed by moving towards
the bulk of the flow. This behaviour qualitatively resembles the one observed in wall
turbulence and reported in figure 5(b). The main differences are indeed of quantitative
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Figure 5. Scale-energy (8¢%)T distribution in the compound space of scales and positions (rf, yh) for the
wind-wave problem (a) and for the turbulent channel (b).

nature and consist of an increased intensity and a shift towards larger scales and interface
distances of scale energy in the wind—wave problem with respect to wall turbulence. In

particular, we measure that the peak intensity of scale energy is (qu)%x =29 and is

located at (r", y1) = (85, 19) in the wind-wave problem with respect to (8g2);,, = 19

occurring at (r;r , y:“ ) =(70, 16) in wall turbulence. This increase intensity and shift
towards larger scales and positions conforms with the presence of a more coherent
flow pattern, as classically observed in drag-reducing flows (White & Mungal 2008).
Phenomenologically speaking, in drag-reducing flows turbulence is weakened near the
boundary and the turbulence self-sustaining mechanisms of the buffer layer are moved
outwards. As a consequence, the quasi-streamwise vortices and streaks involved in the
self-sustaining cycle of turbulence (Jiménez & Pinelli 1999), being located further away
from the boundary, can be larger and more coherent, as demonstrated here by the higher

intensity and shift of the iso-contours of scale energy.

4.2. Scale-energy paths and sources

The description of the energetics of the flow given by the turbulent kinetic energy budget
in § 3, is here extended by removing the asymptotic limit of the generalised Kolmogorov
equation, i.e. by distinguishing the different scales involved in the processes. In particular,
we start by considering the energetic behaviour of the flow described by the generalised
Kolmogorov equation in its conservative form (2.7). In figure 6, the field of fluxes ¢
transporting scale energy among different spanwise scales and positions (r;, y.) is shown
on top of iso-contours of the source term feeding (§ > 0) or absorbing (§ < 0) them. Again,
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Figure 6. Streamlines of the flux of scale energy (¢;§ , ) in the compound space of scales and positions
(r}, yF) superimposed on iso-contours of the source term &% for the wind-wave problem (a) and for the
turbulent channel (b).

both the wind—wave and the channel solutions are reported for comparison in figures 6(a)
and 6(b), respectively. The buffer layer is again recognised as the scale-energy source
region of the flow where the source term reaches its maximum. Accordingly, the field of
fluxes takes its origin from a singularity point |¢| = 0 located within the buffer layer and
spreads, feeding turbulence fluctuations at different sizes of both the bulk and interface
regions. The branch of fluxes flowing towards the bulk of the flow, while ascending ¢, > 0,
exhibits both forward ¢,, <0 and reverse ¢, > 0 cascades, see also figure 7. The picture
consists of spatially ascending fluxes taking their origin from a well-defined spanwise
scale of the buffer layer that feed wider turbulence fluctuations before reaching the y.-
distributed dissipative range at small scales; see Cimarelli et al. (2013, 2016, 2024) for a
detailed analysis of the physics of such an energetic pattern. On the contrary, the branch of
fluxes flowing towards the interface region, ¢, < 0, does not exhibit cascade phenomena
in the space of scales, |¢,_|/|¢.| < 1. Hence, the r;-distributed scale-energy excess of the
buffer layer is simply transported towards the interface without any significant modulation
in scale space. As a result, the scale-energy sink of the viscous sublayer is performed by a
viscous dissipation whose velocity gradients are the near-interface footprint of the variety
of scales populating the outer flow regions, see Cimarelli ef al. (2024) for a deeper physical
analysis.
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Figure 7. Iso-contours of scale-energy flux ¢;§ in the compound space of scales and positions (r, y7) for
the wind—wave problem (@) and for the turbulent channel (b).

The overall multi-dimensional pattern described so far qualitatively conforms with the
present knowledge in wall-bounded flows, see e.g. Cimarelli et al. (2013, 2016, 2024).
In fact, comparing the two plots in figures 6(a) and 6(b), almost the same qualitative
picture emerges. However, quantitatively speaking the wind—wave problem exhibits some
distinctive features that are worth analysing. Overall, they consist of a larger-scale structure
of the flow and enhanced reverse cascade phenomena, as shown in the following.

Starting from the buffer layer, it can be noted that the compound region of scales and
positions involved in the source of scale energy is wider and thicker in the wind—wave
problem. In particular, the peak of the source term &,,,, occurs at r;“ =60 for y =14.8
in the wind—wave problem while in the turbulent channel it is at .t =40 for y =11.5.
Note that this shift towards larger coherent scales and higher distances from the interface
is a classical feature commonly observed in drag-reducing flows, as already pointed out in
§4.1

This displacement of the energy processes related to the production of turbulence
towards larger scales and interface distances is also reflected in the field of fluxes ¢.
In particular, we measure that the singularity point at which the scale-energy paths in
the wind-wave problem take their origin is located at r;” =82 for y! =16.2 while in
the turbulent channel it is at rzJr =63 for y =15.5. This shift towards larger scales and
upward positions is a direct consequence of the similar shift observed for the scale-energy
sourcing mechanisms &,,,,. The difference in the field of fluxes between the wind—wave
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and the channel problems is, however, not limited to this shift. Indeed, the branch of
fluxes moving towards the bulk exhibits a more divergent pattern in the wind—wave
problem. This is the result of the presence of more intense reverse cascade mechanisms, as
clearly shown also in figure 7. Hence, it is possible to conjecture that the larger coherent
structures observed in §4.1 to populate the wind—wave problem that are also typical of
drag-reducing flows are the results of enhanced reverse energy cascade processes and of
sourcing mechanisms at wider scales. In particular, the shift of the sourcing mechanisms
can be related to the generation of larger quasi-streamwise vortices and streaks locally
to the buffer layer. On the other hand, the larger flow structures observed in the bulk of
the flow can be related to a non-local effect of transport of the scale-energy excess of the
buffer layer to the outer region where the reverse cascade is significantly more intense.

Let us finally notice that the source term, although weak, is positive also in the overlap
layer and outer regions, see again figure 6. As shown in Hwang & Cossu (2010), the overlap
layer is also the site of self-sustaining mechanisms of turbulence, although the amount
of production there locally almost balances the rate of dissipation. As demonstrated in
Cimarelli et al. (2015), these phenomena are at the basis of the appearance of a second
weaker peak of scale-energy source in the overlap layer whose scaling supports the
hypothesis of an overlap layer dominated by attached eddies (Townsend 1976). As shown
by the iso-contours of the source term in figure 6, this outer source region is also present
in the wind-wave problem. The main difference is the lack of a sink region in between
the outer and inner sources and the extension of the source to very high distances from
the interface. The lack of a clear separation between the inner and outer sources can be
attributed to the wave-induced shift of the inner source towards larger scales and positions.
On the other hand, the increased extension of the outer source can be used to explain the
intensification of the reverse cascade processes in the wind—wave problem. In particular,
we argue that the deeper penetration of the outer source in the bulk of the turbulent wind
has a more efficient repulsive effect for the fluxes, thus promoting their divergence and
sustaining the reverse cascade.

4.3. Direct effects of wind—wave interactions

The wind—wave interactions have been analysed so far by considering their effect on the
multi-dimensional compound space of scales and positions overall. We restrict ourselves
here to the analysis to the very-near interface region where phenomena directly related to
wind—wave interactions can be observed. As shown in Cimarelli et al. (2023), the direct
effect of the interaction of the wind with the wave pattern can be observed in the velocity
field only in the very-near interface region for y*+ <2, where the wave-induced Stokes
sublayer takes place. On the other hand, the footprint of the wind—wave interactions on the
pressure field penetrates more deeply into the wind boundary layer with non-negligible
effects up to y+ = 60. The analysis of the scale-energy fluxes in the interface region
confirms this observation. In fact, only the spatial flux carried out by the pressure field
2(6pdv)/p is found to be clearly modulated by the water—wave pattern. In contrast with
the behaviour of the overall spatial flux ¢, that is directing scale energy from the source
peak in the buffer towards both the wall ¢, <0 and the bulk of the flow ¢, > 0, the
contribution of the pressure field is a flux that is always directed from the bulk towards
the wall, see figure 8(b). This scenario is changed in the near-interface region of the
wind-wave problem. Indeed, as shown in figure 8(a), the spatial flux carried out by the
pressure field exhibits a positive sign 2(5psv)/p > 0 for y* <9 at scales corresponding
to a multiple of half the water wavelength, r, = 1,/2, 31;/2 and 54,/2 with /lj = 380.
This is clearly a direct effect of the wind—wave interaction and represents a periodically
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Figure 8. Iso-contours of scale-energy flux (2{8psv)/p)* in the compound space of scales and positions
(r}, y) for the wind-wave problem (a) and for the turbulent channel (b).

distributed pumping of scale energy into the turbulent wind that otherwise would be
simply transferred toward the interface and then dissipated; compare figures 8(a) and 8(b).
We conjecture that this upward pumping of scale energy from the water—wave interface
is the phenomenon responsible for the upward shift of the self-sustaining production
mechanisms of turbulence in the buffer layer and hence for the generation of larger flow
structures together with more intense reverse cascade phenomena. Hence, the Stokes
sublayer pumping of scale energy can be understood as the energetic counterpart of the
drag-reducing mechanism of the wave-induced Stokes sublayer.

5. Turbulence decomposition and coarse-grained approaches

Almost every approach to turbulence is based on a decomposition of the turbulent field into
different elements. The general aim is to provide a description of turbulence that is simpler
than that given by the full Navier—Stokes equations. Famous examples are the Reynolds
decomposition in the mean and fluctuating fields and the scale decomposition in large and
small size motions obtained either via spectral operators or via physical operators such
as the two-point difference used here. The study of the interactions between the different
elements composing turbulence has certainly been fundamental for the development of the
current state of theoretical and physical knowledge as we tried to do here for the wind—
wave problem by using the generalised Kolmogorov equation. However, the turbulence
decomposition has been fundamental also for the computation of numerical solutions
of turbulence problems that otherwise would be prohibitive; think of the coarse-grained
approaches given by the Reynolds-average equations and by the LES. In this context,
the formalism of the generalised Kolmogorov equation is strictly related to the filtering
approach of LES. As shown in Germano (2012), the two-point average and the two-
point difference are the simplest operators for the large-scale filtering and the associated
fluctuation, respectively. In particular, the second-order structure function (¢2) can be
directly related to the trace of the subgrid-stress tensor (7;;)/2 that in turn represents the
mean statistical value of turbulent energy at subgrid level (Germano 2007a,b). On the other
hand, the terms of the generalised Kolmogorov equation, (2.1), can be understood as the
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energetic processes that can be captured by a coarse-grained approach to the Navier—Stokes
equations at a spatial resolution r (Cimarelli & De Angelis 2011, 2012).

5.1. Cross-over scales

In accordance to the previous arguments, the generalised Kolmogorov equation can be
used to identify the characteristic scales at which different relevant processes dominate,
thus allowing us to identify a priori the spatial resolution required in coarse-grained
approaches to accurately resolve the wind—wave problem. In this context, it is well known
that one of the most important feature of coarse-grained approaches is to accurately
resolve the energy-containing motions where turbulence is produced. Furthermore, most
of turbulence closures are based on the assumption of a filter length placed well within the
inertial subrange of turbulence where the scale-energy flux is from large to small scales
and isotropy is recovered. In order to identify these physically relevant ranges we introduce
here three cross-over scales. The first one is the cross-over scale between forward and
reverse cascade, defined as

ér. Ly, yo) =0. 5.1

The cross-over scale ¢, allows us to split the turbulence spectrum into scales that are
dominated by reverse energy cascade processes for r, > £, from those that are involved in
more classical forward cascade processes for r, < £;. The second relevant cross-over scale
splits turbulence into a range dominated by production by mean shear and that dominated
by inertial transport and is defined as

Ty (Ls, yo) = 1T (L, ye)- (5.2)

The cross-over scale £ is physically related to the more classical shear scale that
from dimensional arguments is defined as Ly = +/(€)/(dU/dy)? (Cimarelli et al. 2024).
Physically speaking, the cross-over scale £, allows us to distinguish the range of turbulence
that is strongly anisotropic, being dominated by production by mean shear for r, > £, from
the range where an isotropy recovery is expected, being dominated by inertial transport
phenomena for r, < €. Finally, the third relevant cross-over scale is defined as

Dy (Ly, ye) =T (Ly, ye)- (5.3)

The cross-over scale £, splits turbulence into a range of scales dominated by inertial
transport for r, > £, and that where viscous diffusion prevails for r, < ¢,. Hence, ¢,
represents the viscous cutoff scale and is strictly related to the more classical Kolmogorov
scale that from dimensional arguments is defined as n = (3 / (eN/4, Clearly, the range of
scales in between the viscous and shear scales quantitatively defines the inertial subrange
of turbulence, being the dynamic of turbulence dominated by an inertial transport with
isotropy recovery for £, < r, < £s. By replacing the two cross-over scales £, and £; with
their dimensional counterparts 1 and Ly, it is possible to derive asymptotic scaling for
the inertial subrange. Indeed, by invoking an equilibrium assumption and a logarithmic
law for the mean velocity profile in the overlap layer of wall turbulence, we have that
(€) = (uv)(dU/dy) = u%/(/cy), where « is the von Kdrman constant. By replacing this
estimate of turbulent dissipation in the definition of the Kolmogorov and shear scales we

have
't~ ey DY Ly ~weyT, (5.4)

thus showing that, asymptotically, the width of the inertial subrange scales as ky™ —
(ky )14,
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Figure 9. Cross-over scales for the wind—wave problem (black lines) and for the turbulent channel (red lines).
(a) Scaling of the cross-over scale ZZ between the forward and reverse cascades. (b) Scaling of the cross-over
scale ¢ between the production- and cascade-dominated range of scales (solid lines) and ¢ between the
cascade- and viscous-dominated range of scales (dashed lines). The dotted lines denote the theoretical scalings
¢F =y} and € =T(cyF)V/4, where ik = 0.41.

5.2. Scalings

The behaviour of the cross-over scale between forward and reverse cascades ¢ is reported
in figure 9(a). In the wind—wave problem, a minimum value £;” = 81 is found to occur at
yj = 14 where the maximum value of the source &,,,, is attained. From this minimum, the
scales involved in reverse cascade processes increase by moving away from the interface
region, thus reaching a maximum value E; = 150 for y;~ = 90. Indeed, in the overlap layer
a slight decrease of £;, is observed, thus implying that the phenomena of reverse cascade
penetrate more and more inside the turbulent spectrum in this region of the flow. This
decrease is interrupted in the outer region of the flow where reverse cascade are finally
absent and ¢, formally goes to infinity. The main difference with respect to wall turbulence
is given by the fact that the increase of the cross-over scale £, in the inner region is
faster, i.e. a smaller portion of the turbulent spectrum is dominated by reverse cascade
processes. This observation, together with the already observed increase of the intensity
of the reverse energy fluxes, further supports the idea that reverse cascade mechanisms
have more impact in the flow dynamics of the wind—wave problem. These results suggest
that the spanwise spatial resolution should be A, < £; in coarse-grained approaches when
using classical turbulence closures that strictly reproduce a forward cascade, such as eddy
viscosity models. Otherwise, when using A; > ¢, in order to reduce the computational
costs, more sophisticated nonlinear closures able to capture a net backscatter from the
small unresolved motion are demanded (Cimarelli & De Angelis 2014; Cimarelli, Abba &
Germano 2019).

The behaviour of the inertial subrange is reported in figure 9(b) where both cross-over
scales £; and ¢, are shown. In the wind—wave problem, it is found that, for y:.r < 35,
an inertial subrange cannot be realised because ¢, > ;. Hence, the anisotropic self-
sustaining production processes of the buffer layer are superimposed on viscous diffusion
mechanisms. For y > 35, both cross-over scales increase but the higher rate of ¢, with
respect to £, allows for the generation of an inertial subrange of increasing width. However,
for y > 100 the behaviour of ¢, flattens while £, still increases, thus eroding the inertial
subrange. For y < 100, almost the same behaviour is observed in wall turbulence that
indeed agrees with the expected asymptotic scaling (5.4). On the contrary, for y > 100,
the shear scale ¢; in wall turbulence is found to maintain an increasing behaviour that,
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compared with a weaker increase of the viscous scale £,, allows for the generation of an
increasingly larger inertial subrange, contrary to the wind—wave problem. This different
behaviour in the outer region can be associated with the different boundary conditions
experienced by the wind—wave problem in the top boundary with respect to the turbulent
channel that, as already mentioned, leads to enhanced sourcing mechanisms in the outer
region of the wind—wave problem. In coarse-grained approaches, the present results
suggest the use of spanwise spatial resolution A; < £, in order to resolve the production-
dominated energy-containing motions. By comparing figures 9(a) and 9(b), this condition
is more stringent than that given by the scale ¢; and in general suggests that the spanwise
spatial resolution in the buffer layer, where most of the energy is produced, cannot
exceed the value A;r ~ 20, analogously to classical recommendations in wall turbulence
(Cimarelli & De Angelis 2012).

6. Conclusions

In Cimarelli et al. (2023), the interaction of a turbulent wind with a water—wave surface has
been solved by means of a fully coupled numerical framework. Starting from a quiescent
initial condition characterised by a flat air—water interface, the flow solution has been
evolved until a statistical equilibrium between the turbulent wind and the water—wave
pattern is reached. The solution is characterised by a skewed pattern of water waves of
low elevation and by a turbulent wind where streamwise momentum transfer is reduced
by the presence of a wave-induced spanwise oscillating Stokes sublayer. The strongly
inhomogeneous and multiscale features of these phenomena are addressed here by using,
for the first time, the Kolmogorov equation generalised to the wind—wave problem.

We found that the turbulent wind is characterised by the presence of more coherent
flow structures compared with wall turbulence. We recognise that, at the basis of the
generation of these larger and more intense flow structures, is an upward shift of the
self-sustaining production processes of turbulence and the presence of stronger reverse
energy cascade phenomena. The upward shift of turbulence production is here recognised
to be the result of a periodically distributed pumping of scale energy from the interface
region induced by the pressure field associated with the wave-induced Stokes sublayer.
Contrary to wall turbulence, where the spatial flux carried out by pressure is always
pointing towards the wall, we found a reverse of sign of the spatial flux driven by the
pressure field in the interface region for scales that match those of the water—wave pattern.
This upward pressure flux of scale energy is here conjectured to be at the basis of the
upward shift of the production mechanisms of turbulence. The generated flow structures
such as streamwise velocity streaks and quasi-streamwise vortices, are then larger and
more intense with respect to wall turbulence, being less constrained by the distance from
the interface. The energy associated with these larger flow structures, while transported
in the bulk of the turbulent wind, is conveyed to even larger flow structures by reverse
energy cascade phenomena that are found to be more intense than those observed in
wall turbulence, thus explaining the more coherent flow structures populating the entire
turbulent wind.

These results have strong consequences for wind boundary layer theories but also for
coarse-grained approaches to their solution. Indeed, these results unveil that turbulence
closures must be able to reproduce a flow of energy from nowhere in the space of
unresolved scales when the level of coarsening is such that the reverse energy cascade
lies in the subgrid-scale motion. This scenario is very critical for the development of
high-fidelity coarse-grained approaches deemed essential to catch the high Reynolds
number regime typical of atmospheric realisations. In this context, we have shown that the
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generalised Kolmogorov equation provides a complete theoretical framework for assessing
the spatial resolution and the associated best suited turbulence closure for large-eddy
simulation. By introducing the cross-over scales ¢; and ¢,, we have quantitatively defined
the scaling of the inertial subrange of turbulence within which the spatial resolution should
lie in order to directly resolve the anisotropic energy-containing motions. As rigorously
shown by the scaling of the split energy cascade scale ¢, this range of scales is dominated
by a forward energy cascade, thus suggesting the use of classical eddy viscosity closures
when the grid resolution lies within it.

Finally, a theoretical analysis of the low dissipative nature of the interface region is
introduced and reveals that the scaling of dissipation is strictly related to the degree of
correlation between pressure and velocity gradients. We found that pressure fluctuations
generated by the wave-induced Stokes sublayer interact in an incoherent manner with
the wind-induced velocity fluctuations in the external part of the interface region. The
resulting lack of correlation acts as a layering of the flow dynamics in the interface region
and is recognised to be at the basis of its low dissipative nature and, hence, of its low-drag
feature. The lack of coherence between waves and turbulent wind is expected to exists as
long as the Stokes sublayer depth is thinner than the viscous sublayer depth. Such physical
explanation of the lower dissipative nature of wind waves at low Reynolds number, as
well as the periodically distributed pumping of scale energy as found by the analysis of
the generalised Kolmogorov equation, offer a possible interpretation of the observed drag
reduction in low wind speed regimes as observed in field experiments.
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