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Introduction

This book introduces and studies C∞-algebraic geometry with corners. It ex-
tends the existing theory of C∞-algebraic geometry [23, 42, 49, 52, 75], a
version of Algebraic Geometry that generalizes smooth manifolds to a huge
class of singular spaces. C∞-algebraic geometry with corners is a generaliza-
tion based on manifolds with corners rather than on manifolds. It is related
to log geometry [78], as log structures are a kind of boundary in Algebraic
Geometry.

The motivation for this book is two-fold. Firstly, it presents an introduction
to C∞-algebraic geometry with corners, along with many foundational results,
in one self-contained volume. Secondly, it provides the foundations needed to
extend current work on Derived Differential Geometry [6, 7, 8, 10, 11, 12, 13,
43, 44, 62, 88, 89, 87] to include derived C∞-schemes and C∞-stacks with
corners, and hence derived manifolds and derived orbifolds with corners.

Derived orbifolds with corners have important applications in Symplectic
Geometry, for example, in the most general versions of Lagrangian Floer co-
homology [28, 29], Fukaya categories [3, 83], and Symplectic Field Theory
[24]. In these areas one studies moduli spaces M of J-holomorphic curves,
which should be derived orbifolds with corners. (Related structures are the
‘Kuranishi spaces with corners’ of Fukaya–Oh–Ohta–Ono [29, 30] and ‘poly-
folds with corners’ of Hofer–Wysocki–Zehnder [37, 38], but derived orbifolds
with corners have better functoriality and are, we think, more beautiful.)
C∞-algebraic geometry was originally suggested by William Lawvere in the

late 1960’s [58], and our primary reference is the second author’s monograph
[49]. In C∞-algebraic geometry, rings are replaced with C∞-rings, such as
the space C∞(X) of smooth functions c : X → R of a manifold X . C∞-
rings are R-algebras but with a far richer structure – for each smooth function
f : Rn → R there is an n-fold operation Φf : C∞(X)n → C∞(X) acting by
Φf : c1, . . . , cn �→ f(c1, . . . , cn), satisfying many natural identities.
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2 Introduction

The basic objects of C∞-algebraic geometry are C∞-schemes, which form
a category C∞Sch. They are special examples of (local) C∞-ringed spaces
X = (X,OX), a topological space X with a sheaf of C∞-rings OX . These
form categories LC∞RS ⊂ C∞RS. As in Algebraic Geometry, there is a
spectrum functor Spec : C∞Ringsop → LC∞RS, and a C∞-scheme is a
localC∞-ringed spaceX covered by open subspacesU ⊆ X withU ∼= SpecC

for some C ∈ C∞Rings. Any smooth manifold X determines a C∞-scheme
X = SpecC∞(X), which is X with its sheaf of smooth functions OX , giving
an embedding Man ⊂ C∞Sch as a full subcategory.

C∞-schemes are far more general than manifolds, and C∞Sch contains
many singular or infinite-dimensional objects. In addition, the category of C∞-
schemes addresses several shortcomings of the category of smooth manifolds:
it is Cartesian closed, and has all finite limits and directed colimits, unlike the
category of manifolds. Thus all fibre products (not just transverse ones) exist in
C∞Sch, and many spaces constructed from fibre products of manifolds can be
studied. These good properties are some of the reasons C∞-algebraic geometry
has been applied in the foundations of Synthetic Differential Geometry [23, 52,
73, 74, 75], and Derived Differential Geometry.

Manifolds with cornersX are a generalization of manifolds locally modelled
on [0,∞)k×Rm−k rather than on Rm. They occur in many places in Differen-
tial Geometry. There are several candidates for morphisms of manifolds with
corners, but for reasons explained later we choose the ‘b-maps’ of Melrose
[69, 70, 71, 72], which we just call ‘smooth maps’, to be the morphisms in the
category Manc of manifolds with corners.

A manifold with corners X of dimension n has a boundary ∂X , a manifold
with corners of dimension n − 1, with a (not necessarily injective) inclusion
map ΠX : ∂X → X . The interior is X◦ = X \ ΠX(∂X), an ordinary n-
manifold. A smooth map f : X → Y is called interior if f(X◦) ⊂ Y ◦. We
write Manc

in ⊂ Manc for the subcategory with morphisms interior maps.
The symmetric group Sk acts freely on ∂kX , and the quotient ∂kX/Sk

is the k-corners Ck(X), a manifold with corners of dimension n − k, with
C0(X) = X and C1(X) = ∂X . For example, the square [0, 1]2 has

C0

(
[0, 1]2

)
= [0, 1]2, C2

(
[0, 1]2

)
= {0, 1}2,

C1

(
[0, 1]2

)
= ∂
(
[0, 1]2

)
=
(
{0, 1} × [0, 1]

)
	
(
[0, 1]× {0, 1}

)
.

The corners of X is C(X) =
∐n

k=0 Ck(X), a manifold with corners of
mixed dimension, which form a category M̌anc. If f : X → Y is a smooth
map of manifolds with corners (possibly of mixed dimension), we can define
a natural interior map C(f) : C(X) → C(Y ), which need not map Ck(X) →
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Ck(Y ). This defines a corner functor C : M̌anc → M̌anc
in, which is right

adjoint to the inclusion inc : M̌anc
in ↪→ M̌anc. This means that not only do

boundaries ∂X and corners Ck(X) combine into a functorial object C(X),
but they are canonically determined just by the two notions of smooth map and
interior map of manifolds with corners.

Manifolds with g-corners Mangc, as in [46] and §3.3, are a generaliza-
tion of manifolds with corners whose local models XP are more general than
[0,∞)k × Rm−k, and depend on a weakly toric monoid P . They have nicer
properties than manifolds with corners in some ways – for example, in the ex-
istence of b-transverse fibre products – and come up in some applications; for
example, moduli spaces of ‘quilts’ in Symplectic Geometry [67, 68] may be
manifolds with g-corners, but not manifolds with corners.

To extend C∞-algebraic geometry to include manifolds with (g-)corners,
we introduce the notion of a C∞-ring with corners C = (C,Cex), which is
a pair consisting of a C∞-ring C and a commutative monoid Cex with many
intertwining relationships. If X is a manifold with corners, the corresponding
C∞-ring with corners is C∞(X) = (C∞(X),Ex(X)), where C∞(X) is
the C∞-ring of smooth maps X → R, and Ex(X) is the monoid of smooth
(‘exterior’) mapsX → [0,∞), with the monoid operation being multiplication.
The monoid holds information about the corners structure of X .

The definition of C∞-scheme with corners then follows those of schemes
in Algebraic Geometry [36, §II], or C∞-schemes. We introduce categories
LC∞RSc ⊂ C∞RSc of (local) C∞-ringed spaces with corners X = (X,

OX), which are topological spaces X with sheaves of C∞-ringed spaces with
corners OX . We construct a spectrum functor Specc : (C∞Ringsc)op →
LC∞RSc, which is left adjoint to the global sections functor Γc : LC∞RSc

→ (C∞Ringsc)op. A C∞-scheme with corners X is then a local C∞-ringed
space with corners which can be covered by open U ⊆ X with U ∼= Specc C

for some C∞-ring with corners C.
We define many interesting subcategories of C∞Schc, as in Figure 1.1,

which reproduces a diagram (Figure 5.1) of subcategories of the category
of C∞-schemes with corners C∞Schc from §5.6. For example, firm C∞-
schemes with corners C∞Schc

fi ⊂ C∞Schc have only finitely many bound-
ary faces at each point. We define a subcategory C∞Schc

in ⊂ C∞Schc of
interior C∞-schemes with corners, with interior morphisms corresponding to
interior maps of manifolds with (g-)corners. We study categorical properties
of C∞Schc and its subcategories. For example, fibre products and all finite
limits exist in C∞Schc

fi, and in most of the other subcategories in Figure 1.1.
We construct a corner functor C : C∞Schc → C∞Schc

in, which is right
adjoint to inc : C∞Schc

in ↪→ C∞Schc. If X is a firm C∞-scheme with
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Figure 1.1 Subcategories of C∞-schemes with corners C∞Schc

corners we may write C(X) =
∐∞

k=0 Ck(X), where Ck(X) is the k-corners
of X , with C0(X) ∼= X , and we define the boundary ∂X = C1(X).

There are full and faithful inclusion functors Manc,Mangc ↪→ C∞Schc
fi

and Manc
in,Mangc

in ↪→ C∞Schc
fi,in, which commute with corner functors,

boundaries ∂X , and k-corners Ck(X), and preserve (b-)transverse fibre prod-
ucts. Thus, manifolds with (g-)corners can be regarded as special examples of
C∞-schemes with corners, and C∞-schemes with corners generalize mani-
folds with (g-)corners.

The geometry of ‘things with corners’ turns out to be surprisingly interesting
and complicated, and has received relatively little attention – for example, our
observation that corners arise as right adjoints to inclusions like Manc

in ↪→
Manc appears to be new. We hope our book will inspire further research.

How this book came to be written

Beginning from foundational work of Lurie [62, §4.5] and Spivak [87], the
second author has since 2009 been working on a theory of Derived Differ-
ential Geometry [43, 44], which is the study of derived manifolds and de-
rived orbifolds. Here ‘derived’ is in the sense of Derived Algebraic Geometry
[61, 62, 90, 91, 92]. This was aimed at applications in Symplectic Geometry,
and is further explained in §2.9 and §8.4, though we summarize below.

Fukaya, Oh, Ohta and Ono [28, 29, 30, 31] were developing theories of
Gromov–Witten invariants, Lagrangian Floer cohomology, and Fukaya cate-
gories, involving ‘Kuranishi spaces’, a geometric structure they put on moduli
spaces of J-holomorphic curves. At the time there were problems with the
definition and theory of Kuranishi spaces. The second author’s view was that
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Kuranishi spaces are actually derived orbifolds, and ideas from derived geom-
etry were needed to understand them. Following [62, 87], he defined derived
manifolds and derived orbifolds as special kinds of derived C∞-schemes and
derived C∞-stacks.

For more advanced applications in Symplectic Geometry [28, 29], it was
essential to have a theory of derived orbifolds with corners. To do this properly
in the world of C∞-algebraic geometry, it was necessary to go right back
to the beginning, and introduce notions of C∞-ring with corners and C∞-
scheme with corners, before defining derived C∞-schemes and C∞-stacks
with corners.

The first attempt at this was the 2014 MSc thesis of Elana Kalashnikov
[51], supervised by the second author, which defined notions of C∞-rings with
corners and C∞-schemes with corners. Building on [51], the first author’s 2019
PhD thesis [25] went into the subject in much more detail, again supervised by
the second author.

One of the goals of the PhD was to find the best foundations for C∞-
algebraic geometry with corners, and its possible future applications, and the
authors explored many options before settling on the definitions given here.
This book is a rewritten and expanded version of [25]. It is designed in par-
ticular to provide the foundations of theories of ‘derived C∞-schemes with
corners’ and ‘derived manifolds and orbifolds with corners’ in the final version
of the second author’s book [44].

Why we chose these definitions

In Chapters 3 and 4 we have chosen particular definitions of the notions of
smooth map of manifolds with corners, and of C∞-ring with corners, which
determine the course of the rest of the theory. The reader may wonder whether
these choices could have been otherwise, leading to a different way of alge-
braizing ‘things with corners’, and a different theory of C∞-algebraic geome-
try with corners. Our answer to this comes in two parts.

For the first part, knowing C∞-algebraic geometry, the rough starting point
for a theory of C∞-algebraic geometry with corners is obvious. As in §2.2, a
categorical C∞-ring is a product-preserving functor F : Euc → Sets, where
Euc ⊂ Man is the full subcategory of Euclidean spaces Rn, and a C∞-ring C

is an equivalent way of repackaging the data in F , with C = F (R), and many
operations on C. Here Euc is an Algebraic Theory [1], and a (categorical)
C∞-ring is an algebra over this Algebraic Theory.

Thus it is clear that a categorical C∞-ring with corners should be a product-
preserving functor F : Eucc → Sets, where Eucc ⊂ Manc is the full
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subcategory of Euclidean corner spaces Rm
k = [0,∞)k × Rm−k. Then a C∞-

ring with corners C = (C,Cex) should be an equivalent way of repackaging
F , with C = F (R) and Cex = F ([0,∞)), and many operations on C,Cex.

There are possible choices in two places in this definition. Firstly, how should
we define morphisms in Manc and Eucc? (As we will see in §3.1, there are
many different classes of ‘smooth maps’ between manifolds with corners.) And
secondly, do we want to impose any additional conditions on the functors F ?

For the first, in order for ‘product-preserving’ to make sense, the class of
morphisms of manifolds with corners X must be closed under products and
direct products. Also, for good properties of boundaries ∂X we want the inclu-
sion ΠX : ∂X → X to be a morphism in Manc (this excludes interior mor-
phisms, for example). With these restrictions, there are only really three sen-
sible choices for the morphisms in Manc, which are called ‘weakly smooth’,
‘smooth’ (or ‘b-maps’), and ‘strongly smooth’ in §3.1, with

{weakly smooth} ⊂ {smooth} ⊂ {strongly smooth}.

We rejected ‘weakly smooth’ maps, as they would cause C∞-schemes with
corners not to have well-behaved notions of boundary and corners. We found
that smooth maps led to a richer and more interesting theory than strongly
smooth maps, and the latter did not work for all the applications we had in
mind (e.g., it does not correctly model manifolds with g-corners in §3.3). Also
the strongly smooth theory is strictly contained in the smooth theory. So we
decided on smooth maps as the morphisms in Manc and Eucc.

For the second, we impose an extra condition for C = (C,Cex) coming from
a product-preserving F : Eucc → Sets to be a C∞-ring with corners, that
invertible functions in Cex should have logs in C. To motivate this, note that if
X is a manifold with corners and f : X → [0,∞) is smooth with inverse 1/f

then f maps X → (0,∞), and so log f : X → R is well defined and smooth.
The second part of our answer is that we have defined not one theory of C∞-

rings and schemes with corners, but many, as in Figure 1.1; the overarching
definitions of C∞-rings and schemes with corners are the most general, which
contain all the rest. General C∞-schemes with corners X ∈ C∞Schc may
have ‘corner behaviour’ which is complicated and pathological, for example,
X = [0,∞)N has infinitely many boundary faces at a point. The subcategories
ofC∞Schc in Figure 1.1 have ‘corner behaviour’ which is progressively nicer,
and more like ordinary manifolds with corners, as we impose more conditions.

The smallest categories C∞Schc
si,C

∞Schc
si,ex, with ‘simple corners’, be-

have exactly like manifolds with corners, and C∞Schc
to,C

∞Schc
to,ex, with

‘toric corners’, behave exactly like manifolds with g-corners. Different subcat-
egories may be appropriate for different applications.
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In the rest of this introduction we summarize the contents of the chapters.

Chapter 2: C∞-rings and C∞-schemes

We begin with background on category theory, and on C∞-rings and C∞-
schemes, mostly following the second author [49]. A categorical C∞-ring
is a product-preserving functor F : Euc → Sets, where Euc ⊂ Man is
the full subcategory of the category of smooth manifolds Man with objects
the Euclidean spaces Rn for n � 0. These form a category CC∞Rings,
with morphisms natural transformations, which is equivalent to the category
C∞Rings of C∞-rings by mapping F �→ C = F (R).

Here a C∞-ring is data
(
C, (Φf )f :Rn→R C∞

)
, where C is a set and Φf :

Cn → C a map for all smooth maps f : Rn → R, satisfying some axioms. Usu-
ally we write this as C, leaving the C∞-operations Φf implicit. The motivating
examples for X a smooth manifold are C = C∞(X), the set of smooth func-
tions c : X → R, with operations Φf (c1, . . . , cn)(x) = f(c1(x), . . . , cn(x)).
We discuss C-modules, which are just modules over C considered as an R-
algebra, and the cotangent module ΩC , generalizing Γ∞(T ∗X), the vector
space of smooth sections of T ∗X , as a module over C∞(X).

We then define the subcategoryC∞RS ofC∞-ringed spacesX=(X,OX),
where X is a topological space and OX is a sheaf of C∞-rings on X , and the
subcategory LC∞RS ⊂ C∞RS of local C∞-ringed spaces for which the
stalks OX,x are local C∞-rings. The global sections functor Γ : LC∞RS →
C∞Ringsop has a right adjoint Spec : C∞Ringsop → LC∞RS, the spec-
trum functor. An object X ∈ LC∞RS is called a C∞-scheme if we may cover
X with open U ⊆ X with (U,OX |U ) ∼= SpecC for C ∈ C∞Rings. These
form a full subcategory C∞Sch ⊂ LC∞RS.

There is a full embedding Man ↪→ C∞Sch mapping X �→ X = (X,OX),
where OX is the sheaf of local smooth functions c : X → R.

In classical Algebraic Geometry Γ ◦ Spec ∼= Id : Ringsop → Ringsop,
so Ringsop is equivalent to the category ASch of affine schemes. In C∞-
algebraic geometry it is not true that Γ ◦ Spec ∼= Id, but we do have Spec ◦Γ ◦
Spec ∼= Spec. Define a C∞-ring C to be complete if C ∼= Γ ◦SpecD for some
D. Write C∞Ringsco ⊂ C∞Rings for the full subcategory of complete
C∞-rings. Then (C∞Ringsco)

op is equivalent to the category AC∞Sch of
affine C∞-schemes.

We define OX -modules on a C∞-scheme X , and the cotangent sheaf T ∗X ,
which generalizes cotangent bundles of manifolds. We review applications of
C∞-algebraic geometry in Synthetic Differential Geometry and Derived Dif-
ferential Geometry.
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Chapter 3: Manifolds with (g-)corners

We discuss manifolds with corners, locally modelled on [0,∞)k ×Rm−k. The
definition of manifold with corners X,Y is an obvious generalization of the
definition of manifold. However, the definition of smooth map f : X → Y is
not obvious: what conditions should we impose on f near the boundary and
corners of X,Y ? There are several non-equivalent definitions of morphisms of
manifolds with corners in the literature. The one we choose is due to Melrose
[71, §1.12], [55, §1], who calls them b-maps. This gives a category Manc.

A smooth map f : X → Y is called interior if f(X◦) ⊆ Y ◦, where X◦ is
the interior of X (that is, if X is locally modelled on [0,∞)k × Rm−k, then
X◦ is locally modelled on (0,∞)k × Rm−k). Write Manc

in ⊂ Manc for the
subcategory with only interior morphisms.

A manifold with corners X has a boundary ∂X , a manifold with corners of
dimension dimX−1, with a (non-injective) morphismΠX : ∂X → X . For ex-
ample, ifX = [0,∞)2, then ∂X is the disjoint union ({0}×[0,∞))	([0,∞)×
{0}) with the obvious map ΠX , so two points in ∂X lie over (0, 0) ∈ X . There
is a natural, free action of the symmetric group Sk on the kth boundary ∂kX ,
permuting the boundary strata. The k-corners is Ck(X) = ∂kX/Sk, of dimen-
sion dimX − k. The corners of X is C(X) =

∐dimX
k=0 Ck(X), an object in

the category M̌anc of manifolds with corners of mixed dimension.
We call X a manifold with faces if ΠX |F : F → X is injective for each

connected component F of ∂X (called a face).
Now boundaries are not functorial: if f : X → Y is smooth, there is

generally no natural morphism ∂f : ∂X → ∂Y . However, there is a nat-
ural, interior morphism C(f) : C(X) → C(Y ), giving the corner functor
C : Manc → M̌anc

in or C : M̌anc → M̌anc
in. We explain that C is right

adjoint to the inclusion inc : M̌anc
in ↪→ M̌anc. Thus, from a categorical

point of view, boundaries and corners in Manc are determined uniquely by
the inclusion Manc

in ↪→ Manc, that is, by the comparison between interior
and smooth maps.

A manifold with corners X has two notions of (co)tangent bundle: the tan-
gent bundle TX and its dual the cotangent bundle T ∗X , and the b-tangent
bundle bTX and its dual the b-cotangent bundle bT ∗X . Here TX is the obvi-
ous notion of tangent bundle. There is a morphism IX : bTX → TX which
identifies Γ∞(bTX) with the subspace of vector fields v ∈ Γ∞(TX) which
are tangent to every boundary stratum of X . Tangent bundles are functorial
over smooth maps f : X → Y (that is, f lifts to Tf : TX → TY linear on
the fibres). B-tangent bundles are functorial over interior maps f : X → Y .

We also discuss the categories Mangc
in ⊂ Mangc of manifolds with gener-
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alized corners, or manifolds with g-corners, introduced by the second author in
[46]. These allow more-complicated local models than [0,∞)k × Rm−k. The
local models XP are parametrized by weakly toric monoids P , with XP =

[0,∞)k ×Rm−k when P = Nk ×Zm−k. So we provide an introduction to the
theory of monoids. (All monoids in this book are commutative.)

The simplest manifold with g-corners which is not a manifold with corners
is X =

{
(w, x, y, z) ∈ [0,∞)4 : wx = yz

}
. Most of the theory above

extends to manifolds with g-corners, except that tangent bundles TX are not
well-behaved, and we no longer have Ck(X) ∼= ∂kX/Sk.

We call morphisms g : X → Z, h : Y → Z in Manc
in or Mangc

in b-
transverse if bTxg⊕ bTyh : bTxX⊕ bTyY → bTzZ is surjective for all x ∈ X ,
y ∈ Y with g(x) = h(y) = z. Manifolds with g-corners have the nice property
that all b-transverse fibre products exist in Mangc

in , whereas fibre products
only exist in Manc

in,Manc under rather restrictive conditions. We can think
of Mangc

in as a kind of closure of Manc
in under b-transverse fibre products.

We discuss applications of manifolds with (g-)corners in the literature, in-
cluding in Topological Quantum Field Theories, analysis of partial differential
equations, and moduli problems in Morse homology and Floer theories whose
moduli spaces are manifolds with (g-)corners.

Chapter 4: (Pre) C∞-rings with corners

We introduce C∞-rings with corners. To decide on the correct definition, the
obvious starting point is categoricalC∞-rings, that is, product-preserving func-
tors F : Euc → Sets. We define a categorical pre C∞-ring with corners to
be a product-preserving functor F : Eucc → Sets, where Eucc ⊂ Manc is
the full subcategory with objects [0,∞)m × Rn for m,n � 0. These form a
category CPC∞Ringsc, with morphisms natural transformations.

Then we define the category PC∞Ringsc of pre C∞-rings with corners,
with objects

(
C,Cex, (Φf )f :Rm×[0,∞)n→R C∞ , (Ψg)g:Rm×[0,∞)n→[0,∞) C∞

)
for C,Cex sets and Φf : Cm × Cn

ex → C, Ψg : Cm × Cn
ex → Cex maps,

satisfying some axioms. Usually we write this as C = (C,Cex), leaving the
C∞-operations Φf ,Ψg implicit. There is an equivalence CPC∞Ringsc →
PC∞Ringsc mapping F �→ (C,Cex) = (F (R), F ([0,∞))). The motivating
example, for X a manifold with (g-)corners, is (C,Cex) = (C∞(X),Ex(X)),
where C∞(X) is the set of smooth maps c : X → R, and Ex(X) the set of
exterior (i.e. smooth, but not necessarily interior) maps c′ : X → [0,∞).

We define the category of C∞-rings with corners C∞Ringsc to be the full
subcategory of (C,Cex) in PC∞Ringsc satisfying an extra condition, that if
c′ ∈ Cex is invertible in Cex then c′ = Ψexp(c) for some c ∈ C. In terms of
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spaces X , this says that if c′ : X → [0,∞) is smooth and invertible (hence
positive) then c′ = exp c for some smooth c = log c′ : X → R.

Now we could also have started with Manc
in. So we write Euccin ⊂ Manc

in

for the full subcategory with objects [0,∞)m × Rn, and define the category
CPC∞Ringscin of categorical interior pre C∞-rings with corners to be
product-preserving functors F : Euccin → Sets, with morphisms natural
transformations. We define a subcategory PC∞Ringscin ⊂ PC∞Ringsc of
interior pre C∞-rings with corners, and an equivalence CPC∞Ringscin →
PC∞Ringscin mapping F �→ (C,Cex) = (F (R), F ([0,∞)) 	 {0}). The
category C∞Ringscin of interior C∞-rings with corners is the intersection
PC∞Ringscin ∩C∞Ringsc in PC∞Ringsc. The motivating example, for
X a manifold with (g-)corners, is (C,Cex) = (C∞(X), In(X) 	 {0}), for
In(X) the interior maps c′ : X → [0,∞).

Although a C∞-ring with corners C = (C,Cex) has a huge number of C∞-
operations Φf ,Ψg , it is helpful much of the time to focus on a small subset
of these, giving C,Cex smaller, more-manageable structures. In particular, we
often think of C as an R-algebra, with addition and multiplication given by
Φf+ ,Φf· : C × C → C for f+, f· : R2 → R given by f+(x, y) = x + y,
f·(x, y) = xy. And we think of Cex as a monoid, with multiplication given by
Ψg· : Cex×Cex → Cex for g· : [0,∞)2 → [0,∞) given by g·(x, y) = xy. Note
that monoids also control the corner structure of manifolds with g-corners, in
the same way.

We define various important subcategories of C∞-rings with corners by
imposing conditions on Cex as a monoid. For example, a C∞-ring with corners
C = (C,Cex) is interior if Cex = Cin 	{0} where Cin is a submonoid of Cex,
that is, Cex has no zero divisors. In terms of spaces X , we interpret Cin as
the monoid In(X) of interior maps c′ : X → [0,∞). If C,D are interior,
a morphism φ = (φ, φex) : C → D is interior if φex : Cex → Dex maps
Cin → Din. The subcategory C∞Schc

fi ⊂ C∞Schc of firm C∞-rings with
corners are those whose sharpening C�

ex is finitely generated.

Chapter 5: C∞-schemes with corners

We define the category C∞RSc of C∞-ringed spaces with corners X =

(X,OX), where X is a topological space and OX = (OX ,Oex
X ) is a sheaf of

C∞-rings with corners on X , and the subcategory LC∞RSc ⊂ C∞RSc of
local C∞-ringed spaces with corners for which the stalks OX,x for x ∈ X are
local C∞-rings with corners. The global sections functor Γc : LC∞RSc →
(C∞Ringsc)op has a right adjoint Specc : (C∞Ringsc)op → LC∞RSc,
the spectrum functor. An object X in LC∞RSc is called a C∞-scheme with
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corners if we may cover X with open U ⊆ X with (U,OX |U ) ∼= Specc C for
C in C∞Ringsc. These form a full subcategory C∞Schc ⊂ LC∞RSc.

One might expect that to define corresponding subcategories C∞RSc
in ⊂

C∞RSc,LC∞RSc
in ⊂ LC∞RSc of interior (local)C∞-ringed spaces with

corners, we should just replace C∞Ringsc by C∞Ringscin ⊂ C∞Ringsc.
However, as inc : C∞Ringscin ↪→ C∞Ringsc does not preserve limits,
a sheaf of interior C∞-rings with corners is only a presheaf of C∞-rings
with corners. So we define X = (X,OX) ∈ C∞RSc to be interior if
OX is the sheafification, as a sheaf valued in C∞Ringsc, of a sheaf val-
ued in C∞Ringscin. Then the stalks OX,x of OX lie in C∞Ringscin, so
Oex

X,x = Oin
X,x 	 {0}.

We define Γc
in : LC∞RSc

in → (C∞Ringscin)
op by Γc

in(X) = (Γ(OX),

Γ(Oin
X) 	 {0}), where Γ(Oin

X) ⊂ Γ(Oex
X ) is the subset of sections s with

s|x ∈ Oin
X,x ⊂ Oex

X,x for each x ∈ X . Then Γc
in has a right adjoint Speccin :

(C∞Ringscin)
op → LC∞RSc

in, where Speccin = Specc |(C∞Ringscin)
op .

An object X ∈ LC∞RSc
in is called an interior C∞-scheme with corners

if we may cover X with open U ⊆ X with (U,OX |U ) ∼= Speccin C for
C ∈ C∞Ringscin. These form a full subcategory C∞Schc

in ⊂ LC∞RSc
in,

with C∞Schc
in ⊂ C∞Schc.

We define full embeddings Mangc ↪→ C∞Schc or Mangc
in ↪→ C∞Schc

in

mapping X �→ (X, (OX ,Oex
X )) or X �→ (X, (OX ,Oin

X 	 {0})), where OX ,

Oex
X ,Oin

X are the sheaves of local smooth functions X → R, exterior functions
X → [0,∞), and interior functionsX → [0,∞), respectively. Thus, manifolds
with (g-)corners may be regarded as special examples of C∞-schemes with
corners. Manifolds with (g-)faces map to affine C∞-schemes with corners.

For C∞-schemes, Γ ◦ Spec ∼= Id but Spec ◦Γ ◦ Spec ∼= Spec. Thus we
can define a full subcategory C∞Ringsco ⊂ C∞Rings of complete C∞-
rings, with (C∞Ringsco)

op equivalent to the category AC∞Sch of affine
C∞-schemes.

For C∞-schemes with corners, the situation is worse: we have both Γc ◦
Specc ∼= Id and Specc ◦Γc ◦ Specc ∼= Specc. To see why, note that if X is a
manifold with corners then smooth functions c : X → R are essentially local
objects – they can be glued using partitions of unity.

However, smooth functions c′ : X → [0,∞) have some strictly global
behaviour: there is a locally constant function μc′ : ∂X → N 	 {∞} giving
the order of vanishing of c′ along the boundary ∂X . So the behaviour of c′ near
distant points x, y in X is linked, if x, y lie in the image of the same connected
component of ∂X . This means that smooth functions c′ : X → [0,∞) cannot
always be glued using partitions of unity, and localizing aC∞-ring with corners
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C = (C,Cex) at an R-point x : C → R, as one does to define Specc, does not
see only local behaviour around x.

Since Specc ◦Γc ◦ Specc ∼= Specc, we cannot define a subcategory of
‘complete’ C∞-rings with corners equivalent to affine C∞-schemes with cor-
ners. As a partial substitute, we define semi-complete C∞-rings with corners
C = (C,Cex), such that Γc ◦ Specc is an isomorphism on C and injective
on Cex.

If X,Y ∈ C∞Schc, a morphism f : X → Y in C∞Schc is a morphism
in LC∞RSc. Although locally we can write X ∼= Specc C, X ∼= Specc D,
because of the lack of a good notion of completeness, we do not know that
locally we can write f = Specc φ for some φ : D → C in C∞Ringsc.
One problem this causes is that g : X → Z, h : Y → Z are morphisms in
C∞Schc, we do not know that the fibre product X ×g,Z,h Y in LC∞RSc

(which always exists) lies in C∞Schc, if g,h are not locally of the form
Specc φ. So we do not know that all fibre products exist in C∞Schc.

To get around this, we introduce the full subcategoryC∞Schc
fi ⊂ C∞Schc

of firm C∞-schemes with corners X , which are locally of the form Specc C

for C a firm C∞-ring with corners. Morphisms f : X → Y in C∞Schc
fi

are always locally of the form Specc φ, so we can prove that C∞Schc
fi is

closed under fibre products in LC∞RSc, and thus all fibre products exist
in C∞Schc

fi.
In general, C∞Schc contains a huge variety of objects, many of which

are very singular and pathological, and do not fit with our intuitions about
manifolds with corners. So it can be helpful to restrict to smaller subcategories
of better-behaved objects in C∞Schc, such as C∞Schc

fi. For example, for X
to be firm means that locally X has only finitely many boundary strata, which
seems likely to hold in almost every interesting application.

We define many subcategories of C∞Schc
in,C

∞Schc, and prove results
such as existence of reflection functors between them, and existence of fibre
products and finite limits in them. Two particularly interesting and well-behaved
examples are the full subcategories C∞Schc

to ⊂ C∞Schc
in, C∞Schc

to,ex ⊂
C∞Schc of toric C∞-schemes with corners, whose corner structure is con-
trolled by toric monoids in the same way that manifolds with g-corners are.

Chapter 6: Boundaries, corners, and the corner functor

One of the most important properties of manifolds with corners X is the exis-
tence of boundaries ∂X , and clearly we want to generalize this to C∞-schemes
with corners. Our starting point, as in Chapter 3, is that the boundary ∂X =
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C1(X) is part of the corners C(X) =
∐dimX

k=0 Ck(X), and the corner functor
C : M̌anc → M̌anc

in is right adjoint to the inclusion inc : M̌anc
in ↪→ M̌anc.

We construct a right adjoint corner functor C : LC∞RSc → LC∞RSc
in

to the inclusion inc : LC∞RSc
in ↪→ LC∞RSc. We prove that the restriction

to C∞Schc maps to C∞Schc
in, giving C : C∞Schc → C∞Schc

in right
adjoint to inc : C∞Schc

in ↪→ C∞Schc. For X in LC∞RSc, points in
C(X) are pairs (x, P ) for x ∈ X and P ⊂ Oex

X,x a prime ideal in the monoid
Oex

X,x of the stalk OX,x of OX at x. This is an analogue, for X ∈ Manc, of
a point in C(X) being (x, γ) for x ∈ X and γ a local corner component of X
at x.

The corner functors for Manc,Mangc and C∞Schc commute with the
embeddings Manc,Mangc ↪→ C∞Schc.

To get an analogue of the decomposition C(X) =
∐

k�0 Ck(X) for C∞-
schemes with corners, we restrict to the subcategories C∞Schc

fi ⊂ C∞Schc

and C∞Schc
fi,in ⊂ C∞Schc

in of firm C∞-schemes with corners, where C :

C∞Schc
fi → C∞Schc

fi,in. For X firm there is a locally constant sheaf M̌ ex
C(X)

of finitely generated monoids on C(X), with M̌ ex
C(X)|(x,P ) = Oex

X,x/[c
′ = 1

if c′ ∈ Oex
X,x \ P ]. We define a decomposition C(X) =

∐
k�0 Ck(X) with

Ck(X) open and closed in C(X), by saying that (x, P ) ∈ Ck(X) if the
maximum length of a chain of prime ideals in M̌ ex

C(X)|(x,P ) is k + 1. This
recovers the usual decomposition C(X) =

∐
k�0 Ck(X) if X is a manifold

with (g-)corners. We define the boundary ∂X = C1(X).
For toric C∞-schemes with corners C maps C∞Schc

to,ex → C∞Schc
to,

and C preserves fibre products, and all fibre products exist in C∞Schc
to. We

use this to give criteria for when fibre products exist in C∞Schc
to,ex. This is

an analogue of results in [46] giving criteria for when fibre products exist in
Mangc, given that b-transverse fibre products exist in Mangc

in .

Chapter 7: Modules, and sheaves of modules

If C = (C,Cex) is a C∞-ring with corners, we define a C-module to be a
module over C as an R-algebra. Similarly, if X = (X, (OX ,Oex

X )) is a C∞-
scheme with corners, we consider OX -modules on X , which are just modules
on the underlying C∞-scheme X = (X,OX). So the theory of modules over
C∞-rings with corners and C∞-schemes with corners lifts immediately from
modules overC∞-rings andC∞-schemes in [49, §5], with no additional theory
required.

If X is a manifold with corners then, as in Chapter 3, we have two notions of
cotangent bundle T ∗X, bT ∗X , where bT ∗X is functorial only under interior
morphisms. Similarly, if C = (C,Cex) is a C∞-ring with corners, we have the
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cotangent module ΩC of C from [49, §5]. If C is interior we also define the b-
cotangent module bΩC , which uses the corner structure. If X is a manifold with
(g-)faces and C = C∞

in (X) then ΩC = Γ∞(T ∗X) and bΩC = Γ∞(bT ∗X).
We show that b-cotangent modules are functorial under interior morphisms and
have exact sequences for pushouts.

If X is a C∞-scheme with corners we define the cotangent sheaf T ∗X , and
if X is interior the b-cotangent sheaf bT ∗X , by sheafifying the (b-)cotangent
modules of OX(U) for open U ⊂ X . If X = FManc(X) for X ∈ Manc

these are the sheaves of sections of T ∗X and bT ∗X . We show that Cartesian
squares in subcategories such as C∞Schc

to,C
∞Schc

fi,in ⊂ C∞Schc
in yield

exact sequences of b-cotangent sheaves. On the corners C(X) we construct an
exact sequence relating bT ∗C(X), Π∗

X(bT ∗X) and M̌ ex
C(X) ⊗N OC(X).

Chapter 8: Further generalizations and applications

Finally we propose four directions in which this book could be generalized and
applied.

Synthetic Differential Geometry with corners Synthetic Differential Geom-
etry is a subject in which one proves theorems about manifolds in Differen-
tial Geometry by reasoning using ‘infinitesimals’, as in Kock [52, 53]. C∞-
schemes are used to provide a ‘model’ for Synthetic Differential Geometry,
and so show that the axioms of Synthetic Differential Geometry are consistent.
In a similar way, one could develop a theory of ‘Synthetic Differential Geom-
etry with corners’, for proving theorems about manifolds with corners using
infinitesimals, and C∞-schemes with corners could be used to show that it is
consistent.

C∞-stacks with corners In classical Algebraic Geometry, schemes are gen-
eralized to (Deligne–Mumford or Artin) stacks. The second author [49] ex-
tended the theory of C∞-schemes to C∞-stacks, including Deligne–Mumford
C∞-stacks. This corresponds to generalizing manifolds to orbifolds.

We discuss a theory ofC∞-stacks with corners, including Deligne–Mumford
C∞-stacks with corners. These generalize orbifolds with (g-)corners. Much of
the theory follows from [49] with only cosmetic changes.

C∞-rings and C∞-schemes with a-corners Our theory starts with the cate-
gories Manc

in ⊂ Manc of manifolds with corners defined in Chapter 3. The
second author [47] also defined categories Manac

in ⊂ Manac of manifolds
with analytic corners, or manifolds with a-corners. Even the simplest objects
�0,∞) in Manac and [0,∞) in Manc have different smooth structures. There
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is also a categoryManc,ac of manifolds with corners and a-corners containing
both Manc and Manac.

Manifolds with a-corners have applications to partial differential equations
with boundary conditions of asymptotic type, and to moduli spaces with bound-
ary and corners, such as moduli spaces of Morse flow lines, in which (we argue)
manifolds with a-corners give the correct smooth structure.

This entire book could be rewritten over Manac
in ⊂ Manac or Manc,ac

in ⊂
Manc,ac rather than Manc

in ⊂ Manc. We explain the first steps in this.

Derived manifolds and derived orbifolds with corners Classical Algebraic
Geometry has been generalized to Derived Algebraic Geometry, which is now
a major area of mathematics. As in §2.9, classical Differential Geometry can be
generalized to Derived Differential Geometry, the study of derived manifolds
and derived orbifolds, regarded as special examples of derived C∞-schemes
and derived C∞-stacks. Some references are [6, 7, 8, 10, 11, 12, 13, 43, 44,
62, 87, 88, 89].

It is desirable to extend the subject to derived manifolds with corners and
derived orbifolds with corners, regarded as special examples of derived C∞-
schemes with corners and derived C∞-stacks with corners. This will be done
by the second author in [44], with this book as its foundations (see also Steffens
[88, 89]). Derived orbifolds with corners will have important applications in
Symplectic Geometry, as (we argue) they are the correct way to make Fukaya–
Ohta–Oh–Ono’s ‘Kuranishi spaces with corners’ [28, 29, 30, 31] into well-
behaved geometric spaces.
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