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Salt fingers are a form of double-diffusive convection that can occur in a wide variety
of fluid systems, ranging from stellar interiors and oceans to magma chambers. Their
amplitude has long been difficult to quantify, and a variety of mechanisms have been
proposed. Radko & Smith (J. Fluid Mech., this issue, vol. 692, 2012, pp. 5–27) have
developed a new theory that balances the basic growth rate with that of secondary
instabilities that act on the finite amplitude fingers. Their approach promises a way
forward for computationally challenging systems with vastly different scales of decay
for momentum, heat and dissolved substances.
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1. Introduction

Double-diffusive instabilities depend on a difference between the molecular
diffusivities of two constituents and a gravitationally unstable distribution of one of
them. The canonical example is ‘salt fingers’, wherein a top-heavy distribution of salt
concentration is stabilized by the temperature profile. Heat is conducted about 100
times faster in water than salt diffuses, so small warm salty perturbations can lose
more heat than salt, thus becoming denser and sinking, while cold fresh anomalies
gain more heat than salt, becoming more buoyant and rising. The resulting flow
consists of upgoing and downgoing columns of fluid in a self-assembled counterflow
heat exchanger (as shown in the figure by the title from Krishnamurti 2009). The
theory behind the basic salt-finger instability was developed over 50 years ago by
Stern (1960). However, progress in understanding salt-finger equilibration has been
slow. The limits on finger amplitude are controlled by nonlinear instabilities and
their dynamics have remained elusive, in part because of the large range of scales
involved in the fully developed salt-finger convection. Salt fingers have remained
a challenging puzzle, ever since W. S. Jevons and Lord Rayleigh performed salt-
finger experiments in 1857 and 1880 but failed to understand them (Schmitt 1995).
New advances in analytical and numerical modelling reported by Radko & Smith
(2012, this issue) are finally leading to progress in quantifying the fluxes due to
fingers. Since recent oceanographic tracer data has confirmed that salt fingers are very
significant vertical mixing agents in the tropical oceans (Schmitt et al. 2005), there
is an immediate need to advance the understanding of their dynamics. In addition,
double-diffusive convection is now known to be important in a variety of other
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FIGURE 1. (a) Vertical profiles of temperature and salinity in the depth range of 200–500 m
in the main thermocline of the tropical Atlantic ocean east of Barbados. (b) Vertical profile of
the dissipation rate of thermal variance as determined from microscale temperature gradients.
(c) The theoretical growth rate of salt fingers calculated from the local vertical gradients of
temperature and salinity and the seawater viscosity, thermal conductivity and salt diffusivity
(from Schmitt et al. 2005, used with permission). (d,e) Schematic diagram illustrating
development of primary salt-finger instabilities in a form of vertical elevator modes (d) and their
ultimate equilibration by secondary instabilities (e) acting to distort fingers, thereby reducing
the vertical transport of heat and salt. Radko & Smith (2012) hypothesize that the equilibration
occurs when the growth rates of primary (denoted by single primes) and secondary instabilities
(double primes) are comparable.

systems from stellar interiors to magma chambers (Schmitt 1983), cases with vastly
different Prandtl numbers and diffusivity ratios. Radko & Smith (2012) have made a
start on a consistent theory across such variations in fluid properties.

2. Overview

While the conditions for the initial growth of salt fingers are well understood,
determining the processes that limit their magnitude has long proved difficult. Stern
(1969) suggested that groups of fingers can feed internal wave instabilities when
they reach sufficient amplitude. The motivation for this theory came from laboratory
experiments that showed internal waves amplifying in a field of fingers in a uniform
gradient situation. The waves presaged the onset of larger scale convective overturning
that led to the formation of alternating mixed layers and gradient regions in what came
to be called a thermohaline staircase. Both fingers and a mixed layer can be seen in
laboratory experiments of Krishnamurti (2009) (as shown in the picture displayed near
the title of this article) and an oceanic salt-finger staircase can be seen in figure 1(a).

Stern derived a criterion involving the ratio of the vertical buoyancy flux, the
viscosity and the vertical buoyancy gradient: the so-called Stern number A:

A=
αFT − βFS

ν(αT z − βSz)
, (2.1)

where FT and FS are the temperature and salinity fluxes, T z and Sz are the mean
vertical temperature and salinity gradients, α and β are the thermal expansion and
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haline contraction coefficients and ν is the kinematic viscosity. Also, Kunze (1987)
considered the shear between adjacent upgoing and downgoing fingers and proposed a
Richardson-type criterion for their equilibration, equivalent to Stern’s constraint.

While parameter A was an order-one number in the heat–salt case, a persistent
stream of indirect evidence caused some doubt in the relevance of the Stern–Kunze
arguments. For instance, laboratory experiments in which salt and sugar replace heat
and salt as diffusive substances consistently yielded very low values of A. Another
concern was expressed by Holyer (1984) who explored even finer-scale instabilities,
developing on the strong horizontal gradients between fingers. Her theoretical analysis,
supported by simulations in Shen (1995) and Radko & Stern (1999), revealed that
these secondary instabilities are similar to lateral intrusions and can potentially
equilibrate the growth of primary salt fingers. Holyer’s small-scale modes grow
faster than the collective instabilities, seem to describe the turbulent appearance of
fully developed fingers much better (again see the picture near the title) and, most
importantly, are not controlled by A. Salt-finger equilibration in general and the
relevance of the Stern number constraint in particular have remained among the most
intriguing and controversial subjects in double-diffusive convection theory. However,
the work reported by Radko & Smith (2012) appears to resolve the long-standing
controversy by sorting out the basic physics behind salt-finger amplitude equilibration
and guiding us to a new understanding of these issues.

Radko & Smith explore how the secondary instabilities can limit the growth of
fingers. They argue that the limiting amplitude will be reached when the background
finger growth rate is matched by the amplitude-dependent growth rate of the
secondary instabilities, as illustrated in figures 1(d) and 1(e). They are guided in
this development by careful numerical simulations, which are now made possible by
computational advances. The balance between primary and secondary instabilities is
simply presented in the relation:

λ2 = Cλ1, (2.2)

where λ1 is the linear growth rate of the fingers as a function of the vertical property
gradients and the molecular parameters, λ2 is the growth rate of the secondary
instabilities and C is a dimensionless order one constant. The growth of the secondary
instabilities is dependent on the amplitude of the fingers and the constant C describes
the relative efficiency of the two competing instabilities. Thus, the larger the growth
rate of primary instabilities, the larger is the salt-finger amplitude.

There may already be some observational support for such a theory. That is, in
addition to the thermohaline staircase, figures 1(a)–(c) show that the dissipation rate
of thermal variance (a measure of the flux) peaks at every salt-finger interface in
the oceanic staircases, as does the theoretical finger growth rate. The logarithm of
the dissipation rate shows a strong correlation with the growth rate of the fingers,
as determined from the local heat and salt stratification. These oceanographic data
support a role for the growth rate in establishing the finger amplitude. Importantly, the
model of Radko & Smith (2012) suggests that mixing coefficients will decrease with
increasing density ratio as observed in experiments and unlike the Stern and Kunze
models.

Radko and Smith perform both two-dimensional and three-dimensional numerical
simulations to evaluate C. It would not be surprising for C to be a function of density
ratio, but it appears to be well approximated by a constant value over a wide range
of density ratios, Prandtl numbers and diffusivity ratios. The only exception is the
parameter regime of the laboratory sugar–salt experiments, for which the variability
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in C is attributed to an order-one diffusivity ratio. The overall success of the growth
rate balance theory is an indication that a way forward has been defined for estimating
finger amplitudes in the computationally challenging astrophysical case, characterized
by huge differences in dissipation scales for momentum, heat and ‘salt’.

3. Future

While the new theory of Radko & Smith (2012) promises to resolve the finger
amplitude challenge, there remains a host of unresolved problems in double diffusion.
Mechanisms controlling the formation of thermohaline staircases (e.g. figure 1a) based
on variations in the heat/salt flux ratio have been proposed by Radko (2003, 2005),
but remain unverified by laboratory experiments or field observations. The interaction
of salt fingers with the larger scales of motion in other systems (stars, liquid metal
and magmas) should be quite different, given the flux ratio dependencies predicted by
linear theory. There remains the intriguing possibility that speckling in metal alloys
and columnar jointing (basalt columns) are a signature of salt-finger convection that
has been frozen into the solidified material. Recently, Hage & Tilgner (2010) have
reported the surprising discovery of fingers in haline convection, with the application
of just a very small stable temperature gradient. This is a parameter regime where
fingers were not expected, and large-scale convection was presumed to dominate.
The field of double diffusion is rich with unresolved problems in the oceanographic
heat–salt case and in the wide variety of other fluid systems susceptible to fingering.
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