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ApsTRACT. Measurements of mesoscale sea-ice deformation over a region approximately 20 km in
diameter were carried out over a five-week period in the spring of 1972 at the main AIDJEX camp in the
Beaufort Sea. They have been analyzed to determine non-linearities in the ice velocity field (due to the
discrete small-scale nature of the ice pack), as well as a continuum mode of deformation represented by a
least-squares strain-rate tensor and vorticity. The deformation-rate time series between Julian day 88 and
112 exhibited net areal changes as large as 3%, and deformation rates up to 0.16%, per hour. In the principal
axis co-ordinate system, the strain-rate typically exhibited a much larger compression (or extension) along
one axis than along the other. Persistent cycles at & 12 h wavelengths were observed in the divergence rate.

A comparison of the average residual error with the average strain-rate magnitude indicated that strains
measured on a scale of 10 km or greater can serve as a valid measure of the continuum motion of the sea
ice. This conclusion is also substantiated by a comparison between the mesoscale deformation, and macro-
scale deformation measured over a = 100 km diameter region.

Regarding pack-ice rotation, vorticity calculations indicate that at low temporal frequencies (< 0.02 h™*),
the whole mesoscale array rotates essentially as an entity and consequently the low-frequency vorticity can
be estimated accurately from the rotation of a single floe.

ResumE. Entrainement différentiel de la glace de mer. I. Variations dans Uespace el le temps de la déformation de la
glace de mer. Des mesures a échelle moyenne de la déformation de la glace de mer dans une région d’approxi-
mativement 20 km de diamétre, ont été conduites au long d’une période de cing semaines, au printemps
1972, au camp principal AIDJEX, dans la mer de Beaufort. Elles ont été analysées pour déterminer les
accidents non-linéaires dans le champ des vitesses de la glace (en raison de la nature discréte, A petite échelle,
de la banquise), aussi bien que le mode continu de la déformation représenté par un tenseur de contraintes
déterminé par la méthode des moindres carrés, et une vorticité. Les séries temporelles de vitesse de déforma-
tion entre les jours 88 et 112 du calendrier Julien, ont montré de nets changements dans 'espace allant
jusqu’a 3%, et des vitesses de déformation allant jusqu’a 0,16%, par heure, Dans le systéme de coordonnées
des axes principaux, I’état des contraintes montre typiquement une compression (ou une traction) beaucoup
plus forte le long d’un des axes que le long de 'autre.  Des cycles permanents avec des périodicités d’environ
12 heures, ont été observés dans les rythmes de divergence.

Une comparaison de U'erreur résiduclle moyenne avec le grandeur moyenne des contraintes, indique que
les efforts mesurés & une échelle de 10 km ou plus peuvent constituer une mesure valable du mouvement
continu de la glace de mer. Cette conclusion est également confirmée par une comparaison entre la déforma-
tion a échelle moyenne et la déformation & grande échelle mesurée sur une région de 100 km de diamétre.

Au regard de la rotation de la banquise, les calculs de vorticité indiquent qu’a de faibles fréquences dans
le temps (0,02 h~1), I'ensemble d’un systéme & moyenne échelle tourne comme un tout et que par conséquent,
la vorticité a basse fréquence peut étre estimée avec précision 4 partir de la rotation d’un seul glagon.

ZUSAMMENFASSUNG. Differentielle Drift des Meereises. I. Réumliche und zeitliche Schwankungen der Spannung in
mittelgrossen Bereichen des Meereises. Wiahrend einer Periode von 5 Wochen im Frithling 1972 wurden im
Hauptlager von AIDJEX im Meereis der Beaufort-See Deformationsmessungen mittleren Masstabes {iber
einem Gebiet mit etwa 20 km Durchmesser ausgefithrt. Sie wurden zur Bestimmung der Nicht-Linearitit
im Felde der Eisgeschwindigkeit, hervorgerufen durch die diskrete, kleinraumige Packung des Eises, aber
auch des kontinuierlichen Deformationsverhaltens, dargestellt durch einen ausgeglichenen Spannungs-
tensor und die Wirbelbildung, herangezogen. Die Zeitreihen der Verformungsgeschwindigkeit zwischen den
Kalendertagen 88 und 112 ergaben Netto-Flichendnderungen bis zu 3%, und Verformungsgeschwindigkeiten
bis zu 0,16%, pro Stunde. Im Koordinatensystem der Hauptachsen bewirkte die Spannungsverteilung
typisch eine weit grossere Kompression (oder Dehnung) lings einer Achse gegeniiber der anderen. In der
Divergenzgeschwindigkeit wurden regelmissige Zyklen von etwa 12 Stunden Wellenlinge beobachtet.

Ein Vergleich zwischen dem mittleren Restfehler und der mittleren Grosse der Verformungsgeschwindig-
keit zeigte, dass Spannungsmessungen iiber Strecken von 10 km oder mehr als giiltiger Masstab fiir die
kontinuierliche Bewegung des Meereises dienen kénnen. Dieser Schluss wird auch durch einen Vergleich
zwischen der mittelmasstabigen Verformung und der grossmasstabigen Verformung, gemessen iiber einem
Gebiet mit ca. 100 km Durchmesser, gestiitzt.

Was die Rotation des Packeises betrifft, so ergibt sich aus Berechnungen der Wirbelbildung, dass der
ganze mittelgrosse Bereich bei niedrigen zeitlichen Frequenzen (< o.02 h™') im wesentlichen als Einheit
rotiert. Infolgedessen kann die niederfrequente Wirbelbildung aus der Rotation einer einzelnen Scholle
genau abgeschitzt werden.
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InTRODUCTION

One of the prime goals of the Arctic Ice Dynamics Joint Experiment (AIDJEX) is an
improved understanding of the drift of pack ice. To this end one urgently needs accurate
field observations of the deformation of different types of pack ice performed on a variety of
time and space scales. To partially satisfy this need a series of detailed mesoscale strain
measurements were made at approximately g h intervals over a 3o d period in the spring
of 1972 in the Beaufort Sea. These measurements are particularly useful since in earlier
studies of sea-ice deformation—as reviewed for example, in Hibler and others (1973[b])
—there have usually been large and random time intervals between observations, making
the computation of accurate time series impossible. Also, and perhaps even more important,
those studies included no detailed investigation of the non-linear variations in the ice velocity
field that result from inhomogeneous spatial variations or fluctuations in the deformation of
the ice.

Therefore, our analysis described in this paper was undertaken with three primary goals
in mind: first, to provide a detailed time series of the least-squares strain-rate tensor and vorti-
city (complete with “‘error bars” due to the non-linearity of the ice velocity field) over the
25 d period, Julian day 88-113, (28 March—22 April), 1972; second, to study the magnitude
and nature of the non-linear velocity fluctuations; and third, to compare deformation mea-
sures from different scales to determine coherent modes of deformation in differently sized
arrays as well as scaling effects. These results can then be compared with predictions from
theoretical drift calculations and with data collected on the remote-sensing overflights.
Besides providing insight into the nature of pack-ice dynamics, such comparisons and infor-
mation on inhomogenities in the ice velocity field are helpful in designing future strain arrays.

APPROACH

As a framework in which to view our analysis, it is useful to think of the pack as a large
number of irregular ice floes packed closely together, with the compactness varying with
season. In the summer when the compactness is low, the individual ice floes can readily be
identified and the pack looks like a two-dimensional granular medium. In the winter when
the compactness is near unity, the individual floes can no longer be clearly identified and
the ice is criss-crossed by a number of irregular leads. A typical example of the pack-ice
structure in winter is given in Figure 1, where we show a schematic diagram of active leads
and ridging zones in the mesoscale strain area for one instant of time,

Using such a conceptual model of pack ice, we can view the velocity of any point in the
pack as consisting of a continuum velocity component (varying over lengths commensurate
with the scale of meteorological variations) plus a fluctuation component due to the discrete
small-scale nature of the pack ice. Such a partition of the velocity field is similar to that which
can be done for a fluid where the motion of each molecule has a continuum component plus a
fluctuation component. In the case of the pack ice, however, the fluctuations are probably
not due so much to random motion of floes (although this is undoubtedly a factor) as to the
fact that the floe sizes are large relative to our measurement scale and thus spatial velocity
profiles will be of a stepped nature. This is illustrated by Figure 1, where, we see that the
distance between leads, where relative motion occurs, is generally 4 to 6 km. Also, for pack
ice, the fluctuations would be expected to be highly variable in time since they will primarily
be driven by the transfer of energy into the pack by meteorological forces. This is different
from the case of a fluid in a laboratory, where fluctuations are well described by the tempera-
ture.

As we examine spatial variations in the velocity field over larger and larger areas, the
contributions of fluctuations to average velocity differences (i.e. strain-rates) would be
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Fig. 1. Schematic diagram of the mesoscale strain array together with an overlay of active leads and ridging zones. Leads and
ridges were obtained from a 1500 m aerial photo-mosaic taken on 6 April 1972.

expected to become less pronounced. Stated differently, one would expect the contribution of
fluctuations to the sea-ice strain-rate to become small when the area covered by the strain
array becomes large relative to floe size and/or distances between leads.

In order to sort out the fluctuations from the continuum motion we have analyzed the
position data of the mesoscale targets by fitting a least-squares planar surface to the spatial
velocity field sampled by the array, with the slope angles of the plane representing the strain-
rate and vorticity. Such a procedure is commensurate with the discussion of sea-ice strain
by Nye (1973) where he notes that for a precise measure of the strain-rate one needs to first
smooth the velocity field before taking derivatives. Since the area covered by the mesoscale
array is relatively small (~20 km diameter) compared to meteorological systems, we would
expect the continuum velocity to be relatively linear over this region and hence the planar
approximation should be good. Residual deviations from this planar surface are identified as
fluctuations. These residual deviations will also cause some uncertainty in the strain-rates,
an uncertainty which can be estimated by dimensional analysis for differently sized arrays
on the assumption that the fluctuation amplitude is reasonably similar over the region. As
part of this procedure to distinguish between continuum motion and fluctuations, we also
estimate a continuum length which we define as the length over which, on the average, the
continuum velocity differences equal the fluctuation amplitude. This length, which turns
out to be about 10 km, gives us a rough measure of the scale above which sea ice may be
viewed as a continuum and below which the discrete nature of the pack begins to dominate
the motion.
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Finally, in addition to such a least-squares analysis to look at scaling effects, we also
compare strains obtained from triangles of different sizes (5 km to 20 km) and compare the
mesoscale strain results over the 20 km region to the macroscale strain results measured from a
100 km triangle, one corner of which is the center of the mesoscale array. The comparison
generally indicates that all arrays are measuring similar continuum motions of the pack with
the fluctuations yielding a large contribution, but not masking the continuum motion on a
scale of about 20 km.

SITE LOCATION AND DATA COLLECTION PROCEDURES

The measurements used for this study were made in the vicinity of the main 1972
AIDJEX camp, located at roughly lat. 757 00’ N., long. 148° 30° W. The camp as well as
the different research programs carried out from it are described in AIDFEX Bulletin, No. 14,
1972. The strain array was established by erecting a series of targets which consisted of corner
cubes mounted on the tops of aluminum poles. The distances to and angles between the
targets were measured using a continuous-wave laser range-finder at two to three hour
intervals. The height of the targets varied from 3 to 10 m above the ice surface depending
on the distance and the obstructions between the target and the main camp. A diagram of
the strain array is shown in Figure 1, together with an overlay of active leads and ridging
zones. The angles to the targets were measured with an average accuracy of better than
41 min and were referenced to a fixed stake on the multi-year floe on which the main camp
was sited. The line between the laser and the stake was then tied into the true north deter-
minations (sun shots) made by Thorndike and Gill (Thorndike and others, 1972). Distances
were measured to the nearest 0.1 ft (0.03 m) because the large strains that were experienced
obviated the need for any greater precision.

This strain measurement system was found to be vastly superior to the use of manned
tellurometer sites (Hibler and others, 1973[b]). With it, a large number of strain lines could
be determined casily without manning the remote stations. It was also relatively quick and
casy to install and placed a minimal reliance upon “black boxes”. However, visibility
problems (wind-blown snow, sea smoke from leads) made acquisition of continuous, equally-
spaced time series difficult (laser measurements were impossible approximately 109, of the
time, and once high winds caused a gap of almost two days in the time series for the strain line)
In addition, the system required manpower 24 hours a day.

DATA ANALYSIS
Extrapolation and smoothing of strain data

Data taken in the field consisted of distances and angles of targets relative to a fixed
reference stake. As a first step in the data reduction, these angles were converted to angles
relative to true north as measured on Julian day 81 (21 March). Rotations of the array were
not taken into account for strain calculations, so that the coordinate system used for this study
is slightly different from the true north coordinate system (the maximum difference is,
however, less than 5 deg). Rotations of the array were, of course, included in the vorticity
calculations. The time scale was converted to G.M.T. by using four G.M.T. calibration
times obtained in the field to find a least-squares rate for the clock used in the measurements.
The data point times were recomputed with this rate and then all data (both angles and
distances) were linearly interpolated and resampled every hour. Using this new data set at
one-hour intervals, the time series was smoothed with a low-pass filter having a transition
band width with periods from 8.0 to 6.15 h. The smoothed time series was then resampled
every third hour. If there was reason to expect that the data contained a large number of
time intervals greater than 3 h, a low-pass filter having a transition band from 20 to 11.4 h
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was used before resampling. Both filters had less than 0.6, side-lobe errors and consisted of
81 symmetric weights designed according to the procedure discussed by Hibler (1972).

This process of interpolation followed by smoothing may be viewed as a consistent way of
constructing a smooth curve (with no high-frequency components past a reasonable cut-off
dictated by the average sampling rate) through the randomly spaced data points. Alter-
natively the curve may be considered an accurate representation of the low-frequency portion
of the linearly interpolated curve.

Examples of the smooth curves generated by this process are shown in Figure 2. Curve a,
which results from the filter with the higher frequency cut-off, follows the data quite closely.
This indicates that there is little variance associated with periods shorter than 6 h.
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Fig. 2. Typical resulls of the interpolation and smoothing process used to generate equi-spaced values for the strain analysis.
Curve a was oblained with a smoothing filler transition band from 8.0 lo 6.15 h and curve b with a transition band from
20.0to 1r.4h.

Experimental error estimation

The primary source of error in the measurements is the uncertainty of target angles.
Since angular measurements were generally accurate to +-0.000 g rad (41 min) and distance
errors were small, we estimated the x and » position errors of each measurement of a target
at distance » and angle 8 to be

Ax = 0.000 g7 sin 0,
(1)

Ay = 0.000 g7 cos 6.

Since measurements three hours apart were subtracted to obtain velocities we estimated
x and y velocity errors to be
Avz = 0.000 67 sin 0/ At
(2)
Avy = 0.000 b7 cos 0/At

with At = g h. This is a slight over-estimation of errors for the difference between two
numbers with uncorrelated errors. However, since there may be some errors due to inter-
polation between inequally spaced points that are not removed by smoothing, we have made
a conservative error estimation. The experimental errors given by Equation (2) were then
used as input to obtain the experimental error on the strain-rate tensor as discussed in the
next section.
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Least-squares computational technique

To understand conceptually the least-squares strain and vorticity calculations, it is useful
to visualize a contour plot of the x (or y) velocity component of the ice. In essence the com-
puter program used to calculate the deformation rate fits a planar surface through the contour
plot with the slope angles of the planes yielding the strain-rates and vorticities. Since the
actual velocity components will deviate from a perfect plane, there will be some uncertainty
in the slope angles of the plane. We refer to the average deviation of the velocity components
from the plane as the residual fluctuation error and the uncertainty in the slope angles of the
plane is referred to as the inhomogeneity variation. In addition, once the least-squares
equation for the plane as a function of say N velocity measurements is determined, the
estimated experimental errors may be inserted to obtain estimates of slope uncertainties due
only to experimental errors. The remainder of the slope uncertainty may then be identified
with non-linearities in the ice velocity field.

To formulate this conceptual model mathematically we proceed as follows. Using tensor
notation for the strain-rate, the strain-rate tensor é; and vorticity = are defined by

. 1oy Oy
TG (axj+8xg)

1 (sz Ful)
= e

2 \dx; Ox,
where z; is the ith velocity component of the ice pack (considered as a continuum) and
i,j = 1, 2 since we are only concerned with the horizontal motion of the sea ice. Considering
N targets whose positions are being measured, we denote by z;'? the measured jth velocity
component of the ith target, and by 6; and r; the polar co-ordinates of the ith target relative
to an arbitrary origin.

As a model to explain the velocities of the N targets, we consider the ice velocity field (on
the scale of about 20 km) to consist of a continuum velocity component, which varies in a
uniform linear manner, (specified by ¢; and =) plus a random fluctuation component. Mathe-
matically our model is expressed by the equation

up = xijej+ 24 (3)
where
u ', AT s e
U =
v\, i=N+1to 2k,
[recos B rgsin 6 0 0 i I | i =1 toNN,
xy (=) (4)
[ o 0 ricos 0 risinf; o 1], i = N+1 to 2V,
éu \
€1,— W
| €2t
g{=7 "
€22
A,
A,

and A4,, A, arc constants representing the continuum velocity components at the origin.
In Equation (3), z is the fluctuation component plus any measurement error and E(u;) =
xgje7 is the “‘expected” value of u; since E(z;) = o. The least-squares estimates of ¢, denoted
by é;, are obtained by minimizing Z Zis.
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To do this we differentiate
2N

2 (w—egxyg)?

t=1
with respect to ex which yields the matrix equation for the least-squares estimates of ¢; (Jenkins
and Watts, 1968, p. 132):

é = M 1XTU (5)

where M = XTX and T denotes transpose.

When using these least-squares equations, it should be noted that adding a constant
rotation to all angles only changes the vorticity w. This can be demonstrated by noting that
in Equation (3) changing w to w-}# changes »; to u;” where

ui—(sin 0;) Br, i =1to N,
o —

u; -+ (cos by) 9r;, i = N-+1 to 2N,

This, however, is equivalent to adding a constant rotation per unit time to all angles. In a
similar manner, adding a constant velocity to all points changes only A, and 4,

Since we have only a finite number of random velocity measurements (each with some
random fluctuation “error”) with which to calculate ¢;, there will be some uncertainty or
error in ;. To estimate this variation or uncertainty it is necessary to calculate the covariance
matrix of é which is easily shown (Jenkins and Watts, 1968, p. 134) to be given by

C = M1 XTVX(M1)T (6)
where Cy; = cov (é&;, ¢;) and Vij = cov (24, z5). In our case z; consists of two parts
zi = ziMH4-z!

where z;M is the measurement error (which we estimate to be given by Equation (2)) and
2 is the fluctuation component of the ice motion due to the fact that the actual ice velocity
field is non-linear. If we assume that z;M and z;! are uncorrelated, then the variation in & due
only to measurement errors, call it C4s™, may be estimated using Equation (6) with VM —
cov (M, z;M). Using Equation (2) we estimate VM to be

((sin 8;)2 r2(AB/At)2, t=1to N,
VM = 8y (7)
(cos )2 r2(AG[At)z, t = N+1 to 2N

To find the variation of some linear combination of the & due to the total “error” 21, we
make the usual assumption that the z; are uncorrelated with the same mean and variance so
that cov (zi, ;) = 8i6* where the point estimator of o* (denoted by s?) is given by the

residual error
2N
— A\
52— ? (ui—u;) (8)

2 BN—h
where iy = xyé;. o
In this case Equation (6) reduces to
Ciy = (M~")yo™. (9)
Given a linear combination of ¢;, b = a;, then the deviation of b from E(b) is such that
b—E(6)[s [asas(M~")y]} (10)
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has the ¢ distribution with 2N'—6 degrees of freedom, assuming that the errors are normally
distributed (Bennett and Franklin, 1954, p. 250). Consequently, confidence limits for the
estimated strain may be obtained using a (-distribution table.

In addition to the estimated strain, we are also concerned with the velocity fluctuation
component z;' which is strictly speaking not an error, but represents the variation from
linearity of the velocity field over the region sampled. In the cases we have studied, the esti-
mated residual error z; obtained from Equation (8) was generally found to be larger than the
average estimated value of experimental error zM from Equation (2). Consequently as a
matter of convenience, we will often refer to the residual error obtained from Equation (8)
as the residual fluctuation error.

Also, as a matter of notation we will refer to the uncertainty in &, (cov (&)}, as the
inhomogeneity error. It should be remembered that the inhomogeneity error is an estimate
of the uncertainty in the least-squares estimated strain and consequently will depend some-
what on the number of samples used. The residual fluctuation error, on the other hand,
should be relatively independent of the number of sample points used.

STRAIN RESULTS

For comparison, time series of the strain-rate and vorticity have been calculated using
several different combinations of targets; Table I describes all combinations of targets used
in the calculations. The origin was also considered a position measurement in some arrays,
with distance and angle being zero for all time.

TaABLE I. STRAIN-LINE COMBINATIONS USED IN THIS PAPER

Array Approximate diameter
“name” Targets of region sampled

km
Combined array 1,2, 3, 4, 5, 7, 8, 9, 10, 11, 13, origin 20
Quter array 1, 2, 3, 8, g, origin 20
16 km triangle 2,5 9 16
8 km triangle 4, 11; 13 8
5 km triangle 7, 11, origin 5

Over the time interval studied in this paper, there was only one major gap in the time
series, and this portion is blanked out in the plots. However, for spectral studies, root-mean-
square error estimation, and correlation studies, the whole curve was used (data points every
3 h) including linearly extrapolated data through the gap, with the linear extrapolation
being done on each target position as discussed previously.

Time series of the strain tensor

Since the outer array targets were measured more often than other targets, the outer
array provides a more detailed time series for analysis. Results of least-squares calculations
using the outer array are shown in Figures 3 and 4 which present the two invariants (Nye,
1957) (denoted by ¢ and &) of the strain-rate tensor both separately and in the form of the
divergence rate &; (sum of the principal components) and the maximum shear rate (é—é)/2
(half the difference of the principal components). For the strain-rates, the angles of the strain
lines at the beginning of each g h interval were used in the least-squares calculations. The
continuous errors in Figures 3 and 4, which are the A values shown below each curve, repre-
sent the inhomogeneity error (calculated using Equations (8) and (9)) which is due primarily
to velocity fluctuations. The small error bar on the divergence-rate curve represents the
maximum experimental error, which was calculated by first calculating the experimental
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Fig. 3. (a) Least-squares divergence rate and accompanying inkomogeneily error and (b) maximum shear rate and inhomogeneity
error.  The small error bar in (a) represents the maximum uncertainty due to measurement error.
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Fig. 4. (a) Principal axis components of the least squares strain-rate tensor and (b) inhomogeneity errors.
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error for each point in the time series according to Equations (6) and (7) and then finding the
maximum error over the time series. For a more compact summary of the relative magnitude
of the strain-rates and strain-rate variation errors we list the r.m.s. values for the various time
series in Table I1.

TapLE I1I. R.M.S. STRAIN-RATES, STRAIN-RATE VARIATION ERRORS AND EXPERIMENTAL ERRORS
FOR OUTER ARRAY
(units 107+ h™1)
€ Aé, €, Aé, €i4 Aéy Aéy (expt’l) (é;:—¢€2)/2 Al(ér—€3)/2]
4.03 1.92 3.66 1.94 3.28 248 0.85 3.48 1.36

It is clear from the figure and from Table II that in general strain-rates are of greater
magnitude than their respective strain-rate inhomogeneity errors. The figures also indicate
that the inhomogeneity error generally increases with increasing strain-rate. It is important
to remember that the inhomogeneity errors shown are for six targets and would be smaller for
a larger number of targets. This is analogous to the error on the slope of a simple least-square
line, which becomes less as more points are added even though the standard error of the
estimate may remain the same. In particular, for the same residual error for each velocity, an
equilateral strain triangle would have a divergence-rate error ¢. 1.7 times as large as that
shown in Figures g and 4.

One striking aspect of the deformation, best illustrated in Figure 4 is that in the principal-
axis coordinate system most of the expansion or contraction is taking place along one axis.
Moreover, there is usually contraction along one axis and extension along another. Another
salient characteristic of the ice deformation is that the ice motion appears to consist of deforma-
tional events which occur every several days and usually consist of dilation followed by con-
vergence.

The time series of the strain-rate generally shows rather rapid variations in strain which
are probably due to the random bumping and yielding of floes as well as the random opening
of leads. Under our idealized model consisting of ice fluctuations superimposed upon a
continuum, these high-frequency motions should primarily represent fluctuations. The
maximum observed divergence rate is seen to be (0.16%,+0.09%,) per hour and the maximum
convergence rate (0.15% +0.09%) per hour. The largest maximum shear rate is (0.16% +
0.05Y%,) per hour.

Non-linear velocity fluctuations

The least-squares calculation, besides yielding the average strain-rates, also give a measure
of the non-linearity in the velocity field through the residual fluctuation error. This residual
error can be viewed as a fluctuation in the velocity field from the ideal continuum value.
The magnitude of these fluctuations is important for determining the size of a measurement
array necessary for accurately measuring the average strain-rate. In terms of our continuum
model, the fluctuation contribution together with the average strain-rate yields a charac-
teristic length above which the pack ice may be considered a continuum and below which the
ice motion of individual floes and leads becomes dominant. Such a characteristic length is
estimated by determining on the average the length over which the fluctuation is almost
the same as the continuum velocity variations.

For a best estimation of the fluctuation error we utilized the combined array consisting
of 11 targets plus the origin. Since some targets in the combined array were not measured as
frequently as those in the outer array, the linearly extrapolated data were smoothed with a
filter having a transition band from 20.0 to 11.4 h as discussed in the previous section on data
analysis.
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The resulting residual errors from the combined array and strain tensor components in a
(north, west) co-ordinate system are shown in Figure 5. In order to put the residual error and
deformation rates in perspective to the overall motion of the pack ice, we have also shown, in
Figure 5, plots of the velocity components of the central point of the array. These velocity
plots were obtained using drift data obtained by Thorndike and others (1972) from satellite
navigation fixes. We have smoothed the velocity data with the same filter used in the strain
calculation. In the processing of the data carried out by Thorndike, some smoothing was
also carried out, but this smoothing only affected the higher frequencies past the transition
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band of our filter. For a more concise comparison of the data, r.m.s. values of the various
curves are given in Table I11.

TasrLe 111, R.M.S. STRAIN-RATES, RESIDUAL ERRORS, AND CENTRAL-POINT VELOCITIES (FROM Fic. 5)

Divergence Residual ~ East-west  North—south
rate it oy €12 error velocily velocity Speed
B h! h-t bt m/h m/h m/h m/h
2.36 X 1074 2.60 1074 2.97% 107% 2.12 X 1074 227 202.3 107.9 312.9

As can be seen from Table 111, the characteristic length (residual error/strain-rate) over
which the velocity change due to strain-rate is of the same magnitude as the residual fluctua-
tion error is of the order of 10 km. A second characteristic length of some interest is the length
over which the velocity difference according to the strain-rate equals the average drift velocity.
This length is seen to be about 1 000 km, roughly similar to the size of the Pacific Gyre. Con-
sequently we see that the residual error is rather insignificant in terms of the absolute velocity
for a point but becomes more critical in terms of the velocity gradient or deformation rate.
In terms of a continuum model the results suggest that on a scale larger than about 10 km
the pack ice begins to behave like a continuum, whereas on a smaller scale the individual
particle behavior begins to dominate the observed motion.

The magnitude of the residual error also allows us to estimate the effect of fluctuations on
strain-rates from arrays of different sizes. For example, we can view the strain measured by a
simple area, say a triangle, to consist of two components: (1) the continuum strain-rate and
(2) the fluctuation component. Assuming that the residual error is approximately constant,
independent of the size of the triangle, then the fluctuation contribution to the strain-rate
will be of greater relative magnitude for small triangles. In addition, since the fluctuation
component would be expected to consist of rather rapid bumping motions, strain-rates would
behave in a more erratic manner as the measuring triangle becomes smaller. This effect is
apparent in plots of individual triangles. In Figure 6, for example, we illustrate the net diver-
gences (essentially the areas) of three nested triangles as a function of time. The more rapid,
large-magnitude motion of the small triangles is apparent. The curves do, however, illustrate
a general correlation of strain events consisting of dilation followed by convergence. Generally
these results suggest that although the smaller triangles are averaging over very few leads
and or floes, over a period of several days the ice on a small scale would be expected to diverge
if the pack is generally diverging and converge if the pack is converging.

CIOMPARISON OF MESOSCALE DEFORMATION TO MACROSCALE DEFORMATION

In addition to a satellite navigation system at the main 1972 AIDJEX camp (the center
point of the mesoscale array), the 1972 pilot study included satellite position measurements of
two other camps approximately 100 km west and north-west respectively of the main camp.
Strain data from this larger triangle, which we refer to as macroscale deformation, provides a
valuable measure of the deformation averaged over a larger region than that covered by the
mesoscale array.

In a comparison between the macroscale and mesoscale deformation rates, arguments
both for similarities and differences can be made. First, since weather systems typically vary
over several hundred kilometers, one would intuitively expect some similarity between the
macroscale and mesoscale deformation rates, at least to the extent that both systems are
measuring the continuum motion of the ice pack. However, there are several reasons why the
correlation should not be extremely good. Foremost is the fact that the mesoscale array is only
slightly larger than the estimated continuum length of 10 km and thus fluctuations of the
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Fig. 6. Comparison of net divergences (areas) of overlapping triangles. (a) 16 km triangle, (b) 8 km triangle, (¢) 5 km triangle.

velocity field yield a strong component in the iime series of the least-squares mesoscale defor-
mation, much stronger than would be expected to be present in the macroscale data. Also,
even if the pack ice could be considered a homogeneous continuum at very small scales, the
nature of the continuum constitutive law might couple with variations in the weather systems
to give rapid variations in the deformation. This is especially true since the mesoscale array
is not at the center of the macroscale array, but at one corner.

In order to examine differences and similarities between the macroscale and mesoscale
deformation, and thus test some of the above hypotheses, a comparison both of the various
deformation time series and their spectra was made. The macroscale deformation data were
supplied by Allan Thorndike and are essentially the same data as presented by Thorndike
(1974).
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In the processing of the macroscale data, Thorndike employed a Kalman filtering pro-
cedure to obtain the position and velocity of each of the three satellite sites. The filter cut-
offs varied somewhat but generally all frequencies up to a period of 18 h were passed. The
strain-rates and vorticity were uniquely determined since there were only three stations.

Time-series comparison

In order that both time series be smoothed in the same manner, all deformation rates were
smoothed with a low-pass filter with a transition band from 21 to 84 h. This smoothing also
allowed a time series for the mesoscale vorticity to be constructed by adding in the camp
rotation, a step that is difficult without extensive smoothing because azimuthal measurements
were typically made only once a day. To obtain the camp rotation for the mesoscale calcula-
tion, a time series R = (sin ¢) (longitude—azimuth) (with longitude increasing in an easterly
direction, see Nye (1974)) where ¢ is the latitude, was constructed by linearly extrapolating
the satellite position and azimuth measurements reported by Thorndike and others (1972).
This time series was smoothed by the same filter that was applied to the deformation data.
This rotation rate was added to the vorticity calculation in the camp coordinate system to
obtain the true vorticity as discussed in a previous section. For mesoscale data in the camp
coordinate system, the least-squares results for the outer array were used. In addition,
several days of earlier data (taken before the array was complete) consisting of only four
targets (1, 2, 3, 8) plus the center point were used to extend the time series.
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In Figure 7 we show a meso-macro comparison of the divergence rates, vorticities and
maximum shear rates. The dashed lines represent the macroscale data. Due to a mal-
function of one of the satellite navigation units, there is a gap of several days in the macroscale
data which was bridged by Thorndike using a Kalman filter. This gap is indicated in Figure 7.
For a quantitative comparison of the curves we give in Table IV correlation coefficients and
r.m.s. values for the various curves up to the gap in the macroscale data. The standard error
for the correlation coefficients is based upon a number of degrees of freedom equal to the
number of points correlated times the fraction of the spectrum passed by the filter.

TasrLe IV, MESOSCALE AND MACROSCALE R.M.S. DEFORMATION RATES AND CORRELATION
GOEFFICIENTS (FROM Fi1G. 7)

Divergence rale Vorticity Maximum shear
Meso Macro Meso  Macro Meso  Macro
r.m.s. (107*hT) 2.72 1.81 478  2.55 3.69  2.28
Correlation coeflicient 0.52 4 0.21 0.74+0.21 0.33+0.21

Figure 7 and Table IV indicate that there are significant correlations between the time
series for deformation measured at different scales. Visual examination of the curves suggests
that the correlation is due to the presence of similar strain events over periods of several days,
Since these events are often of different amplitude and occur at slightly different times, the
correlation is not complete, especially at higher temporal frequencies. The results also show
the deformation rates to have comparable amplitudes, with the mesoscale amplitude generally
being slightly larger. The comparison generally indicates that both mesoscale and macroscale
arrays are measuring similar continuum motions of the ice pack.

Spectral densities

Some of the important differences between the nature of the mesoscale and macroscale
deformations are illustrated by the spectral densities which we calculated using the lag product
method as discussed, for example, by Rayner (1971, p. 94). In Figure 8a we show the spectra
of the mesoscale divergence rate and shear (nof maximum shear) and in Figure 8b the spectra
of the macroscale divergence rate, shear and vorticity. Because of the inadequacy of the time
series for the camp rotation at higher frequencies, it is not possible to construct a mesoscale
vorticity spectrum. Also, because of the Kalman filter smoothing of the macroscale data, the
macroscale spectra are valid only up to frequencies with about 15 h periods. Since there were
differing data gaps, the spectra do not come from the same time periods, but were calculated
from day 88 to 113 for the mesoscale data and from day 81 to 101 for the macroscale data.

From Figure 8 we see that the macroscale spectra generally contain less variance at
higher frequencies than the mesoscale spectra. Such a result is commensurate with viewing
the deformation as a continuum signal plus a fluctuation component with the fluctuation
magnitude dropping off inversely with the size of the array. This follows because the fluctua-
tion signal, being of a random nature, would be expected to have a greater high-frequency
variance.

An interesting aspect of the mesoscale spectra (especially the divergence rate) is the
presence of a significant spectral peak at about 12 h periods. Whether such a peak is con-
tained in the macroscale data cannot be ascertained because the smoothing employed by
Thorndike effectively filtered out any such oscillation. A possible explanation for this peak
is a variation in water currents due to inertial oscillations (Hunkins, 1967). Measurements
of ocean currents by Newton and Coachman (1973) during previous AIDJEX pilot studies
have indicated 12 h cycles in the currents with the oscillation displaying coherence over
distances up to 20 km. Different drag coefficients for different ice floes could couple with
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these currents to create a differential ice motion. There is also evidence of an approximately
24 h cycle in the macroscale divergence rate spectrum (which may possibly be present in the
mesoscale data). The source of this peak is not at present understood.

The general fall-off of the spectra in Figure 8 is also relevant for sampling considerations.
The shape of the spectra generally suggests that sampling intervals up to 10 h (with accurate
measurements) would yield low-frequency information without intolerable aliasing. A more
direct test of this can be made by sampling the data at larger intervals before smoothing and
comparing this to data smoothed before resampling. Such comparisons have been made for
the mesoscale data (Hibler and others, 1974[a]) and support the conclusion that accurate
samples every eight hours are adequate for resolving the low-frequency components of the
time series required for comparison with synoptic meteorological variations which generally
occur over a time scale of several days (Monin, 1972).

NATURE OF THE 1CE-PACK ROTATION

Examination of the mesoscale vorticity indicates that it is similar to the camp rotation.
This can be seen from Figure g where we show the camp rotation rate and the mesoscale
vorticity. This similarity means that to a large degree the whole mesoscale region is rotating
as an entity. Investigation of the macroscale deformation data indicates that such a “solid™
rotation is also partially occurring for the larger macroscale region, at least at low temporal
frequencies. This may be seen from Figure 10 when the east-west shear ¢vy/dx and vorticity
are plotted together. As can be seen, the two curves are similar, indicating that ¢,/ and
tvy/ox are close to being equal in magnitude and opposite in sign, a condition which holds
identically for solid rotation. Another indication of this behavior on the macroscale is the
relative smallness at low frequencies of the macroscale shear-rate spectral density in the x—y
co-ordinate system compared to the macroscale vorticity spectral density as shown in Figure 8b.
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These observations suggest that the most pronounced mode of differential deformation of
the ice pack is a relatively cohesive rotation of the pack, at least at low frequencies. The
direction of the rotation is, from the curves in Figure 10, generally clockwise in agreement with
the motion of the Pacific Gyre. Other deformation rates at low frequencies appear to be
somewhat smaller than the rotation rate. Such a cohesive rotation is also borne out by
deformation studies in the shear zone (Crowder and others, 1974; Hibler and others, in press)
suggesting that the pack is rotating as a relatively tightly bound continuum with slippage at
the boundaries.

A final point of interest is a negative correlation between the vorticity and the divergence
rate (see Fig. 7). The correlation coefficient for the mesoscale data (omitting the earlier data
taken before the mesoscale array was complete) is in fact —o0.95-+0.17, indicating that a
convergence is associated with a counter-clockwise rotation. This correlation is discussed in
greater detail in relation to linear drift theories and atmospheric pressure variations in another
paper (Hibler, 1974).
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(ONCLUSIONS

We believe that this study has shown that strains measured on a scale of 10 km or greater
can serve as a valid measure of the continuum motion of sea ice. When strains are measured
on a smaller scale, the continuum motion is obscurred by the random bumping and yielding
of floes and by the finite size of the interacting floes relative to the size of the strain array.
These small-scale motions are, of course, interesting in their own right. Our results also
indicate that meaningful vorticity values can be obtained from even smaller arrays, indeed
from the measured rotation of individual stations.

These results suggest that it should be possible to carry out highly useful experiments on
the macroscale (continuum) behavior of pack ice by utilizing one manned drifting station
or ship with radar transponders located at the remote strain points. Strain arrays with effective
diameters of up to 50 km should easily be possible using currently available techniques.

Finally, it should be emphasized that our results were obtained from a pack-ice field with a
compactness of near one and a specific, but unknown, ice thickness distribution. Whether
similar results would be obtained for other conditions, is presently a moot point.
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