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ABSTRACT. Measurements of mesoscale sea-ice deformation over a region approximately 20 km in 
diameter were carri ed out over a five-week period in the spring of 1972 at the main AIDJEX camp in the 
Beaufort Sea. They have been analyzed to determine non-linearities in the ice velocity field (due to the 
discrete small-sca le nature of the ice pack), as well as a continuum mode of d eforma tion represented by a 
least-squa res stra in-rate tensor a nd vorticity. The d eformation-ra te time series between Julian day 88 and 
11 2 exhibited net areal cha nges as large as 3 % and d eformation rates up to 0.16% per hour. In the principa l 
axis co-ordinate system, the strain-ra te typically exhibited a much la rger compression (or extension) along 
one axis than a long the other. Persistent cycles at ::::; 12 h wavelengths were observed in the divergence rate. 

A compa rison of the average r es id ua l error with the average strain-rate magnitude indicated that stra ins 
measured on a scale of 10 km or grea ter can serve as a valid measure of the continuum motion of the sea 
ice. This conclusion is also substantiated by a comparison between the mesoscale deformation, and macro­
scale deformation measured over a ::::; 100 km diameter region. 

R egarding pack-ice rotation , vorticity calcula tions indicate that at low temporal frequencies « 0 .02 h- I ) , 

the whole mesoscale array rotates essentia ll y as a n entity a nd consequently the low-frequency vorticity can 
be es tima ted accuratel y from the rota tion of a single floe. 

R ESUME . Entralnement diffirelltiel de la glace de mer. I . Variations dans l'espace et le temps de la diformation de la 
glace de mer. Des mesures a echelle moyenne de la deformation de la glace d e mer dans une region d 'approxi­
m ativement 20 km d e diametre, ont e te conduites au long d'une periode de cinq semaines, au printemps 
1972, a u camp principal AIDJEX, dans la mer d e Beaufort. Elles ont e te analysees pour d eterminer les 
acc idents non-lineaires dans le champ d es vitesses d e la glace (en ra ison de la nature discrete, a petite echelle, 
de la banquise), a ussi bien que le mode continu de la deform a tion represente par un tenseur de contra intes 
determine par la methode d es moindres carres, et une vorticite . Les seri es temporel les d e vitesse de deforma­
tion entre les jours 88 et 112 du calendrier Julien, on t montre d e nets changements d ans I'espace allant 
jusqu 'a 3 % , et des vitesses de deformation a lla nt jusqu'a 0,16 % pa r heure. Da ns le systeme de coordonnees 
des axes principaux , I'etat d es contraintes montre typiquement une compression (ou une traction) beaucoup 
plus forte le long d 'un des axes que le long d e I'autre. Des cycles permanents avec des periodicites d'environ 
12 heures, ont ete observes da ns les rythmes de divergence. 

Une comparaison de l'erreur res iduelle moyenne avec le grandeur moyenne des contraintes, indique que 
les efforts mesures a une echelle de 10 km ou plus peuvent constituer une mesure valable du mouvement 
continu d e la glace de mer. Cette conclusion es t egalement confirmee par une comparaison entre la deforma­
tion a echelle moyenne et la deforma tion a gra nde echelle mesuree sur une region de 100 km d e diametre. 

Au regard de la rotation de la ba nquise, les calculs d e vorticite indiquent qu 'a d e faibl es frequenccs dans 
le temps (0,02 h- I ), I'cnsemblc d 'un systeme a moyenne echelle tourne comme un tout et que par consequent, 
la vort icite a basse frequence peut etre es timee avec precision a partir de la rota tion d 'un seul gla~on . 

ZUSAMMENFASSUNG . Differentielle Drift des M eereises. I . Riiumliche !/lId zeitliche Schwankungerz der Spannung ill 
mittelgrossen Bereichen des M eereises. Wahrend einer Periode von 5 W ochen im Fruhling 1972 wurden im 
H a uptlager von AIDJEX im M eereis d er Beaufort-See Deformationsmessungen mittleren Masstabes uber 
einem Gebiet mit etwa 20 km Durchmesser ausgefuhrt. Sie wurden zur Bes timmung d er Nicht-Linearitat 
im Felde der Eisgeschwindigkeit, hervorgerufen durch die diskrete, kl einra umige Packung des Eises, a ber 
a uch d es kontinuierlichen Deformationsverhaltens, dargestellt durch einen a usgeglichenen Spannungs­
tensor und die Wirbelbildung, herangezogen . Die Zeitreihen der Verformungsgeschwi ndigkeit zwischen d en 
Kalendertagen 88 und 112 ergaben Netto-Flachenanderungen bis zu 3 % und Verformungsgeschwindigkeiten 
bis zu 0,16% pro Stunde. Im K oordina tensystem der H auptachsen bewirkte die Spannungsver teilung 
typisch eine weit grossere Kompression (od er Dehnung) langs einer Achse gegenuber der anderen. In der 
Divergenzgeschwindigkeit wurden regelmassige Zyklen von etwa 1 2 Stunden Wellenlange beobachtet. 

Ein Vergleich zwischen dem mittleren Restfehler und d er mittleren Grosse d er Verformungsgeschwindig­
kei t zeigte, dass Spannungsmessungen uber Strecken von 10 km od er mehr a ls gu ltiger Mass ta b fur die 
kontinuierliche Bewegung des 1\1eereises dienen konnen. Dieser Schluss wird auch durch einen Vergleich 
zwischen der mittelmassUibigen Verformung und d er grossmass ta bigen Verformung, gemessen uber einem 
Gebiet mit ca. 100 km Durchmesser, gestutzt. 

W as die R otation des Packeises betrifft, so ergibt sich aus Berechnungen der Wirbelbildung, dass der 
ganze mittelgrosse Bereich bei niedrigen zeitlichen Frequenzen « 0.02 h- I ) im wesentlichen als Einheit 
rotiert. Infolgedessen kann die niederfrequente Wirbelbildung aus d er Rotation einer einzelnen Scholle 
genau abgescha tzt werden. 
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I NTRODUCTION 

One of the prime goals of the Arctic Ice D ynamics Joint Experiment (AIDJEX) is an 
improved understanding of the drift of pack ice. To this end one urgently needs accurate 
field observations of the deformation of different types of pack ice performed on a variety of 
time and space scales. To partially satisfy this need a series of d etail ed mesoscale strain 
measurements were m ade at approximately 3 h intervals over a 30 d period in the spring 
of 1972 in the Beaufort Sea. These m easurem ents are particularly useful since in earlier 
studies of sea-ice deformation- as reviewed for example, in Bibler a nd others (I 973 [b] ) 
- there have usually been large and random time intervals between observations, making 
the computation of accurate time series impossible. Also, and perhaps even more important, 
those studies included no d etailed investigation of the non-linear variations in the ice velocity 
fie ld that result from inhomogeneous spatial variations o r fluctuations in the deformation of 
the ice. 

Therefore, our analysis d escribed in this paper was undertaken with three primary goals 
in mind: first, to provide a detailed time series of the least-squares strain-rate tensor and vorti­
city (complete with "error bars" due to the non-linearity of the ice velocity fi eld) over the 
25 d period, J ulian day 88- 11 3, (28 March- 22 April), 1972; second, to study the magnitude 
and nature of the non-linear velocity fluctuations; and third, to compare d eformation mea­
sures from different scales to determine coherent modes of deformation in differently sized 
arrays as well as scaling effects. These results can then be compared with predictions from 
theoretical drift calculations and with data collected on the remote-sensing overflights. 
Besides providing insight into the nature of pack-i ce dynamics, such comparisons and infor­
mation on inhomogenities in the ice velocity field are helpful in designing future strain a rrays. 

ApPROACH 

As a framework in which to view our analysis, it is useful to think of the pack as a large 
number of irregular ice floes packed closely together, with the compactness varying with 
season. In the summer when the compactness is low, the individual ice floes can readily be 
identified and the pack looks like a two-dimensional granular medium. In the winter when 
the compactness is near uni ty, the individual floes can no longer be clearly identified and 
the ice is criss-crossed by a number of irregular leads. A typical example of the pack-ice 
structure in winter is given in Figure I, where we show a schematic diagram of active leads 
and ridging zones in the m esoscale strain area for one instant of time. 

Using such a conceptual model of pack ice, we can view the velocity of any point in the 
pack as consisting of a continuum velocity component (varying over lengths commensurate 
with the scale of meteorological variations) plus a fluctuation component due to the discrete 
small-scale nature of the pack ice. Such a partition of the velocity field is similar to that which 
can be done for a fluid where the motion of each molecule has a continuum component plus a 
fluctuation component. In the case of the pack ice, however , the fluctuations are probably 
not due so much to random motion of floes (although this is undoubtedly a factor) as to the 
fact that the floe sizes are large relative to our measurement scale and thus spatial velocity 
profiles will be of a stepped nature. This is illustrated by Figure I , where, we see that the 
distance between leads, where relative motion occurs, is generally 4 to 6 km. Also, for pack 
ice, the fluctuations would be expected to be highly variable in time since they will primarily 
be driven by the transfer of energy into the pack by meteorological forces. This is different 
from the case of a fluid in a laboratory, where flu ctuations are well d escribed by the tempera­
ture. 

As we examine spatial variations in the velocity field over larger and larger areas, the 
contributions of fluctuations to average velocity differences (i.e . strain-rates) would be 
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Fig. 1. Schematic diagram cif the mesoscale strai,1 array together with an overlay of active leads Q/ld ridging ZOIIeS. L eads and 
ridges were obtained from a 1500 m aerial photo-mosaic taken on 6 April 1972. 

expected to become less pronounced. Stated differently, one would expect the contribution of 
fluctuations to the sea-ice strain-rate to become small when the area covered by the strain 
array becomes large relative to floe size and/or distances between leads. 

In order to sort out the fluctuations from the continuum motion we have analyzed the 
position data of the mesoscale targets by fitting a least-squares planar surface to the spatial 
velocity field sampled by the array, with the slope angles of the plane representing the strain­
rate and vorticity. Such a procedure is commensurate with the discussion of sea-ice strain 
by Nye (1973) where he notes that for a precise m easure of the strain-rate one needs to first 
smooth the velocity field before taking d erivatives. Since the area covered by the mesosca le 
array is relatively small ( ~20 km diameter) compared to meteorological systems, we would 
expect the continuum velocity to be relatively linear over this region and hence the planar 
approximation should be good. R esidual d eviations from this planar surface are identified as 
Auctuations. These residual d ev iations will also cause some uncertainty in the strain-rates, 
an uncertainty which can be es timated by dimensional analysis for differently sized arrays 
on the assumption that the fluctuation amplitude is reasonably similar over the region. As 
part of this procedure to distinguish between continuum motion and flu ctuations, we also 
estimate a continuum length which we define as the length over which, on the average, the 
continuum velocity differences equal the fluctuation amplitude. This length , which turns 
out to be about 10 km, gives us a rough m easure of the scale above which sea ice may be 
viewed as a continuum and below which the discrete nature of the pack begins to dominate 
the motion. 
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Finally, in addition to such a least-squares analysis to look at scaling effects, we a lso 
compare strains obtained from triangles of different sizes (5 km to 20 km) and compare the 
m esoscale strain results over the 20 km region to the macroscale strain results measured from a 
100 km triangle, one corner of which is the center of the m esoscale array. The comparison 
generally indicates that a ll arrays are m easuring similar continuum motions of the pack with 
the fluctuations yielding a large contribution, but not masking the continuum motion on a 
scale of about 20 km. 

SITE L OCATION AND DATA COLLECTION PROCEDURES 

The m easurem ents used for this study were made in the VICInity of the main 1972 
AIDJEX camp, located at roughly lat. 75° 00' N., long. 148° 30' W . The camp as well as 
the different research programs carried out from it are described in A IDJEX Bulletin, No. 14, 
1972. The strain array was established by erecting a series of targets which consisted of corner 
cubes mounted on the tops of aluminum poles. The distances to and angles between the 
targets were measured using a continuous-wave laser range-finder at two to three hour 
intervals. The height of the targets varied from 3 to IQ m above the ice surface depending 
on the dista nce and the obstructions between the target and the main camp. A diagram of 
the strain array is shown in Figure I , together with an overlay of active leads and ridging 
zones. The angles to the targets were measured with an average accuracy of better than 
± I min and were referenced to a fixed stake on the multi-year floe on which the main camp 
was sited. The line between the laser and the stake was then tied into the true north deter­
minations (sun shots) made by Thorndike and Gill (Thorndike and others, 1972). Distances 
were measured to the nearest 0 .1 ft (0.03 m ) because the large strains that were experienced 
obviated the need for any greater precision. 

This strain m easurement system was found to be vastly superior to the use of manned 
tellurometer sites (Hibler and others, I973[b] ) . With it, a large number of strain lines could 
be determined easily without manning the remote stations. It was also relatively quick and 
easy to install and placed a minimal reliance upon "black boxes". However, visibility 
problems (wind-blown snow, sea smoke from leads) made acquisition of continuous, equall y­
spaced time series difficult (laser measurements were impossible approximately 10% of the 
time, and once high winds caused a gap of a lmost two days in the time series for the strain line) 
In addition, the system required manpower 24 hours a day. 

DATA ANALYSIS 

Extrapolation and smoothing of strain data 

Data taken in the field consisted of distances and angles of targets relative to a fixed 
reference stake. As a first step in the data reduction , these angles were converted to angles 
relative to true north as measured on Julian day 81 (21 March) . Rotations of the array were 
not taken into account for strain calculations, so that the coordinate system used for this study 
is slightly different from the true north coordinate system (the maximum difference is, 
however, less than 5 deg) . Rotations of the array were, of course, included in the vorticity 
calculations. The time scale was converted to G.M.T. by using four G .M.T. calibration 
times obtained in the field to find a least-squares rate for the clock used in the measurements. 
The data point times were recomputed with this rate and then all data (both angles and 
distances) were linearly interpolated and resampled every hour. U sing this new data set at 
one-hour intervals, the time series was smoothed with a low-pass filter having a transition 
band width with periods from 8.0 to 6.15 h . The smoothed time series was then resampled 
every third hour. If there was reason to expect that the data contained a large number of 
time intervals greater than 3 h, a low-pass filter having a transition band from 20 to I 1.4 h 
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was used before resampling. Both filters had less than 0.6 % side-lobe errors and consisted of 
8 1 symmetri c weights designed according to the procedure discussed by Hibler (1972) . 

This process of interp ola tion followed by sm oothing m ay be viewed as a consisten t way of 
constructing a smooth curve (with n o high-frequen cy components past a reasonable cu t-off 
dictated by the average sampling rate) through the randomly spaced data poin ts. Alter­
natively the curve m ay be considered an accurate representation of the low-frequency por tion 
of the linearly interpolated curve. 

Examples of the smooth curves gen erated by this process are shown in Figure 2. Curve a , 
which results from the filter with the higher frequency cu t-off, follows the data quite closely. 
This indicates that there is littl e variance associated with periods sh orter than 6 h . 

10,94 

( 0) Disl on c e Meosur 8m e nl s 

10,920 
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1 

Fig. 2. Typical results of the interpolation and smoothiTlg process used to generate equi-spaced values for the strain analYsis. 
Curve a was obtained with a smoothing filter transition bandfrom B.o to 6.15 h and curve b with a transition band from 
20.0 to 11.4 h. 

Experimental error estimation 

The primary source of error in the m easurem ents is the uncertain ty of target angles. 
Since angular measurem ents were genera lly accurate to ± o.ooo 3 rad (± I min) and distance 
errors were small, we estimated the x and y position errors of each measurement of a target 
at distance r and angle 8 to be 

!:lx = 0.000 3r sin 8, } 

!:ly = 0 .000 3' cos 8. 
(I) 

Since m easurements three hours apart were subtracted to obtain velocities we estimated 
x and y velocity errors to be 

!:lux = 0 .000 6r sin 8j !:lt } 

!:luy = 0.000 6r cos 8j !:lt 

with !:It = 3 h. This is a slight over-estimation of errors for the difference between two 
numbers with uncorrelated errors. However , since there may be som e errors due to inter­
polation between inequally spaced points that a re not rem oved by smoothing, we have made 
a conservative error estimation. The experimental errors given by Equation (2) were then 
used as input to obtain the experimental error on the strain-rate tensor as discussed in the 
next section . 
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Least-squares computational technique 

To understand conceptually the least-squares strain and vorticity calculations, it is useful 
to visualize a contour plot of the x (or y) velocity component of the ice. In essence the com­
puter program used to calculate the deformation rate fits a planar surface through the contour 
plot with the slope angles of the planes yielding the strain-rates and vorticities. Since the 
actual velocity components will deviate from a perfect plane, there will be som e uncertainty 
in the slope angles of the plane. W e refer to the average deviation of the velocity components 
from the plane as the residual fluctuation error and the uncertainty in the slope angles of the 
plane is referred to as the inhomogeneity variation. In addition, once the least-squares 
equation for the plane as a function of say N velocity measurements is determined , the 
estimated experimental errors may be inserted to obtain estimates of slope uncertainties due 
only to experimental errors. The remainder of the slope uncertainty may then be identified 
with non-linearities in the ice velocity field. 

To formulate this conceptual model mathematically we proceed as follows. Using tensor 
notation for the strain-rate, the strain-rate tensor €ij and vorticity 'lIT are defined by 

Eij = ; G:; + ~::) 
'lIT = .:. (ovz_ OVI) 

2 ox! oXz 

where Vi is the ith velocity component of the ice pack (considered as a continuum) and 
i , j = I , 2 since we are only concerned with the horizontal motion of the sea ice. Considering 
N targets whose positions are being measured , we denote by v/i) the m easured jth velocity 
component of the ith target, and by Ot and rt the polar co-ordinates of the ith target relative 
to an arbitrary origin. 

As a model to explain the velocities of the N targets, we consider the ice velocity field (on 
the scale of about 20 km) to consist of a continuum velocity component, which varies in a 
uniform linear manner, (specified by Ei} and 'lIT) plus a random fluctuation component. Mathe­
matically our model is expressed by the equation 

where 

Uj = 
r v (i) 
~ I , 

I = I to JV, 

Lv ii - N) z , i = N+ I to 2N, 

rt sin Ot 0 0 0], l = I to N, 

o Ti cos 8i ri sin 8i 0 I] , i = N + I to 2N, 

and AI, Az are constants representing the continuum velocity components at the ongm. 
In Equation (3), Zi is the fluctuation component plus any measurem ent error a nd E (Ui ) = 
Xt}€j is the "expected" value of Ui since E(z.) = o. The least-squares estimates of €i , denoted 
by Et, are obtained by minimizing I <:. z. 
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To do this we differentiate 

oN 

. L (Ut - EjXij ) 2 
1 = 1 

with respect to Ek which yields the matrix equation [or the least-squares estimates of Ei (Jenkins 
and Watts, [968, p . 132): 

(5) 

where M = XT X and T d enotes transpose. 
When using these least-squares equations, it should be noted that adding a constant 

rotation to all angles only changes t~e vorticity"tU. This can be demonstrated by noting that 
in Equation (3) changing "tU to =+ () changes Ui to ut' where 

i = I to N, 

i = N + I to 2J\ ·. 

This, however , is equivalent to adding a constant rotation per unit time to a ll angles. In a 
similar manner, adding a constant velocity to a ll points changes only Al and A2 

Since we have only a finite number of random velocity measurements (each with some 
random fluctuation "error") with which to calculate Et, there will be some uncertainty or 
error in Et. To estimate this variation or uncertainty it is necessary to calculate the covariance 
matrix of Et which is easily shown (Jenkins and Watts, 1968, p. 134) to be given by 

C = M - IXTVX(M - I)T (6) 

where C tf = cov (Et, Ej) and V ij = COV ( Zi, Zj). In our case Zt consists of two parts 

Zi = ZiM + ZiI 

where ZiM is the measurement error (which we estimate to be given by Equation (2)) and 
ZiI is the Huctuation component of the ice motion due to the fact that the actual ice velocity 
field is non-linear. If we assume that ZiM and ZiI are uncorrelated , then the variation in Ei due 
only to measurement errors, call it CijM, may be estimated using Equation (6) with VijM = 
cov ( Zt M, Zi M) . Using Equation (2) we estimate VijM to be 

i = I to N, 

i = N+ r to '2N. 

To find the variation of some linear combination of the Ei due to the total "error" Zi, we 
make the usual assumption that the Zi are uncorrelated with the same mean and variance so 
that cov ( Zi, Zj ) = fiij(J2 where the point estimator of a 2 (denoted by 52) is g iven by the 
residual error 

(8) 

where Ut = XijEj. 

In this case Equation (6) reduces to 

Ctj = (M - t ) tj(J2. (9) 

Given a linear combination of Ei, 6 = aiEt, then the deviation of 6 from E(6) is such that 

( /0) 
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has the t distribution with '2N - 6 degrees of freedom, assuming that the errors are normally 
distributed (Bennett and Franklin, 1954, p. '250). Consequently, confidence limits for the 
es timated strain may be obtained using a t-distribution table. 

In addition to the estimated strain, we are a lso concerned with the velocity fluctuation 
component ZiI which is strictly speaking not an error, but represents the variation from 
linearity of the velocity field over the region sampled . In the cases we have studied, the esti­
mated residua l error Zi obtained from Equation (8) was generally found to be larger than the 
average estimated value of experimental error Zt M from Equation ('2). Consequently as a 
matter of convenience, we will often refer to the residual error obtained from Equation (8) 
as the residual fluctuation error. 

Also, as a matter of notation we will refer to the uncerta inty in Ei, (cov (,,'t )) ', as the 
inhomogeneity error. It should be remembered that the inhomogeneity error is an estimate 
of the uncertainty in the least-squares estimated strain and consequently will depend some­
what on the number of samples used . The residual fluctuation error, on the other hand, 
should be relatively independent of the number of sample points used . 

STRAIN RESULTS 

For comparison, time series of the strain-rate and vortlclty have been calculated using 
several different combinations of targets; Table I d escribes all combinations of targets used 
in the calculations. The origin was also considered a position m easurement in some arrays, 
with distance and angle being zero for all time. 

TABLE I. STRAIN-LINE COMB I NATIONS USED I N T HIS P APER 

Array 
"name" 

Combined array 
Outer array 
16 km triangle 
8 km triangle 
5 km triangle 

Targets 

1, 2,3,4,5,7,8,9, 10, 11, 13, origin 
1,2,3,8,9, origin 

2,5,9 
4, 11 , 13 

7, I I , origin 

Approximate diameter 
of region sampled 

km 
20 
20 
16 
8 
5 

Over the time interval studied in this paper, there was only one major gap in the time 
series, and this portion is blanked out in the plots. However, for spectral studies, root-mean­
. quare error estimation, and correlation studies, the whole curve was used (data points every 
3 h) including linearly extrapolated data through the gap, with the linear extrapolation 
being done on each target position as discussed previously. 

Time series of the strain tensor 

Since the outer array targets were measured more often than other targets, the outer 
array provides a more detailed time series for analysis. R esults of least-squares calculations 
using the outer array are shown in Figures 3 and 4 which pl'esent the two invariants (Nye, 
1957) (denoted by El and E2) of the strain-rate tensor both separately and in the form of the 
divergence rate Eii (sum of the principal components) and the maximum shear rate (Et - E2) /'2 
(half the difference of the principal com ponen ts) . For the strain-rates, the angles of the strain 
lines at the beginning of each 3 h interval were used in the least-squares calculations. The 
con tinuous errors in Figures 3 and 4, which a re the t:,. values shown below each curve, repre­
sent the inhomogeneity error (calculated using Equations (8) and (9)) which is due primarily 
to velocity fluctuations. The small error bar on the divergence-rate curve represents the 
maximum experimental error, which was calculated by first calculating the experimen tal 
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Fig. 3 . (a) Least-squares divergence rate and accomparzying inhomogeneiry error alld (b) maximum shear rate and inhomogeneity 
error. The small error bar in (a) represents the maximum uncertainry due to measurement error. 
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Fig . 4. (a) Principal axis components of the least squares strain-rate tensor and (b) inhomogeneity errors. 
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error for each point in the time series according to Equations (6) and (7) and then finding the 
maximum error over the time series. For a more compact summary of the relative magnitude 
of the strain-rates and strain-rate variation errors we list the r.m.s. values for the various time 
series in Table 11. 

TABLE n . R.M.S. STRAIN- RATES, STRAIN-RATE VARIATION ERRORS AND EXPERIMENTAL ERRORS 

FOR OUTER ARRAY 

3.66 1.94 

(units 10- 4 h- ' ) 
EH /",.EH /",.Etj (expt'l) 

3.28 2.78 0.85 
/",.[ (E, - £2)/2] 

1.36 

It is clear from the figure and from Table 11 that in general strain-rates are of greater 
magnitude than their respective strain-rate inhomogeneity errors. The figures also indicate 
that the inhomogeneity error generally increases with increasing strain-rate. It is important 
to remember that the inhomogeneity errm-s shown are for six targets and would be smaller for 
a larger number of targets. This is a nalogous to the error on the slope of a sim ple least-square 
line, which becomes less as more points are added even though the standard error of the 
estimate may remain the sam e. In particular, for the sam e residual error for each velocity, an 
equilateral strain triangle would have a divergence-rate error c. 1.7 times as large as that 
shown in Figures 3 and 4. 

One striking aspect of the deformation, best illustrated in Figure 4 is that in the principal­
axis coordinate system most of the expansion or contraction is taking place along one axis. 
Moreover, there is usua lly contraction a long one axis and extension along another. Another 
salient characteristic of the ice deformation is that the ice motion appears to consist of deforma­
tional events which occur every several days and usually consist of dilation followed by con­
vergence. 

The time series of the strain-rate generally shows ratheI' rapid variations in strain which 
are probably due to the random bumping and yielding of floes as well as the random opening 
of leads . Under our idealized model consisting of ice fluctuations superimposed upon a 
continuum, these high-frequency motions should primarily represent fluctuations. The 
maximum observed divergence rate is seen to be (0.I6%±0.og %) per hour and the maximum 
convergence rate (0.15 %±0.og%) per hour. The largest maximum shear rate is (0.I6%± 
0.05 % ) per hour. 

Non-linear velocity fluctuations 

The least-squares calculation, besides yielding the average strain-rates, also give a measure 
of the non-linearity in the velocity field through the residual fluctuation error. This residual 
error can be viewed a a fluctuation in the velocity field from the ideal continuum value. 
The magnitude of these fluctuations is important for d etermining the size of a measurement 
array necessary for accurately measuring the average strain-rate. In terms of our continuum 
model, the fluctuation contribution together with the average strain-rate yields a charac­
teristic length above which the pack ice may be considered a continuum and below which the 
ice motion of individual floes and leads becomes dominant. Such a characteristic length is 
estimated by determining on the average the length over which the fluctuation is almost 
the same as the continuum velocity variations. 

For a best estimation of the fluctuation error we utilized the combined array consisting 
of I I targets plus the origin. Since some targets in the combined array were not measured as 
frequently as those in the outer array, the linearly extrapolated data were smoothed with a 
filter having a transition band from 20.0 to I 1.4 h as discussed in the previous section on data 
analysis. 
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The resulting residual errors from the combined array and strain tensor components in a 
(north , west) co-ordinate system are shown in Figure 5. In order to put the residual error and 
deformation rates in perspective to the overall motion of the pack ice, we have also shown, in 
Figure 5, plots of the velocity components of the central point of the array. These velocity 
plots were obtained using drift data obtained by Thorndike and others (1972) from satellite 
navigation fixes . We have smoothed the velocity data with the same filter used in the strain 
calculation. In the processing of the data carried out by Thorndike, some smoothing was 
also carried out, but this smoothing only affected the higher frequencies past the transition 

' :;"'-:::~ 
f . East West Ve locit y 

", 
(m / h) 

Speed 
(m/h) 

300 r~y\""N-olr-C~th'----- ~ -~ '---,------, J 

- 30~t~ _. : =-_. . . .VVj 
g. North South Velocity 

'":~ 
88 9 2 96 100 104 108 112 

Time, days 

h. Speed 

Fig. 5. Comparison of (a) mesoscale divergeTIce rate, (b) north-south strain-rate (ill), (c) east- west strain-rate (in), (d ) shear 
rate (£12), (e) least-squares residual fluctuation error, ( f ) east- west velocity of the camp, (g ) north- south velocity of the 
camp, and (h) speed of camp. All curves were smoothed with a low-pass filter having a transition bandfrom 2 0.0 to 11.4 h. 
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band of our filter. For a more concise comparison of the data, r.m.s. values of the various 
curves are given in Table Ill. 

TABL E Ill. R.M.S. STRAIN-RATES, RESIDUAL ERRORS, AND CENTRAL-POINT VEL OCITIES ( FROM FIG. 5) 

Divergence 
rate 
h- r 

2.36 X 10- 4 

Ell 
h- r 

2.60 X 10- 4 

E22 Etz 
h- ' h- ' 

2.37 X 10- ' 2. 12 X 10- 4 

Residual East- west North- south 
error velocity velocity Speed 
m/h m/h m/h m/h 

2.27 292 .3 107.9 3 12 .9 

As can be seen from Table Ill , the characteristic length (residual error/strain-rate) over 
which the velocity change due to strain-rate is of the same magnitude as the residual fluctua­
tion error is of the order of 10 km. A second characteristic length of some interest is the length 
over which the velocity difference according to the strain-rate equals the average drift velocity. 
This length is seen to be about I 000 km, roughly similar to the size of the Pacific Gyre. Con­
sequently we see that the residual error is rather insignificant in terms of the absolute velocity 
for a point but becom es more critical in terms of the velocity gradient or deforma tion rate. 
In terms of a continuum m odel the results suggest that on a scale larger than about 10 km 
the pack ice begins to behave like a continuum, whereas on a smaller scale the individual 
particle behavior begins to dominate the observed motion. 

The magnitude of the residual error also allows us to estimate the effect of fluctuations on 
strain-rates from arrays of different sizes. For example, we can view the strain m easured by a 
simple area, say a triangle, to consist of two components: ( I) the continuum strain-rate and 
(2) the fluctuation component. Assuming that the residual error is approximately constant, 
independent of the size of the triangle, then the fluctuation contribution to the strain-rate 
will be of greater relative magnitude for small triangles. In addition , since the fluctuation 
component would be expected to consist of rather rapid bumping motions, strain-rates would 
behave in a more erratic manner as the m easuring triangle becom es smaller. This effect is 
apparent in plots of individual triangles. In Figure 6, for example, we illustrate the net diver­
gences (essentially the areas) of three nested triangles as a function of time. The more rapid, 
large-magnitude motion of the small triangles is apparent. The curves do, however, illustrate 
a general correlation of strain events consisting of dilation followed by convergence. Generally 
these results suggest that although the smaller triangles are averaging over very few leads 
and/or floes, over a period of several days the ice on a small scale would be expected to diverge 
if the pack is generally diverging and converge if the pack is converging. 

COMPARISON OF MESOSCALE DEFORMATION TO MACR OSCALE DEFORMATION 

In addition to a satellite naviga tion system at the main 1972 AIDJEX camp (the center 
point of the mesoscale array) , the 1972 pilot study included satellite position m easurements of 
two other camps approximately 100 km west and north-west respectively of the main camp. 
Strain data from this larger triangle, which we refer to as macroscale deformation , provides a 
valuable measure of the deformation averaged over a larger region than that covered by the 
m esoscale array. 

In a comparison between the macroscale and m esoscale deformation rates, arguments 
both for similarities and differences can be made. First, since weather systems typically vary 
over several hundred kilometers, one would intuitively expect some similarity between the 
macroscale and mesoscale deformation rates, at least to the extent that both systems a re 
m easuring the continuum motion of the ice pack. H owever, there are several reasons why the 
correlation should not be extrem ely good. Foremost is the fact that the mesoscale a rray is only 
slightly larger than the estimated continuum length of 10 km and thus fluctuations of the 
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Fig. 6. Comparison of net divergences (areas) of overlapping triangles. (a) 16 km triangle, (b) 8 km triallgle, (c) 5 km triangle. 

velocity field yield a strong component in the time series of the leas t-squares mesoscale defor­
mation, much stronger than would be expected to be present in the macroscale data. Also, 
even if the pack ice could be considered a homogeneous continuum at very small scales, the 
nature of the continuum constitutive law might couple with variations in the weather systems 
to give rapid variations in the deformation. This is especially true since the mesoscale array 
is not at the center of the macroscale array, but at one corner. 

In order to examine differences and similarities between the macroscale and mesoscale 
deformation , and thus test some of the above hypotheses, a comparison both of the various 
deformation time series and their spectra was made. The macroscale deformation data were 
supplied by Allan Thorndike and are essentially the same data as presented by Thorndike 
(1974) · 
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In the processing of the macroscale data, T horndike employed a Kalman filtering pro­
cedure to obtain the position a nd velocity of each of the three satellite sites . The filter cut­
offs varied somewhat but generally a ll frequencies up to a period of 18 h were passed . The 
strain-rates and vorticity were uniquely determined since there were only three stations. 

Time-series comparison 

In order tha t both time series be sm oothed in the same manner, all deformation rates were 
sm oothed with a low-pass filter with a transition band from 2 I to 84 h . This smoothing also 
a llowed a time series for the mesoscale vorticity to be constructed by adding in the camp 
rotation, a step that is difficult without extensive smoothing because azimuthal measurem en ts 
were typically made only once a day. T o obtain the camp ro tation for the mesoscale calcula­
tion, a time series R = (sin 4» (longitude - azimuth) (with longitude increasing in an easterly 
direction , see Nye (1974)) where 4> is the latitude, was constructed by linearly extrapolating 
the satellite position and azimuth m easurements reported by T horndike and others (1972) . 
This time series was sm oothed by the same filter that was applied to the deformation data . 
This rotation rate was added to the vorti city calculation in the camp coordinate system to 
obta in the true vorticity as discussed in a previous section . For m esoscale data in the camp 
coordinate system, the least-squa res results for the ou ter array were used . In addition, 
several days of earlier data (taken before the array was complete) consisting of only four 
targets ( I, 2, 3, 8) plus the center point were used to extend the time series . 
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Fig. 7. Comparison of (a) mesoscale and macroscale divergence rates, (b) vorticities, and (c) maximum shear rates. T he dashed 
lines represent macroscale data and the solid lines mesoscale data. 
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In Figure 7 we show a meso- macro comparison of the divergence rates, vorticities and 
maximum shear rates. T he dashed lines represen t the macroscale data. Due to a mal­
function of one of the satellite navigation units, there is a gap of several days in the macrosca le 
data which was bridged by Thorndike using a Kalman filter. This gap is indicated in Figure 7. 
For a q uantitative comparison of the curves we give in Table IV correlation coefficients and 
r.m. s. values for the various curves up to the gap in the macroscale data. The standard error 
for the correlation coeffi cients is based upon a number of d egrees of freedom equal to the 
number of points correlated times the fraction of the spectrum passed by the filter. 

TABLE IV. MESOSCALE AND MACROSCALE R.M.S. DEFORMATION RATES AND CORRELATION 

COEFFICIENTS ( FROM FIG. 7) 

r.m.s. ( 10- 4 h- ' ) 
Correlation coefficient 

Divergence rate 
Meso Alacro 

2.72 1.81 
O·52± O.2 1 

Vorlicity 
Aleso Macro 

4.78 2·55 
o·74 ± O.2 1 

Maximum shear 
Meso Macro 

3.69 2.28 
o·33 ± o.2 1 

Figure 7 and Table IV indicate that there are significant correlations between the time 
series for deformation measured at different scales. Visual examination of the curves suggests 
that the correlation is due to the presence of similar strain events over periods of severa l days. 
Since these events are often of different ampli tude and occur at slightly different times, the 
correlation is not complete, especia lly at higher temporal frequencies. The results also show 
the deformation rates to have comparable amplitudes, with the mesoscale amplitude generally 
being slightly larger. The comparison generally indicates that both mesoscale and macroscale 
arrays are measuring similar continuum motions of the ice pack. 

Spectral densities 

Some of the important differences between the nature of the mesoscale and macroscale 
deformations are illustrated by the spectral d ensities which we calculated using the lag product 
method as discussed , for example, by R ayner (1971 , p. 94) . In Figure 8a we show the spectra 
of the mesoscale divergence rate and shear (not maximum shear) and in Figure 8b the spectra 
of the macroscale divergence rate, shear and vorticity. Because of the inadequacy of the time 
series for the camp rotation at higher frequencies, it is not possible to construct a mesoscale 
vor ticity spectrum. Also, because of the Kalman filter smoothing of the macroscale data, the 
macroscale spectra are valid only up to frequencies with abo ut IS h periods. Since there were 
differing data gaps, the spec tra do not come from the same time periods, but were calculated 
from day 88 to 11 3 for the m esoscale data and from day 8 [ to 10 [ for the macroscale data. 

From Figure 8 we see that the macroscale spectra generall y contain less variance at 
higher frequencies than the mesoscale spectra. Such a result is commensurate with viewing 
the deformation as a continuum signa l plus a Auctuation component with the fluctuation 
magnitude dropping off inversely with the size of the array. This follows because the fluctua ­
tion signal, being of a random nature, would be expected to have a greater high-frequency 
variance. 

An interesting aspect of the mesoscale spectra (especially the divergence rate ) is the 
presence of a significant spectra l peak at about 12 h periods. Whether such a peak is con­
tained in the macroscale data cannot be ascertained because the smoothing employed by 
Thorndike effectively filtered out any such oscillation. A possible explanation for this peak 
is a variation in water currents due to inertial oscillations (Hunkins, 1967) . Measurements 
of ocean curren ts by Newton and Coachman ( [ 973) during previous AIDJEX pilot studies 
have indicated 12 h cycles in the currents with the oscillation displaying coherence over 
distances up to 20 km. Different drag coefficients for different ice floes could couple with 
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Fig. 8. Power spectra of (a) mesoscale divergence rate and shear rate, (b) macroscale divergence rate, shear rate and vorticity. 

these currents to create a differential ice motion. There is also evidence of an approximately 
24 h cycle in the macroscale divergence rate spectrum (which may possibly be present in the 
mesoscale data) . The source of this peak is not at present understood. 

The general fall-off of the spectra in Figure 8 is also relevant for sampling considerations. 
The shape of the spectra generally suggests that sampling intervals up to 10 h (with accurate 
measurements) would yield low-frequency information without intolerable aliasing. A more 
direct test of this can be made by sampling the data at larger intervals before smoothing and 
comparing this to data smoothed before resampling. Such comparisons have been made for 
the mesoscale data (Hibler and others, 1973[aJ ) and support the conclusion that accurate 
samples every eight hours are adequate for resolving the low-frequency components of the 
time series required for comparison with synoptic meteorological variations which generally 
occur over a time scale of several days (Monin, 1972). 

NATURE OF T HE I CE-PACK ROTATION 

Examination of the m esoscale vorticity indicates that it is similar to the camp rotation . 
T his can be seen from Figure 9 where we show the camp rotation rate and the mesoscale 
vorticity. This similarity means that to a large degree the whole mesoscale region is rotating 
as an entity. Inves tigation of the macroscale deformation data indicates that such a "solid" 
rotation is also partially occurring for the larger macroscale region, at least at low temporal 
frequencies. This may be seen from Figure 10 when the east- west shear oVy /ox and vorticity 
are plotted together. As can be seen, the two curves are similar, indicating that (}vx /(}y and 
(}V y/(}x are close to being equal in magnitude and opposite in sign, a condition which holds 
identically for solid rotation. Another indication of this behavior on the macroscale is the 
relative smallness at low frequencies of the macroscale shear-rate spectral density in the x-y 
co-ordinate sys tem compared to the macroscale vorticity spectral density as shown in Figure 8b. 
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Fig. 9. Camp rotation rate and mesoscale uorticily. 

These observations suggest that the most pronounced mode of differential deformation of 
the ice pack is a relatively cohesive rotation of the pack, at least at low frequencies . The 
direction of the rotation is, from the curves in Figure 10, generally clockwise in agreement with 
the motion of the Pacific Gyre. Other deformation rates at low frequencies appear to be 
somewhat smaller than the rotation rate. Such a cohesive rotation is also borne out by 
deformation studies in the shear zone (Crowder and others , 1974; Hibler and others, in press) 
suggesting that the pack is rotating as a relatively tightly bound continuum with slippage at 
the boundaries. 

A final point of interest is a negative correlation between the vorticity and the divergence 
rate (see Fig. 7). The correlation coefficient for the mesoscale data (omitting the earlier data 
taken before the mesoscale array was complete) is in fact - 0.35± 0.17, indicating that a 
convergence is associated with a counter-clockwise rotation. This correlation is discussed in 
greater detail in relation to linear drift theories and atmospheric pressure variations in another 
paper (Hibler, 1974). 
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Fig. I O. Comparison of east- west shear rate (OUy /ox) and uorticily for (a) mesoscale array, (b) macroscale array. 
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CONC LUSIONS 

We believe that this study has shown that strains measured on a scale of 10 km or greater 
can serve as a valid measure of the continuum motion of sea ice. When strains are measured 
on a smaller scale, the continuum motion is obscurred by the random bumping and yielding 
of floes and by the finite size of the interacting floes relative to the size of the strain array. 
These small-scale motions are, of course, interesting in their own right. Our results also 
indicate that meaningful vorticity values can be obtained from even smaller arrays, indeed 
from the measured rotation of individual stations. 

These results suggest that it should be possible to carry out highly useful experiments on 
the macroscale (continuum) behavior of pack ice by utilizing one manned drifting station 
or ship with radar tI"ansponders located at the remote strain points . Strain arrays with effective 
diameters of up to 50 km should easily be possible using currently available techniques. 

Finally, it should be emphasized that our results were obtained from a pack-ice field with a 
compactness of near one and a specific, but unknown, ice thickness distribution. Whether 
similar results would be obtained for other condition, is presently a moot point. 
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