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Abstract. Instabilities of nonuniform flows is a fundamental problem in dynamics of fluids
and plasmas. This presentation outlines atypical dynamics of instabilities for unmagnetized and
magnetized astrophysical differentially rotating flows, including, our efforts in the development
of general theory of magneto rotation instability (MRI) that takes into account plasma com-
pressibility, pressure anisotropy, dissipative and kinetic effects. Presented analysis of instability
(transient growth) processes in unmagnetized /hydrodynamic astrophysical disks is based on the
breakthrough of the hydrodynamic community in the 1990s in the understanding of shear flow
non-normality induced dynamics. This analysis strongly suggests that the so-called bypass con-
cept of turbulence, which has been developed by the hydrodynamic community for spectrally
stable shear flows, can also be applied to Keplerian disks. It is also concluded that the vertical
stratification of the disks is an important ingredient of dynamical processes resulting onset of
turbulence.
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1. Introduction

Nonuniform flows are ubiquitous in astrophysical rotating (stars, protoplanetary disks,
galaxies, etc.) and plane flows (e.g. solar wind). Consequently, the appearance of com-
plex dynamics of these systems is often a manifestation of nonuniform kinematics. For
instance, the structure and dynamical appearance (such as turbulence) of astrophysical
disks are largely defined by the differential character of the disk matter rotation. This
concerns to both, unmagnetized and magnetized astrophysical disks — objects of our
interest.

The consequent development in understanding the physics of turbulence in astrophys-
ical disks has been irregular and has taken considerable time. Substantial progress has
been achieved in the nineties with the discovery of a linear instability in magnetized
disks, so called magneto rotation instability (MRI) (Balbus & Hawley, 1991; Balbus &
Hawley, 1992; Hawley & Balbus, 1991; Hawley & Balbus, 1992; Hawley et al., 1995; Stone
et al., 1996). Behind the frameworks of this theory were the papers Velikhov (1959) and
Chandrasekhar (1960), showing that the nondissipative Couette flow, i.e., the flow of
an ideally conducting fluid between rotating cylinders can be destabilized by an axial
magnetic field. As a whole, MRI and related instabilities became a focus point of astro-
physical studies dealing with accretion disks around a compact object in binary systems.
These studies were summarized in the review Balbus & Hawley (1998). These studies
were mostly concerned with hydrodynamic regimes when standard MHD is applicable.
On other hand, there are many astrophysical objects where regimes different from stan-
dard MHD occur. In a series of recent papers, the MRI theory has been extended taking
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into account finite plasma compressibility, pressure anisotropy, dissipative and kinetic ef-
fects thereby allowing applications to various of astrophysical objects. We aim to present
these recent developments.

In contrast to the magnetized disks, the solution of the turbulence problem in the
unmagnetized /hydrodynamic case has not yet reached sufficient maturity. Moreover, the
very occurrence of turbulence in hydrodynamic disks has been questioned by Balbus
et al. (1996) and Balbus & Hawley (1998). However, there is irrefutable observational
evidence that such disks have to be turbulent. Due to this apparent contradiction, disk
turbulence is often considered as some sort of mystery. The reason for this situation is
that cylindrical flows with Keplerian profile belong to the class of smooth shear flows, i.e.
which present no inflection point; it is well known that these flows are spectrally stable,
although they may become turbulent in the laboratory. This dilemma, that existed also
in laboratory/engineering flows, has been solved by the hydrodynamic community in the
90s of the last century, where a breakthrough was accomplished in the comprehension
of turbulence in spectrally/asymptotically stable shear flows (e.g. in the plane Couette
flow). We also aim to outline the breakthrough of the hydrodynamic community and its
application to unmagnetized /hydrodynamic astrophysical disks.

2. Generalization of MRI

The incompressible case studied in Balbus & Hawley (1991) corresponds to the high-
B plasma (8- ratio of the plasma and the magnetic field pressures) and can be called
the simplest MRI in the simplest astrophysical situation. In Mikhailovskii et al., (2008),
it was suggested that the MRI can be treated as a plasmaphysical phenomenon. The
electrodynamic approach to the MRI problem has been formulated within a framework
of an appropriate plasma permittivity tensor. One more step in the MHD theory of MRI
has been done in Kim & Ostriker (2000) and Blaes & Socrates (2001) taking into account
compressibility. Thereby, the analysis of Balbus & Hawley (1991) has been generalized to
the case of an arbitrary-0 plasma. It was also pointed out that, in addition to one-fluid
MRI theory, a kinetic theory is needed for a collisionless plasma with anisotropic pressure,
and the axisymmetric modes in the simplest astrophysical configuration were analyzed
in Quataert et al. (2002) and Sharma et al. (2003) where the basic kinetic theory of
the MRI in the isotropic plasma and the related instabilities in the presence of pressure
anisotropy were studied. In Mikhailovskii et al.(2008a) a family of hybrid instabilities
due to the differential plasma rotation was found: the so-called rotational-firehose and
rotational-mirror instabilities.

Electrodynamic theory for a larger part of the phenomena was developed in
Mikhailovskii et al., (2008b). The dynamics can be described by either the one-fluid
MHD or the kinetic theory. We have shown that the local dispersion relation for all these
situations and for both approaches in terms of the permittivity tensor has the universal
form. We have developed four versions of electrodynamic theory: one-fluid theory for
the simplest astrophysical plasma, kinetic theory for the simplest astrophysical plasma,
one-fluid theory for the case with both the gravitation force and the pressure gradient
present and kinetic theory for this case. These versions differ from each other by the
permittivity tensor components. These equations show that the nonaxisymmetric modes
are less dangerous than the axisymmetric being, first, stronger stabilized by the magne-
toacoustic effect, and, second, because of the overstable effect. The dispersion relation
describes two instabilities: the MRI and the Convective Instability. The latter induced
by the pressure gradient together with the density gradient.
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The kinetic treatment reveals the pressure anisotropy effects on the instabilities. It is
known that the plasma pressure anisotropy may be a drive of the collisionless plasma
instabilities (Mikhailovskii, 1975). Three varieties of the pressure anisotropy-driven insta-
bilities in the nonrotating plasma (Kitsenko & Stepanov, 1960; Rudakov & Sagdeev, 1958;
Vedenov & Sagdeev, 1958; Chandrasekhar, Kaufman & Watson, 1958; Parker, 1958) are
known: the mirror instability (Kitsenko & Stepanov, 1960; Rudakov & Sagdeev, 1958;
Vedenov & Sagdeev, 1958) and two kinds of firehose instabilities, one related to the
Alfven oscillation branches (Kitsenko & Stepanov, 1960; Chandrasekhar, Kaufman &
Watson, 1958; Parker, 1958), other to the magnetoacoustic ones (Kitsenko & Stepanov,
1960; Rudakov & Sagdeev, 1958; Vedenov & Sagdeev, 1958). Initially, the rotation effect
has been included into firehose instability theory in Sharma et al., (2006) and Ferriere
(2006). The rotational-firehose and rotational-mirror instabilities have been found in
Mikhailovskii et al. (2008a) for the simplest astrophysical plasma with axisymmetric
perturbations. The axisymmetry is a restriction of Mikhailovskii et al. (2008a), Sharma
et al. (2006) and Ferriere (2006). In general, the technique developed in Mikhailovskii
et al. (2008b) allows to obtain a broader view of the rotation effect on the pressure-
anisotropy-driven instability. Comparison shows that, in contrast to the one-fluid ap-
proach, the axisymmetric MRI in the collisionless laboratory plasma is not affected by
the Velikhov or the plasma density gradient effects. Predictions of the one-fluid MHD
and the kinetics are different since the MHD implies a coupling of the perpendicular and
parallel plasma motions. Behavior of the axisymmetric and nonaxisymmetric modes in
the kinetic laboratory plasma model is similar. The main difference between them comes
from the overstable effect for nonaxisymmetric modes. In addition to the local dispersion
relations, in Mikhailovskii et al. (2008b) is derived a series of electrodynamic mode equa-
tions. These can be used for the development of the electrodynamic theory of nonlocal
instabilities complementing the MHD theory of such instabilities (Mikhailovskii et al.,
2008¢).

Our electrodynamic theory is developed for the pure plasma, similar to MHD the-
ory. It can be generalized to the case of the dusty plasma, which can be an alternative
to the MHD theory of instabilities in the rotating dusty plasma (Mikhailovskii et al.,
2008b; Mikhailovskii et al., 2008d). Both the one-fluid and kinetic regimes considered
here concern the magnetized plasma with the ion cyclotron frequency larger than the
oscillation frequency and the plasma rotation frequency. A weak magnetization implies
the so-called Hall regime which was broadly analyzed in astrophysics (Wardle, 1999;
Urpin & Rudiger, 2005; see also Mikhailovskii et al., 2007; Mikhailovskii et al., 2008e),
with both the MHD and electrodynamic approaches. Then the axisymmetric modes only
have been studied. It seems that our technique can be applied for the electrodynamic
theory of nonaxisymmetric modes. According to Krolik & Zweibel (2006), in some cases
the electron inertia should be allowed for in astrophysics. The electrodynamic theory of
axisymmetric modes with the electron inertia has been developed in Mikhailovskii et al.
(2007a) and Mikhailovskii et al. (2008e). With our technique, this can be extended to the
nonaxisymmetric modes. An important area of application of our technique is the elec-
tromagnetic instabilities in the rotating plasma in the approximation of unmagnetized
electrons. A first step in this direction has been made in Mikhailovskii et al. (2007a)
in the framework of electron hydrodynamics allowing for the collisionless parallel vis-
cosity. However, the effects of electron pressure anisotropy leading to the Weibel-type
instabilities (Weibel, 1959; Shukla & Shukla, 2007) were problematic in this topic. It
seems that electrodynamic treatment can allow one to fill the gap in the theory. We have
restricted ourselves to the linear approximation. It seems that inclusion of the three-
wave interaction, as in Lindgren, Larsson & Stenflo (1982), and nonlinear zonal flow
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generation, as in Mikhailovskii et al., (2007b), may be important generalization of our
theory.

3. Hydrodynamic Keplerian disk flows

The breakthrough of the hydrodynamic community (see Chagelishvili et al.
(2003), for details). Traditional stability theory followed the approach of Rayleigh (1880)
where the instability is determined by the presence of exponentially growing modes that
are solutions of the linearized dynamic equations. Only recently has one become aware
that operators involved in the modal analysis of plane shear flows are not normal, hence
that the corresponding eigenfunctions are non-orthogonal and would strongly interfere
(Reddy et al., 1993). For this reason, the emphasis was shifted in the 90s from the anal-
ysis of long time asymptotic flow stability to the study of short time behavior. It was
established that asymptotically /Rayleigh stable flows allow for linear transient growth
of vortex and/or wave mode perturbations (cf. Gustavsson, 1991; Butler & Farrell, 1992;
Reddy & Henningson, 1993; Trefethen et al., 1993). This fact incited a number of fluid
dynamists to examine the possibility of a subcritical transition to turbulence, with the
linear stable flow finding a way to bypass the usual route to turbulence (via linear clas-
sical/exponential instability). On closer examination, the perturbations reveal rich and
complex behavior in the early transient phase, which leads to the expectation that they
may become self-sustaining when there is nonlinear positive feedback.

Based on the interplay of linear transient growth and nonlinear positive feedback, a
new concept emerged in the hydrodynamic community for the onset of turbulence in spec-
trally stable shear flows and was named bypass transition (cf. Boberg & Brosa (1988),
Butler & Farrell (1992), Farrell & Ioannou (1993), Reddy & Henningson (1993), Geb-
hardt & Grossmann (1994), Henningson & Reddy (1994), Baggett et al. (1995), Gross-
mann (2000), Reshotko (2001), Chagelishvili et al. (2002), Chapman (2002)). The bypass
scenario differs fundamentally from the classical scenario of turbulence. In the classical
model, exponentially growing perturbations permanently supply energy to the turbu-
lence and they do not need any nonlinear feedback for their self-sustenance, so the role
of nonlinear interaction is just to reduce the scale of perturbations to that of viscous
dissipation. In the bypass model, nonlinearity plays a key role. The nonlinear processes
are conservative, but in the case of positive feedback, they ensure the repopulation of
perturbations that are able to extract energy transiently from the mean flow. The self-
sustenance of turbulence is then the result of a subtle and balanced interplay of linear
transient growth and nonlinear positive feedback. Consequently, thorough examination
of the nonlinear interaction between perturbations is a problem of primary importance,
and the first step is to search and to describe the linear perturbation modes that will
participate in the nonlinear interactions.

Transient dynamics of hydrodynamic disk flows. Described above linear tran-
sient growth is also at work in rotating hydrodynamic disk flows; however, the Coriolis
force causes a quantitative reduction of the growth rate there which delays the onset
of turbulence. Keplerian flows are therefore expected to become turbulent for Reynolds
numbers a few orders of magnitude higher than for plane subcritical flows (see: Longaretti
(2002), Tevzadze et al. (2003)). The possibility of an alternate route to turbulence gave
new impetus to the research on the dynamics of astrophysical disks (Lominadze et al.
(1988), Richard & Zahn 1999, Richard (2001), Toannou & Kakouris (2001), Tagger (2001),
Longaretti (2002), Chagelishvili et al. (2003), Tevzadze et al. (2003), Klahr & Boden-
heimer (2003), Yecko (2004) 2004, Afshordi et al. (2004), Umurhan & Regev (2004),
Umurhan & Shaviv (2005), Klahr (2004) 2004; Bodo et al. (2005), Mukhopadhyay et al.
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(2005), Barraco & Marcus (2005), Johnson & Gammie (2005), Umurhan (2006)). By
adapting the progress of the hydrodynamic community to the disks flow, this research is
promising for solving the disks’ hydrodynamic turbulence problem.

But it remains to be seen whether this route to turbulence actually applies to astro-
physical disks. Compared to plane shear flows, these possess two additional properties:
differential rotation and vertical stratification. Separate studies of these factors show
that each exerts a stabilizing effect on the flow: these include numerical calculation of
the stability of unstratified flows by Shen et al. (2006), experiments on Keplerian rotation
without stratification by Ji et al. (2006), estimates of the growth rates with stratification
by Brandenburg & Dintrans (2006). However, it appears that the combined action of
differential rotation and stratification introduces a new degree of freedom that may in-
fluence the flow stability and lead to turbulence at a high enough Reynolds number. The
study of the linear perturbations in strato-rotational flow in the local limit can be found
in Tevzadze et al. (2003) and Tevzadze et al. (2008) where it is shown the following:

The combined action of vertical gravity and Coriolis forces in 3D case results the
conservation of the potential vorticity that indicates the existence of a vortex/apperiodic
mode in the perturbation spectrum of the system. This vortex mode is the primary in the
transient amplification phenomenon. In the absence of any one of these (vertical gravity
or Coriolis) forces vortex mode degenerates into the trivial solution of the system — it
disappears.

In 3D hydrodynamic disks with vertical gravity the density-spiral wave mode (which
is internal gravity wave modified by the disk rotation) does not extract the energy of
differential rotation efficiently, but is linearly coupled with the vortex mode. This cou-
pling indicates the importance of the density-spiral waves along with the vortices in the
overall dynamics of the system. The linear dynamics of small scale perturbations can be
analyzed by a single spatial Fourier harmonic: a leading Fourier harmonic of 3D vortex
mode gains background shear flow energy and are transiently amplified by several orders
of magnitude. Reaching the point of maximal amplification and switching to the trailing,
it gives rise to the corresponding harmonic of the density-spiral wave due to the shear
flow induced coupling. The generated wave maintains the energy of perturbations. In
fact, overall energetic dynamics is similar to that occurred in the plane parallel constant
shear flow (see Fig. 2 of Tevzadze et al. (2003)). So, these investigations strongly sug-
gest that the linear dynamics in vertically stratified 3D hydrodynamic Keplerian disks
matches requirements of the bypass concept developed for the plane-parallel flows. This
conjecture may be confirmed by appropriate numerical simulations that take the vertical
stratification and consequent mode coupling into account in the high Reynolds number
regime.
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