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ABSTRACT

In this paper we explore the bias in the estimation of the Value at Risk and
Conditional Tail Expectation risk measures using Monte Carlo simulation.
We assess the use of bootstrap techniques to correct the bias for a number of
different examples. In the case of the Conditional Tail Expectation, we show
that application of the exact bootstrap can improve estimates, and we develop
a practical guideline for assessing when to use the exact bootstrap.

1. INTRODUCTION

The focus of this paper is the estimation by simulation of the Value at Risk
(VaR) and Conditional Tail Expectation (CTE) risk measures. Both risk mea-
sures are in common use for quantifying financial risk in insurance applications.

The use of simulation has proved problematic. Because insurers tend to
use hundreds of thousands of model points (for example with a seriatim
approach) each scenario run may take several computer minutes, with the result
that a sample of only 1,000 projections may take over 20 hours of computation.
However, the simulated estimators of the VaR and CTE risk measures are
biased in general. Running more simulations to reduce the bias may not be fea-
sible in light of the heavy cost, in terms of time and money, of each scenario.
The bootstrap algorithm offers a method for improving the inference from a
Monte Carlo sample, possibly more cheaply than increasing the sample size.
In this paper we consider the magnitude and direction (positive or negative)
of the bias arising from simulating the risk measures, and assess the advantages
and disadvantages of using bootstrap techniques to correct the estimates for bias.

The two risk measures we consider have achieved widespread application
in banking and insurance practice. The quantile risk measure — or Value at
Risk, or VaR, — is used in banking for short term risks. The conditional tail
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expectation (CTE), also known as the tail conditional expectation, expected
shortfall, or tailVaR, has been widely accepted in the insurance field, having
been prescribed both by the Canadian Institute of Actuaries for Segregated Fund
Contracts (CIA Segregated Funds Task Force (2002)) and by the American
Academy of Actuaries in its ‘C3 Phase 2’ report (AAA Life Capital Adequacy
Subcommittee (2005)).

Throughout the paper we assume F, the cumulative distribution function
(c.d.f.) of random loss X, to be continuous. The quantile risk measure at the
confidence level a, 0 < a < 1, is then simply 

Qa(X ) = F –1(a). (1)

The CTE for a nonnegative loss random variable, at the confidence level a,
0 < a < 1, is defined as

CTEa(X ) = F
a

11
-# (q)dq. (2)

That is, the CTE is the expected value of the loss given that the loss falls in the
upper 1 – a part of the distribution. If X is continuous at Qa, the CTE is simply 

E [X | X > Qa(X ) ] (3)

In the sequel we often drop X from the notation and use CTEa and Qa for nota-
tional convenience. For the quantile risk measure we sometimes use Q(a) instead
of Qa when the confidence level is emphasized. The advantages of the CTE over
the VaR risk measure are widely known. In particular, the CTE is coherent in
the terms of Artzner et al. (1999)1.

2. ESTIMATING VAR AND CTE USING MONTE CARLO

We assume that the Monte Carlo simulation generates an i.i.d. random sample
X = (X1, …, Xn). The ordered sample is (X(1), …,X(n)).

For the sample quantile, Qa, there are several suggestions for estimators. The
simplest candidate is X(r) where (r – 1) /n < a ≤ r/n. Slightly more sophisticated
is an interpolation between X(r – 1) and X(r) if (r – 1) /n < a < r/n. All of these
estimators are biased, for finite samples, and are asymptotically unbiased.

Another adjustment is the use of X(a (n+1)), using some form of interpola-
tion if a (n + 1) is not an integer. For more discussion of these estimators, see
for example, Hyndman and Fan (1996) and Klugman et al. (1998).
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1 The CTE has been claimed not to be coherent. The only problem arises if we try to use equation (3)
with a random loss that is not continuous at Qa. The original definition of the CTE in Wirch and
Hardy (1999) specifically addresses this issue.
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Given the same random sample X = (X1, …, Xn) the sample CTE estimate
for confidence level a is generally taken as:

CT 3Ea = ,
an 1

1
i

i n

n

1
-

= +a

X!
^ ]h g

5 ?

(4)

where the X(i) is the i-th ordered value of X, and [ ] is the floor function.
These estimators for the CTE and VaR all take the form of a linear combi-

nation of order statistics which is commonly called the L-estimator (assuming
any interpolation required is also linear).

Whenever the quantile estimator is biased, so is the CTE estimator, because 

E [CT 3Ea] = EQa
[EX (X |X > Qa)] ! EX [X |X > Qa] = CTEa. (5)

The bias will tend to zero as the sample size gets larger since most suggested
Qas are consistent estimators of the true quantile, but will materially affect the
accuracy of the CTE estimate for small sample sizes.

We illustrate the general problem with a simple analytic example.

Example 2.1. Consider a uniform random variable X + U(0,1). Suppose that we
are interested in a such that na is an integer. The true VaR here is a. The two
simple estimators are X(na) and X(na+1).

Now, for a sample size of n the expected value of r-th ordered value is given
by r/ (n + 1), 1 ≤ r ≤ n.

If we set Qa = X(na), the bias is –a /(n + 1). On the other hand if Qa = X(na+1)

the bias is (1 – a) / (n + 1). In this example the latter choice yields much smaller
bias in absolute terms in the right tail region, where a is close to 1.

This example shows that the direction and the magnitude of VaR bias depends
on the choice of estimating function, the location of the quantile (for example,
how close to the tail is it? and, which tail?), as well as the underlying distri-
bution shape and the sample size. For a non-negative loss random variable, a
negatively biased estimate of VaR could result in inadequacy of reserve or
capital, and a positively biased estimate could cause inefficient use of capital.

Example 2.2. For the same uniform distribution X + U (0,1) the true CTE is
(1 + a) /2. Assuming again that na is an integer the expected value of the sample
CTE estimate is

.
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So, the bias is a

n2 1
-

+] g
, meaning that the sample CTE tends to underestimate the

true CTE in this example.

We will see in the following section that the negative bias of the simulated
CTE is a general observation.

3. BIAS OF SAMPLE ESTIMATES OF VAR AND CTE

We first focus on estimates using a single sample value X(r). We define the fol-
lowing two estimates and name them respectively the lower side estimate and
the upper side estimate:

QL(a) = X(r), if (r – 1)/n < a ≤ r /n (6)

QU(a) = X(r), if (r – 1)/n ≤ a < r /n (7)

These are identical except when na is integer. For example if n = 100 and a =
0.95, QL(0.95) = X(95) whereas QU(0.95) = X(96).

As we saw in the Uniform example, a better estimator may lie between the low
side and high side. There are many versions of estimators based on both the
low side and high side sample values, as discussed in Hyndman and Fan (1996).
Here we choose the one recommended by them:

QHF (a) = (1 – g) X(g) + gX(g+1), (8)

where g = [(n + 1/3)a + 1/3] and g = (n + 1/3)a + 1/3 – g. This is actually derived
from the approximation of the incomplete beta function ratio and is known to be
median unbiased of order o(n–1/2). A slightly modified version of this estimate
is also found in Klugman et al. (1998), termed the smoothed quantile estimate.

There are estimators for the quantile that use more than two values of X( j).
Harrell and Davis (1982) proposed:

QHD(a) = j
j

n

1=

w! X( j), (9)

where 

/ n
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with B (a,b) =
0

t a 11 -# (1 – t)b – 1dt. This estimate is actually the exact bootstrap
estimate of E(X((n+1)a)), even for non-integer (n + 1)a, as noted by Hutson and
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Ernst (2000). We discuss the exact bootstrap in more detail in the following sec-
tion. Mausser (2001) showed that QHD(a) performs better than QU(a) for the
marginal VaR determination of some financial asset portfolios.

It is interesting to examine the bias of a single order statistic (that is, X(r)

for integer r) against the true quantile when na is integer. For example, is E [X(95)]
larger or smaller than the true quantile Q(0.95)? Sometimes this type of question
can be tackled using the quantile bounds. There are different bounds available
for the expected value of one order statistic expressed as a function of parent
population’s quantile; see Section 4.4 of David (1981) and references therein.
Those bounds are nonparametric but additional information, such as convexity
of the distribution function, often leads to better bounds. A few useful bounds
for an i.i.d. sample can be derived by the c-ordering equivalence as follows,
where F (x) = Pr[X ≤ x] is the c.d.f. of X and n is the sample size.

1. F (E [X(r)] ) ≤ (≥) n
r

1+
if F is convex (concave)

2. F (E [X(r)] ) ≤ (≥) n
r 1- if 1/F is concave (convex)

3. F (E [X(r)] ) ≤ (≥) n
r if 1/ (1 – F ) is convex (concave)

It is possible for a distribution to satisfy more than one of the criteria above.
These bounds can serve as an informal guideline if applied to the empirical
distribution. For example if 1/F is concave, E [X(na+1)] ≤ Q(a) and E [X(na)] ≤
Q(a – 1/n), indicating that QL(a) = X(na) is a bad choice since it makes the exist-
ing bias worse. For many common distributions, including the Normal, the
Exponential, the Pareto, and the Gamma, for certain parameters, the (na)th
order statistic can be shown to be negatively biased, or E [X(na)] ≤ Q(a), by the
convexity of 1/(1 – F). While this underestimation of VaR is observed in many
fat-tailed financial data there are examples with positive bias. Consider a spe-
cial case of the Inverse Weibull, also known as the Fréchet distribution, with
c.d.f.

F (x) = exp[–x –a ] , a > 0, x > 0. (10)

It can be shown that 1/ (1 – F ) is concave in the right tail region for any 0 <
a < 1, thus E [X(na)] ≥ Q(a) when a is close to 1. This implies that the VaR
based on historical data may actually exceed the true VaR for some very fat-
tailed distributions. We finally note that the recent result on the bias of the VaR
estimator by Inui et al. (2005) is equivalent to the first criterion above. Defining
the VaR as a left side tail risk measure, they proved E [X((n + 1)a)] converges to
Q(a) from below, or E [X((n+1)a)] ≤ Q(a) in the left tail area where F is convex.
For nonnegative random variables whose c.d.f.s are concave, such as the Expo-
nential distribution, the result does not hold.

Turning to the CTE, we have a result that the sample CTE estimate is
always negatively biased. The CTE is a form of trimmed mean — where we
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trim the lower na values of the sample of n losses. Rychlik (1998) showed that
for any identically (but not necessarily independent) distributed random sam-
ple (X1, …, Xn) the trimmed mean has the following upper bound:

,a aE k j n j
n Q d1

1
1 /

i
i j

k

j n1
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+ - + -
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X #! ] ^

]
g h
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Where Q(a) is the a-quantile of the distribution of X. Plugging in k = n and
j = na + 1, assuming na is an integer, gives the upper bound for the sample CTE
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Interestingly, if we set j = k = na + 1 the upper bound for expected value of
the sample VaR, QU(a), becomes CTEa, for an identically distributed sample.
There is also a lower bound available, which is not considered here; see the
reference for details.

We have shown in this section that common estimators for quantile and
CTE risk measures are biased in general. One method for estimating and cor-
recting for bias is through the bootstrap technique.

4. THE BOOTSTRAP

4.1. Overview

The bootstrap methodology is particularly useful for non-parametric statistical
inference. It has been widely applied by financial practitioners and actuaries.
For a comprehensive treatment, see standard textbooks such as Efron and
Tibshirani (1993), Davison and Hinkley (1997), or Hall (1992).

The core idea of the bootstrap is to create pseudo-samples by resampling
(with replacement) from the original sample. The relationship of the pseudo-
samples to the original sample replicates many features of the relationship of
the original sample to its underlying distribution.

The basic procedure of the bootstrap can be sketched as follows. Suppose
we have an i.i.d random sample X = (X1, …, Xn) from an unknown distribution,
with c.d.f. F, and we are interested in a parameter t(F ) such as a quantile or
CTE. Pseudo-samples are generated by sampling, with replacement, generating
a new sample of the same size n as the original, from the empirical distribution
function (e.d.f.) F. The generated sample, denoted by X*, is called a bootstrap
sample; the capital letter states that this too is a random sample, but from the
e.d.f., indicated by superscript *. The statistic of interest using this generated
sample then is denoted by T* = T(X*). We repeat the exercise R times for R
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different bootstrap samples X*
1, …, X*

R, each of size n. From each sample we
generate the statistic of interest, that is, T*

k from the k-th bootstrap sample,
giving Tj

* = T(X*
j ), j = 1, …, R. Finally the bootstrap estimate of the statistic

T is given by 

E [T | F ] = E*[T*] . j .R T1

j

R

1=

*! (11)

It is sometimes possible to compute E [T | F ] analytically without actually per-
forming the simulation. Usually, however, the resampling simulation, referred
to the ordinary bootstrap (OB), is inevitable. In these cases the estimate is
subject to sampling error. The difference between the true bootstrap estimate
and the estimated one, called the resampling (simulation) error, decreases as
the resampling size R gets larger. We denote R–1

jT *! by T* and call this the stan-
dard bootstrap estimator.

The unknown bias E [T|F ] – t(F) is approximated by its bootstrap estimate
B = E [T | F ] – t(F), thus the bootstrap bias estimate under R resamplings is 

BR = T* – t(F) = T* – T. (12)

Note that the bootstrap bias BR converges to the true bias B as R " 3. If this
is achieved the remaining uncertainty is only attributed to the original statis-
tical error, i.e., to the fact that the empirical F does not perfectly represent the
true F. The statistical error can be reduced when the sample size n gets larger
or one has more information on F such as its parametric properties, neither of
which might be feasible in practice.

We know that the estimator (e.g. for VaR or CTE) T is, in general, biased
for finite sample sizes, so we could use a new bias-corrected estimator 

t(F) – BR = 2T – T* (13)

In practice, there is a trade-off between the improvement in the bias through
using bias correction and the variability of the estimate in bootstrap. The prob-
lem is that the bias correction has its own variability. The efficiency of the
estimator is often measured by the mean square error, or MSE, which is the sum
of the squared bias and the variance of the estimator. The bias correction may
reduce the contribution of the first term, but increase the second. Whether the
resulting MSE will be smaller after bias correction depends on the underlying
distribution as well as on the estimator itself; see for example Jeske and Sam-
path (2003). We will show some examples in the next section.

4.2. Bootstrapping L-estimators

For the quantile and CTE risk measures we can utilize results available on
bootstrap estimation of L-estimators. Throughout this subsection we assume
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the statistic of interest, T, is an L-estimator, that is a linear combination of
order statistics:

.T i
i

n

i
1

=
=

c X! ] g (14)

It is evident that the sample VaR and the CTE are special cases of this form
with appropriate selection of the coefficients ci, 1 ≤ i ≤ n. Hutson and Ernst
(2000) derived a formula for the exact bootstrap (EB) mean and variance of
any L-estimator. The bootstrap is exact in the sense that the resampling error is
completely eliminated in the procedure; this is equivalent to the OB at R =3.
We show here how to apply the exact bootstrap to the quantile measure.

Theorem 4.1. (Hutson and Ernst (2000)) The exact bootstrap (EB) of the esti-
mate of E (X(r)| F ), 1 ≤ r ≤ n is

E (X(r)| F ) = ,r
j

n

j
1=

Xjw! ] ]g g

where

; , ; , ,r n
r

B n
j

r n r B n
j

r n r1
1

1r = - + -
-

- +jw ] d d dg n n n= G

and

B (x; a,b) = t ax 1

0

-# (1 – x)b–1dt .

Some wj (r) values are presented in Figure 1.
The weights are spread around the sample estimate, with heavier weights

around X(r) and gradually smaller weights for distant observations. The Harrell-
Davis quantile estimator, introduced in Section 3, is equivalent to the EB of
E [X((n +1)a) |F ]. Its weights can be compared to those of the EB at each order
statistic. Figure 2 compares the 95% and 99% quantile weights. We can see
from the figure that QL

EB < QHD < QU
EB with QHD close to QU

EB.
There are several advantages of the EB over the OB. The EB formula takes

a simple analytic form, thus no simulations are involved. The simple form is easy
to implement and significantly reduces the computing time compared to the OB,
especially when sample sizes are big. Since no resampling error is involved in the
EB, we expect the EB to be better than its OB counterpart in terms of variance
on average. Finally the EB weights can be used for any samples with the same size
because they are independent of the data. In the next section the EB is compared
with the OB for both the VaR and the CTE using some parametric models.

Using Theorem 4.1 we now present several bootstrap-related quantities of
the L-estimator in matrix form which is convenient in notation and useful for
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FIGURE 1: The weights of the EB for several order statistics when n = 100.

programming in matrix-based software such as Matlab. For a sample with size
n, define X:n = (X(1), …, X(n))� and c to be a column vector of size n. Then any
L-estimator can be expressed as T = c�X:n. For the CTE at confidence level a,
for instance, we take

c = (n (1 – a))–1 (0, …, 0,1, …, 1)�

with zeros for the first na elements, to get the sample CTE estimate c�X:n. There-
fore the EB of T, an L-estimator, is 

E [T |F ] = E [c�X:n |F ] = c�E [X:n |F ] = c�w�X:n, (15)

where the matrix w = {wi ( j)}
n
i, j =1 comes from the EB weights for each element

of X:n. Now the EB bias estimate is expressed by 

B = E [T | F ] – t(F) = c�w�X:n – c�X:n (16)
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FIGURE 2: Weight comparison: Harrell-Davis (HD) vs. EB estimators when n = 100.

Thus the bias-corrected estimator defined in (13) then is

t(F) – B = c�X:n – (c�w�X:n – c�X:n) = c�(2I – w�)X:n. (17)

Even though we have an analytic expression for the EB bias it still is to be
answered whether bias correction using the EB actually corrects the bias for
the tail risk measures. The answer to this question is positive for the CTE as
shown in the following theorem. See the Appendix for the proof.

Theorem 4.2. For any given sample of size n, the empirical CTE estimator defined
in (4) is always bigger than the EB of the CTE estimator, at any level a such
that na is an integer. That is, mathematically,

c�w�X:n < c�X:n ,

for any given sample X, where c = (n (1 – a))–1(0, …, 0,1, …, 1)� with zeros for
the first na elements.
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Note that this result also holds for the ordinary bootstrap with sufficiently large
resampling size R because the EB is the limit value of the ordinary bootstrap.

Coupled with the result of Rychlik (1998) the above theorem gives

E [c�w�X:n |F ] < E [c�X:n |F ] < CTEa(X ),

for c = (n (1 – a))–1(0, …, 0,1, …, 1)� with zeros for the first na elements. This
implies that the bootstrap bias correction for CTE works in the right direction
because the unknown bias E [c�X:n |F ] – CTEa(X) is estimated by c�w�X:n – c�X:n.
Unfortunately there is no similar result for the VaR case.

5. SIMULATIONS

5.1. Examples

Three different examples are used to compare the performance of various esti-
mators for the VaR and the CTE using Monte Carlo simulations; the empirical,
the OB with resampling, the EB. For each bootstrap method the bias corrected
estimator has also been computed. To assess the performance of different esti-
mators we repeat these computations with different generated samples, leading
to the MSE comparison.

The first example is a 10-year European put option with the price return
based on the Lognormal (LN) distribution. The initial price of the asset is set
at $100, the strike price is $180, and the risk free rate is assumed to be 0.5%
per month effective. The LN parameters of the P-measure are m = 0.00947 and
s = 0.04167 which are derived from the monthly S&P 500 data during 1956-
2001, as shown in Chapter 3 of Hardy (2003). Put options are often discussed
in the cost of embedded investment guarantees such as in segregated funds
and variable annuities, where the strike price represents the guaranteed payment
at maturity to customers. The put option here can be said to be at the money
from insurer’s perspective because the expected level of the fund in 10 years
under the risk neutral measure is around $182. We focus on the VaR and the
CTE of the put option liability at different confidence levels. We assume no
hedging here, so these are risk measures for the naked liability.

In the second example we consider the identical put option except that the
underlying asset follows the Regime Switching Log-Normal distribution with
two regimes (RSLN2). See Hardy (2003) for details. The parameters are derived
from the same S&P data: m1 = 0.0127, m2 = –0.0162, s1 = 0.0351, s2 = 0.0691,
p12 = 0.0468, and p21 = 0.3232. Since the left tail of the RSLN2 is fatter than
the LN the risk measure associated with the guarantee cost is known to be
significantly greater under the former model than those under the latter, and
this is exactly what we observe in our simulations.

The final model is a fat-tailed Pareto distribution which has been popular
in connection with extreme value theory in financial risk management, and is
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also used in property and casualty applications. The parameters are b = 10 and
z = 0.2 where the c.d.f. of Pareto is 

F (x) = 1 – xb z
b /z1

+
d n , x > 0, (18)

following the notation of Manistre and Hancock (2005). The mean and the
variance of this distribution are respectively 12.5 and 260.42 under our parameter
choice. Note that the Pareto is considered to be fatter tailed than the other two
models.

For each model, we estimate the VaR using each of QL, QU, QHF, the
bootstrap versions of the estimators using the ordinary bootstrap (OB) with
100 resamplings as in (11), the exact bootstrap (EB) as in (15), and the bias
corrected estimators given in (13) and (17) respectively. This results in fifteen
different estimators. Also we include QHD, for which there is no bootstrapping.
For the CTE estimation we compare the empirical estimate, the OB and the
EB without bias correction, and the OB and EB with bias correction giving a
total of five estimators.

5.2. Estimating the 99% Quantile risk measure

We assume the actuary is using 200 or 1000 simulations to estimate the risk
measure. To estimate the distribution of possible outcomes, we have repeated
the 200 or 1000 simulations for a total of 20,000 different samples, for each
liability model.

For each sample, we have calculated the lower quantile estimate, QL from
equation (6), the upper estimate QU from equation (7), the HF estimate, QHF
from equation (8) and the HD estimate QHD from equation (9). In addition,
for the first three measures, for each sample, we have calculated revised esti-
mates using the ordinary bootstrap and the exact bootstrap, before and after
bias correction.

The resulting values give the bias and the root mean square error, rMSE,
associated with each measure, averaged over the 20,000 samples. Estimated
standard errors are also shown in percentage of the true value.

From these tables we note

1. The tail measure from the sample is quite inaccurate even for sample size
1000, which would be on the high side in many actuarial applications.

2. The overall accuracy, as measured by the rMSE is improved by using the
exact bootstrap, without bias correction.

3. Bias correction may increase the bias and substantially increase the rMSE
— and in fact does so for the lognormal and RSLN models, for the QU
and QHF . The usefulness of the bootstrap bias correction is limited because
of the non-smoothness of the estimator, QU = X(0.99n), and further because
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we are near the bounds of the e.d.f. sample space. To illustrate more clearly,
for the 99.5% quantile, QU would be the maximum value from the sample,
which we expect to be positively biased for the models under consideration.
But a bootstrap estimate of a sample maximum could never be positively
biased.

4. Even in cases where the bias correction reduces the average bias, the result-
ing increase in the standard error of the estimator for these examples leads
to a bigger rMSE.

5. The EB is always more efficient than the OB as we would expect, even though
the improvement is marginal. The improvement is not statistically significant,
but the systematic reduction in error is due to the elimination of bootstrap
sampling volatility, thus it is strongly recommended to use the EB instead
of the OB whenever possible.

6. The QHF and QHF
EB estimators perform well in all cases; if the estimator

efficiency is important, this may be a good default selection.
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TABLE 1

99% QUANTILE ESTIMATORS FOR THE LOGNORMAL EXAMPLE

Sample Size 200 Sample Size 1000

Bias (s.e.) StD (s.e.) rMSE Bias (s.e.) StD (s.e.) rMSE

QL –7.59%(0.12%) 16.70%(1.11%) 18.34% –1.58%(0.06%) 7.91%(0.25%) 8.07%

QL
OB –9.34%(0.10%) 14.66%(0.85%) 17.38% –1.94%(0.05%) 7.37%(0.22%) 7.62%

QL
OB.bc –5.84%(0.14%) 20.44%(1.66%) 21.26% –1.21%(0.06%) 9.01%(0.32%) 9.09%

QL
EB –9.33%(0.10%) 14.55%(0.84%) 17.28% –1.94%(0.05%) 7.32%(0.21%) 7.57%

QL
EB.bc –5.85%(0.14%) 20.36%(1.65%) 21.18% –1.22%(0.06%) 8.96%(0.32%) 9.04%

QU 4.69%(0.13%) 18.25%(1.32%) 18.84% 0.98%(0.06%) 8.05%(0.26%) 8.11%

QU
OB 1.84%(0.11%) 15.75%(0.99%) 15.86% 0.58%(0.05%) 7.50%(0.22%) 7.52%

QU
OB.bc 7.54%(0.16%) 22.81%(2.07%) 24.02% 1.38%(0.06%) 9.19%(0.34%) 9.29%

QU
EB 1.84%(0.11%) 15.63%(0.97%) 15.74% 0.59%(0.05%) 7.45%(0.22%) 7.47%

QU
EB.bc 7.55%(0.16%) 22.71%(2.05%) 23.93% 1.37%(0.06%) 9.14%(0.33%) 9.24%

QHF 0.56%(0.12%) 16.93%(1.14%) 16.94% 0.12%(0.06%) 7.92%(0.25%) 7.92%

QHF
OB –1.92%(0.11%) 15.23%(0.92%) 15.35% –0.27%(0.05%) 7.45%(0.22%) 7.45%

QHF
OB.bc 3.04%(0.14%) 19.83%(1.56%) 20.06% 0.50%(0.06%) 8.84%(0.31%) 8.86%

QHF
EB –1.92%(0.11%) 15.13%(0.91%) 15.25% –0.26%(0.05%) 7.40%(0.22%) 7.40%

QHF
EB.bc 3.04%(0.14%) 19.74%(1.55%) 19.98% 0.50%(0.06%) 8.80%(0.31%) 8.81%

QHD 1.72%(0.11%) 15.61%(0.97%) 15.71% 0.56%(0.05%) 7.45%(0.22%) 7.47%

True Value 39.7202
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7. Note that QHD performs well and often ranks the second best followed by QHF,
but its performance deteriorates when QHF

EB fails to be the best. As we expected
QL

EB < QHD < QU
EB, and QHD is close to QU

EB throughout the simulations.

5.3. Estimating the 95% CTE

Following a similar process to the quantile results above, we simulated 20,000
samples of 200 values, and 20,000 samples each with 1,000 values. For each
sample, we estimated the 95% CTE directly from the sample, (as the mean
of the largest 5% of simulated loss values) and then again using the ordinary
bootstrap (with 100 bootstrap replications) and the exact bootstrap, without
and with bias correction. The results are then averaged over the 10,000 simu-
lations, and the final averages are shown in Tables 4, 5, and 6.

1. We notice that, as expected from Section 3 the sample estimates of the CTE
are negatively biased.
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TABLE 2

99% QUANTILE ESTIMATORS FOR THE RSLN2 EXAMPLE

Sample Size 200 Sample Size 1000

Bias (s.e.) StD (s.e.) rMSE Bias (s.e.) StD (s.e.) rMSE

QL –6.06%(0.09%) 13.25%(0.91%) 14.57% –1.27%(0.04%) 6.29%(0.21%) 6.42% 

QL
OB –7.58%(0.08%) 11.61%(0.70%) 13.87% –1.57%(0.04%) 5.84%(0.18%) 6.05% 

QL
OB.bc –4.55%(0.11%) 16.21%(1.36%) 16.83% –0.97%(0.05%) 7.18%(0.27%) 7.24% 

QL
EB –7.58%(0.08%) 11.53%(0.69%) 13.80% –1.57%(0.04%) 5.81%(0.17%) 6.02% 

QL
EB.bc –4.54%(0.11%) 16.14%(1.35%) 16.77% –0.96%(0.05%) 7.15%(0.26%) 7.21% 

QU 3.50% (0.1%) 14.27%(1.06%) 14.69% 0.74%(0.05%) 6.41%(0.21%) 6.45% 

QU
OB 1.21%(0.09%) 12.33%(0.79%) 12.39% 0.42%(0.04%) 5.92%(0.18%) 5.94% 

QU
OB.bc 5.79%(0.13%) 17.76%(1.64%) 18.68% 1.05%(0.05%) 7.35%(0.28%) 7.42% 

QU
EB 1.22%(0.09%) 12.25%(0.78%) 12.31% 0.42%(0.04%) 5.89%(0.18%) 5.91% 

QU
EB.bc 5.78%(0.12%) 17.68%(1.62%) 18.6% 1.05%(0.05%) 7.31%(0.28%) 7.39% 

QHF 0.28%(0.09%) 13.31%(0.92%) 13.31% 0.06%(0.04%) 6.3%(0.21%) 6.30% 

QHF
OB –1.75%(0.08%) 11.98%(0.74%) 12.1% –0.25%(0.04%) 5.89%(0.18%) 5.89% 

QHF
OB.bc 2.31%(0.11%) 15.57%(1.26%) 15.74% 0.37%(0.05%) 7.07%(0.26%) 7.08% 

QHF
EB –1.75%(0.08%) 11.91%(0.74%) 12.04% –0.25%(0.04%) 5.86%(0.18%) 5.86% 

QHF
EB.bc 2.31%(0.11%) 15.49%(1.25%) 15.66% 0.37%(0.05%) 7.04%(0.26%) 7.05% 

QHD 1.12%(0.09%) 12.24%(0.78%) 12.29% 0.40%(0.04%) 5.89%(0.18%) 5.90% 

True Value 51.8618
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2. Unlike the Quantile examples, the bias correction for the CTE does reduce
the bias in all cases, on average. However, in some cases the reduction in
bias is outweighed by the resulting increase in variance, to give a slightly
higher overall rMSE.

3. The case for using the bootstrap is not clear; the sample alone gives about
the same accuracy as the bootstrapped variations, on average. In general,
we find the EB with bias correction offers a very similar rMSE to the stan-
dard estimator, but with a smaller bias, which may be preferable.

4. Considering that in practice one has a single sample, the bootstrap might
be the only sensible method to estimate the bias with no reference to the
true distribution.

As a guideline as to whether to apply the bias correction, Efron and Tibshirani
(1993) suggest that the ratio of the bootstrap bias estimate to the bootstrap
standard error should be considered. If the ratio is bigger than 0.25 the bias
correction is worth using.
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TABLE 3

99% QUANTILE ESTIMATORS FOR THE PARETO EXAMPLE

Sample Size 200 Sample Size 1000

Bias (s.e.) StD (s.e.) rMSE Bias (s.e.) StD (s.e.) rMSE

QL –5.86%(0.15%) 21.01%(3.34%) 21.81% –1.36%(0.07%) 10.24%(0.79%) 10.33%

QL
OB –4.01%(0.14%) 20.03%(3.03%) 20.43% –1.02%(0.07%) 9.70%(0.71%) 9.76% 

QL
OB.bc –7.71%(0.18%) 26.03%(5.12%) 27.15% –1.71%(0.08%) 11.58%(1.01%) 11.71%

QL
EB –3.99%(0.14%) 19.84%(2.97%) 20.23% –1.01%(0.07%) 9.64% (0.7%) 9.70% 

QL
EB.bc –7.73%(0.18%) 25.82%(5.04%) 26.95% –1.71%(0.08%) 11.51%(1%) 11.64%

QU 11.90%(0.22%) 30.65%(7.10%) 32.88% 1.99%(0.08%) 11.03%(0.92%) 11.2% 

QU
OB 13.38%(0.21%) 29.85%(6.74%) 32.71% 2.40%(0.07%) 10.42%(0.82%) 10.69%

QU
OB.bc 10.43%(0.28%) 39.61%(11.86%) 40.96% 1.59%(0.09%) 12.53%(1.19%) 12.63%

QU
EB 13.40%(0.21%) 29.63%(6.64%) 32.52% 2.41%(0.07%) 10.35%(0.81%) 10.63%

QU
EB.bc 10.40%(0.28%) 39.40%(11.74%) 40.75% 1.58%(0.09%) 12.46%(1.17%) 12.56%

QHF 5.92%(0.18%) 26.12%(5.16%) 26.78% 0.86%(0.08%) 10.64%(0.86%) 10.68%

QHF
OB 7.52%(0.19%) 26.20%(5.19%) 27.26% 1.25%(0.07%) 10.17%(0.78%) 10.24%

QHF
OB.bc 4.32%(0.22%) 31.48%(7.49%) 31.77% 0.48%(0.08%) 11.83%(1.06%) 11.84%

QHF
EB 7.55%(0.18%) 26.02%(5.12%) 27.09% 1.25%(0.07%) 10.10%(0.77%) 10.18% 

QHF
EB.bc 4.30%(0.22%) 31.29%(7.40%) 31.58% 0.47%(0.08%) 11.76%(1.05%) 11.77% 

QHD 13.19%(0.21%) 29.49%(6.57%) 32.30% 2.37%(0.07%) 10.35%(0.81%) 10.61% 

True Value 75.594
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TABLE 4

95% CTE ESTIMATORS FOR THE LOGNORMAL EXAMPLE

Sample Size 200 Sample Size 1000

Bias (s.e.) StD (s.e.) rMSE Bias (s.e.) StD (s.e.) rMSE

CT 3E –2.68%(0.12%) 16.89%(0.89%) 17.10% –0.52%(0.05%) 7.42%(0.17%) 7.44% 

CT 3EOB –5.38%(0.12%) 16.62%(0.86%) 17.47% –1.06%(0.05%) 7.43%(0.17%) 7.50% 

CT 3EOB.bc 0.01%(0.12%) 17.36%(0.94%) 17.36% 0.02%(0.05%) 7.50%(0.18%) 7.50% 

CT 3EEB –5.37%(0.12%) 16.55%(0.86%) 17.4% –1.06%(0.05%) 7.39%(0.17%) 7.47% 

CT 3EEB.bc 0%(0.12%) 17.27%(0.93%) 17.27% 0.02%(0.05%) 7.46%(0.17%) 7.46% 

True Value 31.2552

TABLE 5

95% CTE ESTIMATORS FOR THE RSLN2 EXAMPLE

Sample Size 200 Sample Size 1000

Bias (s.e.) StD (s.e.) rMSE Bias (s.e.) StD (s.e.) rMSE

CT 3E –2.08%(0.09%) 12.68%(0.69%) 12.85% –0.40%(0.04%) 5.62%(0.14%) 5.64% 

CT 3EOB –4.17%(0.09%) 12.51%(0.67%) 13.18% –0.83%(0.04%) 5.62%(0.14%) 5.68% 

CT 3EOB.bc 0.01%(0.09%) 13.01%(0.73%) 13.01% 0.02%(0.04%) 5.69%(0.14%) 5.69% 

CT 3EEB –4.16%(0.09%) 12.44%(0.67%) 13.12% –0.82%(0.04%) 5.60%(0.13%) 5.66% 

CT 3EEB.bc 0.01%(0.09%) 12.95%(0.72%) 12.95% 0.01%(0.04%) 5.65%(0.14%) 5.65% 

True Value 42.9634

TABLE 6

95% CTE ESTIMATORS FOR THE PARETO EXAMPLE

Sample Size 200 Sample Size 1000

Bias (s.e.) StD (s.e.) rMSE Bias (s.e.) StD (s.e.) rMSE

CT 3E –1.32%(0.13%) 17.99%(2.06%) 18.03% –0.33%(0.06%) 8.10%(0.42%) 8.11% 

CT 3EOB –2.71%(0.13%) 17.75%(2.01%) 17.95% –0.6%(0.06%) 8.11%(0.42%) 8.13% 

CT 3EOB.bc 0.08%(0.13%) 18.41%(2.16%) 18.41% –0.06%(0.06%) 8.17%(0.43%) 8.17% 

CT 3EEB –2.69%(0.12%) 17.67%(1.99%) 17.88% –0.60%(0.06%) 8.07%(0.42%) 8.09% 

CT 3EEB.bc 0.06%(0.13%) 18.31%(2.14%) 18.31% –0.06%(0.06%) 8.13%(0.42%) 8.13% 

True Value 63.7853
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If the bias is not large relative to the standard error, it may be worth using
the EB estimate even without bias correction rather than the empirical esti-
mator. We see from the tables that in some cases the EB estimate is preferred,
at other times the empirical estimator has smaller rMSE. An interesting ques-
tion is how an actuary with a single sample from an unknown underlying
distribution should decide whether applying the exact bootstrap will improve
the estimator of the CTE or not. To help with this decision we have developed
a guideline which is described in the following section.

6. EB OR EMPIRICAL CTE ESTIMATOR? A PRACTICAL TEST

In the previous section the true risk measure values were available in comparing
different estimators’ performances, but in practice one would have only a single
sample with no information on the true value. We propose a practical guideline
for the CTE estimation that can be used to select a better estimator in practice.

Let q1 and q2 be two different estimators of an unknown parameter q. Assume,
say, E [q1] < E [q2]. For q1 to have smaller MSE than q2,

E [q – q1]2 < E [q – q2]2

which rearranges to:
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Now, we will use this to compare the empirical CTE estimate, q2 = c�X:n with the
empirical EB estimator, q1 = c�w�X:n. From Theorem 4.2 we have E [q2] – E [q1] > 0.

The right hand side of inequality 19 then becomes:
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where S :n is the covariance matrix with Cov (X(i), X( j)) for each element. This
formula again is approximated by plugging in the bootstrap estimator to give 
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The bootstrap estimate of the covariance matrix2 can be obtained through
the OB, for each given sample, with each element Cov(X(i), X( j ) |F ). So, the EB
estimator, q1, will be more efficient if the true (unknown) q < j, otherwise the
empirical estimator should be used. We can substitute c�X:n + B for q to give
an approximate rule of thumb, where B is the estimated bias,

B = c�w�X:n – c�X:n.

That is, use the EB estimate if

c�X:n + B < j. (21)

Otherwise, use the empirical estimate without applying the exact bootstrap.
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2 Hutson and Ernst (2000) also provides the EB estimate of the covariance matrix analytically, but its
computation increases exponentially as sample size gets larger. Even for n = 400, computing the EB
variance requires prohibitive time and storage.

TABLE 7

APPLICATION OF MSE TEST TO PARETO AND RSLN EXAMPLE, 99% CTES.

CTE 99% in the Lognormal model
CTE = 47.7281; sample size n = 200

Method Estimate Bias Std rMSE

Empirical 45.4203 – 2.3078 7.2700 7.6276
EB 42.9971 – 4.7310 6.6571 8.1669

Mixed 45.3762 – 2.3519 7.2796 7.6501

CTE 99% in the RSLN put model
CTE = 59.9989; sample size n = 200

Method Estimate Bias Std rMSE

Empirical 57.6421 – 2.3568 7.2434 7.6172 
EB 55.1389 – 4.8600 6.6605 8.2451 

Mixed 57.5984 – 2.4005 7.2513 7.6383 

CTE 99% in the Pareto model
CTE = 106.993; sample size n = 200

Method Estimate Bias Std rMSE

Empirical 100.6815 – 6.3114 33.7357 34.3210
EB 93.9402 – 13.0527 29.2711 32.0495

Mixed 99.6372 – 7.3557 32.2089 33.0382
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To illustrate this, we generate 10,000 samples, each with 200 values of the
same three models to estimate 99% CTEs. For each sample, we apply the test
in equation (21). Resampling size of 999 was used to estimate the covariance
matrix for each sample. If the inequality is satisfied, we use the EB estimate.
If it was not, we use the empirical estimate. The average outcome is labeled
‘Mixed’ in Table 7. In general, in practice, we assume the underlying model
is unknown, and only one sample is available. The tables illustrate that using
the test gives an average rMSE that is near the lower of the two, successfully
identifying in the majority of cases whether the EB or empirical estimate is pre-
ferred. In the Pareto case, the exact bootstrap offers a lower MSE, and in the
LN and the RSLN case the empirical estimates are better.

7. CONCLUSION

We investigated the bias of estimates of two risk measures, the quantile and the
CTE, in finite samples. For the quantile, different estimators are compared with
bootstrapped and bias corrected bootstrapped estimators. Simulations show that
the exact bootstrap has definite advantages over the ordinary resampled bootstrap.
The bootstrap bias correction however should not be applied to tail quantiles.
The exact bootstrap offers a reasonably efficient estimator in many cases.

For the CTE we found the sample estimate is always negatively biased and
the bias correction works reasonably well, though an increase in the variance
may decrease the efficiency of the estimator with bias correction. Finally, we
propose an algorithm to help determine whether the exact bootstrap estimator
will be more efficient than the ordinary empirical estimate.

Before closing the paper, we note that the bias is not the only source of
error, even though it has been focused on in this paper for small sample sizes.
The variance of the estimated tail measures is relatively larger and decreases
slower than the bias, as shown in the examples. This suggests that practitioners
should also look at the magnitude of the estimated variance, e.g., using the
bootstrap, for an accurate tail measure estimation. Since the bootstrap is based
on the sample in hand, the sampling error of the original data cannot be cured
through the bootstrap, especially when the quantity of interest lies in the tail
region where events are rare.
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APPENDIX:
PROOF OF THEOREM 4.2

The goal is to prove

c�w�X:n < c�X:n ,

for c = (n(1 – a))–1(0, …, 0,1, …, 1)� with zeros for the first na elements. To start
with, let us show that the weight matrix w = {wi ( j)}

n
i, j =1 is doubly stochastic,

meaning that the sum over each row and each column equals one. From The-
orem 4.1
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The last line is a well known characteristic of the incomplete beta function ratio;
see e.g., Johnson et al. (1992). If we define two binomial random variables
Y1 + Bin (n, n

j ) and Y2 + Bin (n, n
j 1- ), the last expression becomes Pr(Y1 ≥ r) –

Pr(Y2 ≥ r). Thus the sum of j-th row elements of w is
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The sum over each column equals one by definition of the weights. Now put
c�w�X:n = i 1=

bi
n! X(i) where bi = (n(1 – a))–1

aj n 1= + ( )i j
n w! . Note that for each i

we have

0 < bi < (n(1 – a))–1 with  b 1i
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because w is doubly stochastic. Thus
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because in the first term all the X(i) are greater than X(na), and in the second
term all the X(i) are less than or equal to X(na), so
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