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SUMMARY

We coupled the Wells–Riley equation and the susceptible–exposed–infected–recovery (SEIR)

model to quantify the impact of the combination of indoor air-based control measures of

enhanced ventilation and respiratory masking in containing pandemic influenza within an

elementary school. We integrated indoor environmental factors of a real elementary school and

aetiological characteristics of influenza to estimate the age-specific risk of infection (P) and basic

reproduction number (R0). We combined the enhanced ventilation rates of 0.5, 1, 1.5, and 2/h

and respiratory masking with 60%, 70%, 80%, and 95% efficacies, respectively, to predict the

reducing level of R0. We also took into account the critical vaccination coverage rate among

schoolchildren. Age-specific P and R0 were estimated respectively to be 0.29 and 16.90; 0.56 and

16.11; 0.59 and 12.88; 0.64 and 16.09; and 0.07 and 2.80 for five age groups 4–6, 7–8, 9–10,

11–12, and 25–45 years, indicating pre-schoolchildren have the highest transmission potential.

We conclude that our integrated approach, employing the mechanism of transmission of indoor

respiratory infection, population-dynamic transmission model, and the impact of infectious

control programmes, is a powerful tool for risk profiling prediction of pandemic influenza

among schoolchildren.

INTRODUCTION

The potential threat of pandemic influenza is re-

emerging: severe influenza infections develop in 3–5

million people annually and 250000–500 000 deaths

occur worldwide [1] ; of those about 20% of children

and 5% of adults develop symptomatic influenza A

or B each year [2]. Pandemic influenza spreads

rapidly; easy reassortment and re-circulation of the

virus means that pandemic influenza has high attack

rates and kills millions of people worldwide. Recent

outbreaks of highly pathogenic avian influenza in

Asia and associated human infections have led to a

heightened level of awareness and preparation for the

possibility of pandemic influenza [3].

Population-aggregated level in target sites such as

school, household, workplace and hospital represent

an important role in accelerating the transmission

potential of indoor respiratory infections. The fact

that that the highest annual rates for influenza occur

in children suggests that schoolchildren are central

to the spread of influenza within the community [4].

Given the importance of children in the transmission

of influenza [5], school contact and family trans-

mission indeed contribute to the high potential for

spreading pandemic influenza. The potential mobility

of people and frequency and length of time of

school contact has amplified the potential for disease

to be transmitted to schoolchildren. There is little re-

search that has elucidated the transmission potential
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among schoolchildren through their daily school life,

although many researchers have highlighted indoor

air-quality programmes in schools.

We employed the Wells–Riley mathematical model

of indoor respiratory infection [6–9] to estimate the

exposure concentrations in indoor environments

and to estimate the basic reproduction number (R0) in

a shared indoor airspace. Riley et al. [6] developed a

Wells–Riley mathematical equation to estimate the

probability of airborne transmission of an infectious

agent indoors. The key parameter is the quantum

generation rate (q) of infectious quanta by an infected

person. The q value was defined by Wells [10] who

conducted a series of experiments to estimate the re-

sponse and reaction to inhaled infectious droplets,

indicating that a quantum (or infectious dose) can

infect 63.2% of susceptibles tested. Hence, exposure

to one quantum of infection gives an average prob-

ability of 63% of becoming infected [10]. The R0

value is the key epidemiological determinant that

characterizes the transmission potential of a disease,

which is defined as the average number of successful

secondary infection cases generated by a typical

primary infected case in an entirely susceptible popu-

lation [11]. R0 essentially determines the rate of spread

of an epidemic and how intensive a policy will need

to be to control the epidemic. R0>1 implies that the

epidemic is spreading within a population and

that incidence is increasing, whereas R0<1 means that

the disease is dying out. An average R0=1 means the

disease is in endemic equilibrium within the popu-

lation.

We adopted a susceptible–exposed–infected–

recovery (SEIR) model to quantitatively explain the

dynamics of an epidemic. The susceptible (S) group is

made up of healthy individuals who are available

hosts for a disease and are assumed to have no prior

immunity. The exposed (E) group represents a latent

period in the model or expresses those that are in-

fected but not yet infectious. The infected (I) group is

made up of hosts that carry the disease. The removed

(R) group is made up of individuals that have

either recovered from the disease or gained immunity,

individuals that have been quarantined, or individuals

that have died from the disease. Pandemic influenza

characteristics are adapted from the historical exper-

imental value to explicate the SEIR model. Noakes

et al. [12] have also linked the Wells–Riley equation

and SEIR model in order to model airborne in-

fection transmission in indoor environments. These

approaches provide a predictive ability to describe

the potential transmission dynamics in an indoor

environment.

Evidence from community trials suggests that mass

vaccination of children can be effective in reducing

influenza transmission in the entire community

[13–16]. Evidence based on systematic reviews of

the effectiveness of vaccinating healthy children also

suggests that vaccinating healthy children against in-

fluenza has the potential for reducing the impact of

influenza epidemics [15]. The Japanese national

strategy from 1962 to 1987 was to vaccinate school-

children to control epidemic influenza. About 80%

of Japanese schoolchildren received an inactivated

influenza vaccine annually [13]. Piedra et al. [14]

also indicated that vaccination of about 20–25% of

children in the intervention communities resulted in

an 8–18% indirect reduction of medically attended

acute respiratory illness events in adults aged >35

years for the influenza seasons 1997–2001. Hence, it is

clear that an influenza vaccination strategy targeting

schoolchildren plays an important role in the eradi-

cation of an epidemic.

In this paper, we propose an integrated-level math-

ematical model, incorporating both the Wells–Riley

mathematical model and the SEIR model, to quantify

the potential spread of pandemic influenza in an

elementary school with a kindergarten. Furthermore,

modelling the impact of the indoor air-based

control measures of the combination of the potential

engineering controls and public health interventions

is also presented. The objectives of the present

study focus on: (1) estimating the risk profiling in

various hypothetical scenarios of exposure to pan-

demic influenza in the school setting, and (2) model-

ling the optimal control strategies and estimating the

impact of the combination of measures in containing

influenza.

MATERIALS AND METHODS

Study population

The study, conducted at the Ming-Chuan elementary

school located in southern Taipei city, modelled

the transmission potential levels in classrooms. A

total of 494 students included 60 kindergarten and

434 elementary students housed in four buildings.

The school has two kindergarten classes and 19

elementary classes with grades from 1 to 6. The aver-

age number of students in each class are 30, 23, 26,

and 30 for 1st–2nd, 3rd–4th, 5th–6th grades, and
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kindergarten class, respectively ; within those classes

schoolchildren are classified into four age groups:

kindergarten (aged 4–6 years), elementary students

(7–8, 9–10, and 11–12 years), while teaching and

administrative staff aged 25–45 years are also in-

cluded.

Risks for indoor airborne infection for the five

age groups include different indoor environmental

ventilation, exposure time, and population size. In

the space condition, there are four mechanical fans

mounted in each elementary classroom, whereas

the kindergarten classrooms are equipped with an

air-conditioning system. Because of the teaching

requirements and needs, kindergarten classrooms

always have a partition that opens to connect with

the next classroom forming a larger space for

group activities. Hence, we consider the kinder-

garten as an enclosed space with a ventilation

system that differs from the natural forced combined

ventilation performance of a general elementary

classroom.

Regarding duration of exposure, each class has

lasts for 40 min with 5–10 min recess time. Total

exposure times in classroom are about 0.28, 0.25,

and 0.11 days for kindergarten students, elementary

students, and teaching and administrative staff, re-

spectively (Table 1).

Wells–Riley mathematical equation

Riley et al. [6] made two salient assumptions of well-

mixed airspaces and steady-state conditions to initiate

the well-known Wells–Riley equation that quantifies

indoor respiratory infections. The first assumption

implies that an infectious droplet nucleus has an

equal chance of being anywhere within a building’s

airspace, regardless of when and where the infectious

particle was generated, whereas the second assump-

tion implies that the quantum concentration and the

outdoor air-supply rate remain constant with time.

We modify the Wells–Riley mathematical equation

[6, 10] to estimate the transmission potential of pan-

demic influenza:

P=
D

S
=1xexp x

Iqpt

Q
1x

V

Qt
1xexp x

Qt

V

� �� �� �� �
,

(1)

where P is the probability of infection for a suscep-

tible population, D is the number of cases susceptible

to the infection, S is the number of susceptibles, I is

the number of sources of infection, q is the quantum

generation rate by an infected person (quanta/d), p

is the breathing rate per person (m3/d), t is the time

of exposure per unit of time (days), Q is the fresh

air supply rate (m3/d) that removes the infectious

Table 1. Input parameters used in Wells–Riley mathematical equation to estimate the basic reproduction

number (R0) for five age groups 4–6, 7–8, 9–10, 11–12 and 25–45 years in an elementary school

People in

ventilated
airspace
n

Number of
infectors
i

Volume of

shared
airspace
V (m3)*

Total

exposure
time
t (d)

Breathing
rate
p (m3/d)#

Quantum

generation
rate
q (quanta/d)$

Fresh air-

supply
rate
Q (m3/d)·

Probability
of infection
P

Kindergarten

(4–6 yr)

60 1 972 0.28 7.68 1648 4665 0.29

1st–2nd grade
(7–8 yr)

30 1 243 0.25 8.40 1648 2916 0.56

3rd–4th grade
(9–10 yr)

23 1 243 0.25 9.12 1648 2916 0.59

5th–6th grade

(11–12 yr)

26 1 243 0.25 10.56 1648 2916 0.64

Teaching and
administrative staff
(25–45 yr)

40 1 468 0.11 11.16 824 5832 0.07

* Adopted from Construction and Planning Agency, Ministry of Interior, ROC [36].

# Adopted from ICRP [19].
$ Adopted from Chen et al. [9].
· Assuming that the air-exchange rate in classrooms are 0.2 and 0.5 ACH for kindergarten classrooms and other ventilation

space, respectively.
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aerosol in volume per unit of time, and V is the vol-

ume of ventilated space (m3). To model the respirat-

ory infection, we incorporate an initial I=1 and

S=nx1 into equation (1) to estimate R0 for five age

groups 4–6, 7–8, 9–10, 11–12 and 25–45 years at

an elementary school, where n represents the total

number in a ventilated airspace

R0=(nx1)

r 1xexp x
qpt

Q
1x

V

Qt

�
1xexp x

Qt

V

� �� �����
:

�

(2)

The age-specific R0 value among schoolchildren can

be estimated by taking into account indoor environ-

mental ventilation, number of students, and quantum

generation rate by infectious persons, to describe the

risk in specific space.

The epidemiological model

The SEIR model can provide a basic description

of the transmission dynamics of pandemic influenza

by using a simple parameterized set of ordinary dif-

ferential equations. The susceptible population is

increased by the net inflow of individuals into the re-

gion and is decreased by natural death in that the

susceptible population also decreases following infec-

tion, acquired by contact between a susceptible and

an infected individual (Fig. 1),

dS

dt
=mNxbISxmS, (3)

dE

dt
=bISxsExmE, (4)

dI

dt
=sExuIxmI, (5)

dR

dt
=uIxmR, (6)

N(t)=S(t)+E(t)+I(t)+R(t), (7)

where N(t), S(t), E(t), I(t), and R(t) are the number of

total population, susceptible, exposed, infected, and

recovered at time t, respectively, s is the rate at which

an exposed individual becomes infectious per unit of

time that is equal to 0.333/day (1/mean incubation

periods of 7 days). u is the rate at which an infectious

individual recovers per unit of time (per day), m is

the birth rate and death rate that is equal to 0.013/

year, and b is the transmission coefficient representing

the probability that an infected individual will have

contact with and successfully infect a susceptible

individual. Here we intended to employ the present

SEIR structure to relate the Wells–Riley mathemat-

ical equation to the transmission coefficient to impli-

cate the relationship between the infectiousness of

pandemic influenza and contact rates as [11] :

R0=
brN

m+u
, (8)

where R0 can be estimated from the Wells–Riley

mathematical equation in equation (2).

Control measures

To prevent respiratory infectious disease, methods

are assigned to several areas including antivirus, vac-

cine, and non-vaccine interventions such as personal

measures, administrative controls, and engineering

controls [17]. Considering the realistic possibility of

an emerging infectious agent, such as a novel influ-

enza strain, population-based studies of masking

must be seriously considered. We further estimate

the impact of three control measures on decreasing

R0 ; (i) respiratory masking to avoid distributing the

quantum level to other susceptibles in the classroom;

(ii) enhanced ventilation to remove and decrease the

quantum level generating from infectious individuals ;

(iii) a vaccination programme enhancing the immune

system’s ability to defend against an attacking virus.

First, we consider respiratory masking to reduce the

q value with 60%, 70%, 80%, and 95% efficacies;

Susceptible

S

Exposed

E

Infected

I

Recovery

R

µN

µS

σ E

µE µ I µ R

υI

βSI

Fig. 1. Pandemic influenza modelling where we consider
the transmission dynamics of the following population:

susceptible (S), exposed (E), infected (I), and recovery (R).
(See text for detailed description of symbols.)
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similarly, we also model the enhanced ventilation

to 0.5, 1, 1.5, and 2 ACH/h based on the Construction

and Planning Agency, Ministry of Interior, ROC, at

the elementary indoor environment followed by em-

ployment of the Wells–Riley mathematical equation

on modelling the reducing level of R0. Furthermore,

we model the impact of control measures to decrease

R0 with a vaccination programme with different vac-

cination coverage rates as [18]

R0p=(1xp)R0, (9)

where R0p is the R0 under vaccination and p is the

vaccination coverage rate of the population who

have been vaccinated by modelling 65%, 70%, 80%

and 90%. We proposed the vaccination efficacy was

100% changed with the fitted level of epidemic strain

and vaccination strain, and country, and differs with

adults, children, and older age groups.

RESULTS

Parameter estimates for the Wells–Riley

mathematical equation

Table 1 gives the essential input parameters used to

estimate R0 values based on the Wells–Riley equation.

The indoor environment condition such as the volume

of the shared airspace is adopted from the standard of

the Construction and Planning Agency, Ministry of

Interior, ROC, whereas the breathing rate considers

the awake condition varied among different age

groups [19]. The other parameters such as number of

people in ventilated airspace and total exposure time

follow the real course periods. We assumed that the

quantum generation rate for 25–45 years is half

(q=824 quanta/d) of that for 4–6 years (q=1648

quanta/d), because children shed greater quantities of

influenza viruses than adults [20]. We also assumed

that the ventilated airspace of kindergarten class-

rooms is 972 m3, because of the teaching requirement,

the ventilated airspace is enlarged by fourfold based

on a normal size of classroom of 243 m3. Hence, we

consider the kindergarten classroom is equipped with

an air-conditioning ventilation system with 0.2 ACH,

whereas the natural forced combined ventilation pro-

vides 0.5 ACH for a normal elementary classroom.

We estimated the probabilities of infection (P)

and basic reproduction number (R0) derived from

Wells–Riley mathematical equations [equations (1)

and (2)], respectively, based on the environmental

factor data for Ming-Chuan elementary school. The

results of age-specific P and R0 are estimated to be

0.29 and 16.90; 0.56 and 16.11; 0.59 and 12.88;

0.64 and 16.09; 0.07 and 2.80 for age groups 4–6,

7–8, 9–10, 11–12, and 25–45 years, respectively

(Table 1). Our analysis indicates that kindergarten

students have the highest transmission potential

level (R0=16.90) of all age groups, although the

probability of infection for the susceptible population

(P=0.29) is lower than that of others (Table 1).

Respiratory masking and ventilation efficacy on basic

reproduction number

We could reduce the R0 value from no control scen-

ario by incorporating control measures such as res-

piratory protection by respiratory masking and

enhanced ventilation by the Wells–Riley mathemat-

ical equation. We employed the 60%, 70%, 80%, and

95% efficacies, respectively, for respiratory masking

to directly reduce virus shedding to the indoor en-

vironment (Fig. 2a). We also employed 0.5, 1.0, 1.5,

and 2.0 ACH, respectively, to reduce R0 by removing

the influenza burden (Fig. 2b). The R0 estimates are

16.90, 7.45, 5.68, 3.85, and 0.99 for 0%, 60%, 70%,

80%, and 95% respiratory masking efficacies,

whereas the R0 values are respectively estimated to be

11.38, 7.10, 5.10, and 3.97 for enhanced 0.5, 1, 1.5, and

2 ACH, respectively, among kindergarten students.

Similarly, this represents the effects on decreasing R0

by the increased ACH level based on the individual

initial ACH (Fig. 2c). If the increased ACH levels

reach 8 ACH, then R0 will be <1 under the initial

ACH range from 0.2 to 1. Here the results show that

ACH can truly decrease R0, however, in reality, the

increased ACH must be sufficiently high in order to

eradicate transmission spreading.

We further investigated the control measures of

combinations of respiratory masking and ventilation

enhancement in containing epidemic growth of influ-

enza within the elementary school. If we apply effec-

tive 80% respiratory masking and 1.5 ACH in all

indoor environments, the resulting R0 estimates are

1.1, 2.0, 1.6, 2.1, and 0.3 for age groups 4–6, 7–8,

9–10, 11–12, and 25–45 years, respectively (Fig. 3).

These results indicates that the control measures are

not enough to contain the disease-spreading potential

among schoolchildren, because theR0 value is still>1.

Modelling vaccination efficacy on infected numbers

The dynamic of infected numbers reflects the different

patterns varying with the input value of transmission
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probability that is calculated by equations (3)–(8)

based on the model parameters listed in Table 2

(see also Fig. 4a). The proportions of time-dependent

infected number/total number show the probable

patterns in four age groups 4–6, 7–8, 9–10, and

11–12 years (Fig. 4b). We further investigated the

dynamic behaviour of infected numbers by differ-

ent vaccination coverage rates of 0%, 65%, 70%,

80%, and 90% for age groups 4–6, 7–8, 9–10,

11–12, and 25–45 years. The results indicate that

forelementary students, if we apply a vaccination

coverage rate >70%, almost <1 will be infected,

whereas the pandemic influenza will be contained

rapidly when a 90% vaccination coverage rate is ap-

plied (Fig. 5).

Multiple control measure effects

We further investigated the efficacy of some com-

binations of engineering control measures with

public health interventions in containing epidemic

growth of pandemic influenza. In particular, we

combined 80% vaccination coverage rate, 80%

respiratory masking efficacy with enhanced 1.5

ACH to simulate the impact of control measures,

indicating that multiple control measures provide a

greater impact on reducing the infected numbers

for the 4–6 years age group (Fig. 6). For a single

control measure, the 80% vaccination coverage

rate has a greater impact than those of 1.5 ACH

and 80% respiratory masking, whereas for mul-

tiple control measures, all specific combinations

can successfully contain the pandemic influenza

(Fig. 6b).

DISCUSSION

SEIR model strength

The SEIR-based model is a popular transmission

model for modelling infectious diseases such as

SARS [21–23], measles, rubella or mumps [24],

and drug-resistant influenza [25]. Most compartments

are chosen because of the natural history of the
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Fig. 3. Modelling the impact of the combination of respir-
atory masking and enhanced ventilation condition on R0 for
age groups 4–6, 7–8, 9–10, 11–12, and 25–45 years.
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Fig. 2. (a) The effects of respiratory masking with 60%,
70%, 80%, and 95% efficacy for an infectious person at

an elementary school population with different age groups
4–6, 7–8, 9–10, 11–12, and 25–45 years. (b) The effects of
enhancing the ventilation condition (enhanced ACH) with

0.5, 1.0, 1.5, and 2.0 ACH for decreasing R0. (c) Modelling
the impact on R0 by enhancing ACH based on the different
initial ventilation conditions with 0.2, 0.5, and 1.0 ACH,

respectively.
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disease, and the critical control interventions such

as the quantity periods, vaccination efficacy, and

isolated efficacy. In this paper, the SEIR model

may transform to the VSEIJR structure by adding

two extra compartments (‘V’ and ‘J ’) which respect-

ively represent a vaccination initiating and isolating

the infectious syndrome on the influenza outbreak

(Fig. 7),

dV

dt
=ep1mN+ep2rRxmVxvV, (10)

dS

dt
= 1xep1ð ÞmN+ 1xep2ð ÞrR+vVxbISxmS, (11)

dE

dt
=bISxsExmE, (12)

dI

dt
=sExuIxmIxaI, (13)

dJ

dt
=aIxbJxmJ, (14)

Table 2. Parameters of the SEIR model, their interpretations and numerical values

Parameters Interpretation Value Interpretation

N Population size 60 Kindergarten
30 1st and 2nd grades

23 3rd and 4th grades
26 5th and 6th grades
40 Teaching and administrative staff

b Transmission
probability

R0=
brN

m+u
We estimated the transmission
probability by equation (2) [11],
because of lacking the contact
rate information

m Death rate and
birth rate

0.013/year Adopted from Department of Statistics,
Ministry of the Interior, ROC [37]

s Incubation period

latent period)

0.333/day Adopted from Anderson & May [11]

u Rate of recovery 0.143/day The average period of infectiousness
is 7 days
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Fig. 4. Modelling the progress of a 30-day influenza outbreak at an elementary school with a kindergarten. (a) We also
represent the proportions of time-dependent infected number/total number because the population size is different between
age groups. (b) Time-dependent infected number was estimated by the SEIR model. Parameter values : b=0.043, 0.082,

0.086, 0.094, and 0.011 for age groups 4–6, 7–8, 9–10, 11–12, and 25–45 years, respectively.
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dR

dt
=uI+bJxmRxrR, (15)

N tð Þ=V tð Þ+S tð Þ+E tð Þ+I tð Þ+J tð Þ+R tð Þ, (16)

where e is the fraction of vaccinated population

protected by the vaccine, p1 and p2 are the vaccination

coverage rate at birth, and at the outbreak periods,

respectively, r is the fraction of annual routinely

vaccinated population, v is the rate of loss of vaccine-

induced immunity, a is the fraction of infected popu-

lation to be isolated, and b is the fraction of isolated

population to be recovered. The transmission para-

meters are a sensitivity factor to the modelling results.

If we can estimate the appropriate parameter values

using the experience data, the VSEIJR model will be

able to provide more detailed knowledge to enhance

control strategies.

Uncertainty and sensitivity of estimated parameters

Parameter estimates always exist with uncertainty or

variability. Chowell et al. [26] also used uncertainty

and sensitivity analysis of R0 to assess the role that

model parameters play in outbreak control. They

used a Monte Carlo technique to quantify the uncer-

tainty of R0 to model parameters when these para-

meters are distributed. Smith [27] also points out that

mathematical models can derive estimates for the le-

vels of drug stockpiles needed to buy time, how and

when to modify vaccines, whom to target with vac-

cines and drugs, and when to enforce quarantine
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measures. Owing to lack of real environmental venti-

lation information, we assumed that the ventilated

airspace of kindergarten and elementary classrooms

were equipped with a mechanical/natural ventilation

condition. Dilution of ventilation of the indoor en-

vironment is an important determinant of the risk for

infection. In future studies, we may carry out an un-

certainty analysis on R0 to assess the variability in R0

that results from the uncertainty in the model para-

meters.

Estimates of the incubation, latent, and infectious

periods are respectively 1–4, 1–3, and 4–8 days for

influenza [11]. Mills et al. [28] indicated that the mean

latent and infectious periods are estimated as 1.9 and

4.1 days, respectively, based on viral shedding data

[29, 30]. It is important to be aware of potential in-

accuracies and parameter sensitivities when inter-

preting their results and to assess the accuracy of the

models. Nevertheless, experimental epidemiological

studies, such as the vaccination of schoolchildren, or

those having contact with family units, provide core

information for model design and parameterization,

and for model testing.

Public health intervention

Given the importance of children in the transmission

of pandemic influenza, school closure is likely to be an

effective social distancing policy [31]. The effective-

ness data on school closures has been limited until

now. Apparently no data or analyses exist for re-

commending illness thresholds or rates of change that

should lead to considering closing or reopening

schools.

On a small island in the United States in 1920, the

single public school was a focal point for the spread of

influenza, and a report from that period concluded

that prompt closure of the school would probably not

have prevented the epidemic, but might have delayed

it [32]. School closure might be less effective in some

urban areas than in rural areas because urban chil-

dren can more easily meet elsewhere [33]. In future

work, we may consider the influenza characteristics

including the shorter serial interval and earlier peak
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infectivity, plus the presence of mild cases and the

possibility of transmission without symptoms to

model school closure and to estimate the closure

threshold, such as a proportion of total infectious in-

dividuals to the population or other indicators.

Implications

In Taiwan, we have initiated an influenza vaccination

programme by the Department of Health in October

1998 focusing on the ‘high-risk groups’ including in-

fants aged 6–24 months, hospital health-care workers

(nurses and students), seniors (aged o65 years), and

related workers who have potential contact with

avian animals [34, 35]. In practice, related research

and information for schoolchildren have been rela-

tively scarce until now. We hope that the mathemat-

ical model can combine with the current condition to

provide a useful pattern of pandemic influenza in

disease outbreaks. A population-based dynamic

transmission model may further help in considering

the daily activities of students inside and outside

classrooms, e.g. cleaning or recess times. The interac-

tion will enhance the contact rate of infectious

and susceptible individuals. Class-to-class and floor-

to-floor transmissions are also interesting topics to

study in the transmission process.

In summary, we have incorporated an integrated-

level model including the Wells–Riley mathematical

model and population-based SEIR model of indoor

respiratory infection that are applicable to estimate

the risk of infection of pandemic influenza, and to

quantify risk profiles associated with the control

strategies including respiratory masking, enhanced

ACH, associated with public health intervention of

vaccination in schoolchildren. This mathematical

model can offer an initiative applicable to a real el-

ementary school to predict the optimal control

measures and to protect susceptible students from

infection by infected students. Further investigations

may focus on the variations in contact structure,

e.g. classroom indoor environment, size variations

within geographic regions, grade level, parents staying

at home with sick children, and other venues and

mechanisms for transmission to guide integrated dis-

ease control programmes within an elementary

school.
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