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Abstract

We consider the interior and Dirichlet problems and problems with first order boundary
conditions, for a second order homogeneous elliptic partial differential operator with constant
coefficients. Under natural conditions on the operators, these problems give rise to isomorphisms
between the appropriate spaces with homogeneous norms. From there we obtain a priori
estimates and regularity results for boundary value problems in Sobolev-spaces.

1980 Mathematics subject classification (Amer. Math. Soc): 35 J 25.

0. Introduction

In Pryde (1979a) we developed the theory of spaces with homogeneous norms.
These spaces were an invaluable tool in the study of elliptic partial differential
equations with mixed boundary conditions in Sobolev spaces. See Pryde (1979a,
1979b). In those papers, certain of the known results in Sobolev spaces for the
interior and Dirichlet problems and those with first order boundary conditions were
converted to analogous results in spaces with homogeneous norms. These results
were in turn used to consider the mixed problem. However, it is more natural to do
things in the reverse order—to prove results in spaces with homogeneous norms,
and then convert them to results in Sobolev spaces.

In place of the usual a priori and dual estimates for boundary value problems in
Sobolev spaces on R£ we obtain directly, and fairly simply, isomorphisms between
spaces with homogeneous norms. We also show how the relevant conditions on the
operators are both necessary and sufficient. The estimates in Sobolev spaces can
then be readily obtained, as can regularity results.
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2 A. J. Pryde [2]

For the notation and definitions of the terms used in this paper, the reader should
refer to Pryde (1979a, 1979b). We summarize here the definitions of the spaces with
homogeneous norms. For s^O, Zs(Rm) is the completion of Cg°(Rn) with respect
to the norm [«; RB]g = (J| £|2s|w(£)|2rf£)1/2; ZS(R£) is the closure of CJ°(R^) in
Zs(Rn); and ZS(R£) is the quotient space ZS(R")/ZS(R£). For ,y<0, Z*(Rn) is the
dual of Z-S(R»); ZS(R») is the dual of Z-«(R»); and ZS(R£) is the dual of Z~8(RJ).

1. The interior problem

Let A = A(D) = 2iai=2a<x D* be a second order homogeneous partial differential
operator with constant coefficients. In spaces with homogeneous norms, the interior
results take the following simple form.

THEOREM 1.1. For each real s the following are equivalent.
(a) A: Zs(Rn)-^Z*-2(Rm) is an isomorphism.
(b) A is elliptic.
(c) A: Z*(Rn)-^Zs-2(R") is left invertible.

PROOF. The proof is an immediate consequence of the following lemma.

LEMMA 1.2. Let />(£) be a positively homogeneous function on Rn of order m with
constant coefficients and continuous for £=£0. Let P: Zs(R")->Z*-m(R") be the
pseudo-differential operator with symbol P(g). The following are equivalent.

(a) P is an isomorphism.
(b) P(£)^0for |#0 .
(c) P is left invertible.

PROOF. Since | V|s: Zs(R7l)-»L2(Rn) is an isomorphism for all real s (Pryde
(1979a)) P is an isomorphism if and only if Q = \ V\»-mP\ V|-«: L2(R")->L2(Rn)
is an isomorphism. But Q has symbol £>(£) = \€\~mP(0 which is positively
homogeneous of order 0 and continuous for £ ^ 0.

If />(£)^0 for £ ^ 0 , Q($) is bounded away from 0 and from oo. So Q is an iso-
morphism. Hence (b) => (a) => (c).

If P(r)) = 0 for some ijeR™, ^ 0 , consider the functions MeeL2(Rn), for e>0,
defined by we(£) = iA((£-i?)/e)£-n/2 where ^ e C f ( R n ) , ^ = 0 for | £ | > 1 and
UWLHR*) = 1- Then lk||i*(R») = 1 and ||fiK.||ff(H.)<sup|£_,ta|fi(f)|-*O as e->0.
So g is not left invertible and it follows that (c) => (b).

COROLLARY 1.3. Let A be elliptic. For each real s, A: Zs(R")->-Zs-2(R£) is left
invertible.
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[3] Elliptic boundary value problems 3

PROOF. Z S ( R £ ) is a closed subspace of Z*(Rn).

COROLLARY 1.4. Let A be elliptic. For each real s, A: ZS(R£)->ZS-2(R£) is right
invertible.

PROOF. Apply Corollary 1.3 to A' = A'(D) = 2|«i-2 d<x -D°t>tne formal adjoint of
A. Then A': Z2-S(R£)-»Z-S(R£) is left invertible. So (A')*: Zs(R£)^Zs-2(R?f) is
right invertible. As (A')* = A, the corollary is proved.

2. The Dirichlet problem

In Pryde (1979a, 1979b) we showed how the trace map y extends to a bounded
operator on ZS(R£) for s>% and on Z£ep A(R^) for s < | , ^\ (mod 1), provided A
is elliptic. For the Dirichlet problem we have the following result.

THEOREM 2.1. If A is elliptic, ands±\, — \, — §,..., the following are equivalent
(a) y: Z j ^ t R ^ - ^ - Z 8 - * ^ " - 1 ) is an isomorphism.
(b) A is properly elliptic.
(c) y is left invertible.

PROOF. Suppose A is properly elliptic. We construct an inverse E of y as follows.
Let m be a suitably large integer and h(£'), a positively homogeneous function of
f = (&, - . In - i ) of order 0, to be determined. For geC^(Rn-1)nZs-i(Rn-1),
which is dense in Zs-i(Rn~1), define Qg by

(QgnO = Ki')\ f |"(f,+'"l f |)1-M(0-1£(f).

(More precisely, gg = | V |~ s / where / is the L2-function with Fourier transform
I £ \8(Qg)*(0-) Then Q extends by continuity to a bounded operator

(Here, as elsewhere, R: Zs-2(Rn)->Zs-2(R*:) is the natural projection.)
Indeed,
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4 A. J. Pryde [4]

if m>s—i, because, for £V0,

where

f° if ri£i«-*"-i#»= f" if
J-00 J-00

= | f I2''1 fJ

So I
Further,

w =

and
HO =

So (1) vv(f, £m) has an analytic extension to Im £n>0 and (2)

| ) s - m -

sup || tf(f, £n+irj) ||
v>o

Hence we£2(R^). But (Dn + i\ V'|)s-2: ZS'2R^)^-L2(R^) is an isomorphism
(Pryde (1979a)) and so AQgeZs-2(R*). In other words, RAQg = 0, or
2gGZ|erij^(Rn). So Q extends by continuity as claimed.

Defining E= RQ: Zs~^(^.n-1)^Z^eT J^f) it remains to show that yE = I and

For ge C ^ R ^ n Z 8 - ^ " - 1 ) , and f # 0,

J-0

r
J-0

Moreover, since 4 is properly elliptic, A($',€n) = ao(£n-T+($'))(£n-T-($')),
where Im T+(f) > 0 and Im T~(£') < 0, for f V 0. So the integrand is analytic in the
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upper half complex £n-plane apart from one first order pole at £n = T+( | ' ) . If
w>0,

?) = (2m)-(residue of (2*r)-* (f isHf, £n) at r+(O)

(T+(f) +1| f I ) 1 - oj-i

provided A(f) = ^ i ) " 1
 (2TT)* | f |— (r+(f) +11 f | )»-i «o(r+(|')-T-(f)). So y£ = /

as required.
Finally, we show £y = / on Z*er ̂ (R»). Since H^JR*) is dense in Z*er^,(R»)

for all s' (Pryde (1979b), Proposition 4.3) it suffices to take s *s 2. Let u eZ«er ̂ (RJ).
Let /> be the reflection operator constructed in Pryde (1979b), Section 4. So
P: Hm(R*)^Hm(Rn) is bounded and satisfies RP = I. Moreover, if OO^m,
P: Zs(R£)->Zs(Rn) is bounded and RP = I. So Eyu = RQyu = RQyPu. Setting
w = (Z)7l+/|V'|)8(eyi>M-i>M)6L2(Rm), it suffices to prove that we£,2(R^). For,
then, QyPu-Pu eZs(R") and RQyPu = RPu = u.

Now RAPu = 0, so ^PM = veZs-\R*). Let »<e(^(R"), D ^ C in ZS~2(R^). So
RA^v^u in Z|er^(R») and ŵ  = (I>B+i|V'\)°(QyA-1vi-A-1vd-*w in
L2(Rn). Also

= Ki')\ ?\m(L + i\ e\)s+1-mA(i)-H2n)-i P Atf\
J-aa

Consider then the positively oriented contour Cr = [—r,r]uSr, where Sr is the
semi-circle \z\ = r, Imz^O. For sufficiently large r,

\ A(?, z)-1 U£\ z) dz = (2m) a^K

But

If A{?,zY*W,z)dz < f
\JSr J

r Jo

for r large enough. But

'. -*n) denoting the Fourier transform with respect to the first n — 1 variables
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only)

••£
(because | exp (— ixn r eie) \ = | exp ( — ixn r(cos 6 + i sin 6)) \ — exp (rxn sin 6) ^ 1)

< oo, because

Therefore

f ^(f.z)-1 £<(£', z)dz->0 asr-^oo,
J Sr

and so, for £V0,

f °° i4(f, r)-1 t5i(f, /) A = (27ri) ^ (
J -00

Hence

The expression in square brackets and A(£) each have a zero at gn = T+( | ' ) . Hence
#*(£'> U is analytic in Im | n > 0 , for ^VO. Moreover, since

it follows from Lemma 2.2 below that v^eZ/^RlO. Hence weL2(R!li)) as required,
and so (b) =*• (a) => (c).

To show (c) => (b), suppose A is not properly elliptic. Then n = 2 and
^(l) = «o(^2-^iTi)(^2-^iT2) where (ImTl)(ImT^>0. Suppose ImT3>0 for
; = 1,2. Let g e C™(R\) and define v ^ , x^) by

x x2) - exp (JT2 ^ Xa)) if rx =£ T2,

i^ 1 x 2 ) i f Ti = T2-

We show that t>ekery. Firstly,

<oo

so veL2(B%). Similarly, i)«rGls(R>J for all multi-indices a. So i>e#8(R|) for all
s and therefore »eZ*(Ry for all s^O. As well, veZ-%R%) for all 5>0. Indeed, if
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peCJ^R2.) and v1 is v extended arbitrarily to a function in L2(R2) then

(v, <p} = v(x) <p{x) dx satisfies
JR+ 2

p 2

So <«;, p> extends by continuity to a bounded form on ZS(R+). Hence
Now

(i4r)~(f!, x2) = ao{D2- & rx) (D2 - gt r2

= 0.

Hence veZ^JR*.). Finally, (y^rC^) = 0(^1; 0) = 0 and so vekery. Hence y
is not left invertible. So (c) => (b).

LEMMA 2.2. IfveL2(Rl) and tf(f) = (J5(̂ )
transform of a function weL2(1iy).

F*ROOF. We have to prove
(1) w(£) has an analytic extension to Im
(2) sup|| £(£+»?) || i 2 ( R l )< oo.

But (1) follows from the same property for v(g) and (2) follows similarly, using,
near the line -q = Im z0, the analyticity of iv(

COROLLARY 2.3. If A is elliptic and s>\, the following are equivalent.
(a) 04, y): Z'CRp-^Z'-^RpxZ8-*^"-1) w an isomorphism.
(b) ^ « properly elliptic.
(c) (^, y) w /e// invertible.

PROOF. By Corollary 1.4, A: ZS(R£>^ZS"2(R£) is right invertible. It follows
from application 4.2 of the five lemmas of Pryde (1977) that {A, y) is an isomorphism
(or left invertible) if and only if y/kerA is an isomorphism (or left invertible).

3. Problems with first order boundary conditions

Suppose now that b = b(D) = S*=i ty Dj is a first order homogeneous operator
with constant coefficients. Using the trace operator y we obtain a bounded operator
B = yb: Z«er^(R»)->Zs-'3/2»(R»-1) for *#f, \, -\,....
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8 A. J. Pryde [8]

If A is properly elliptic and B'(f;') = £(£', T+(£')) then B satisfies the comple-
menting condition with respect to A on the boundary Rn~1 of R™ if and only if
£ ' ( 0 ^ 0 for real £V0.

The following result is proved in Pryde (1979b), Lemma 6.1.

LEMMA 3.1. If A is properly elliptic and s^%, \, — \,... then Bu = B'yu for all

For the problems with first order boundary conditions we have the result

THEOREM 3.2. If A is properly elliptic and s^f ,£, — \,... the following are
equivalent.

(a) B: Z£er^(R£)^Zs-(3/2>(Rn-1) is an isomorphism.
(b) B satisfies the complementing condition.
(c) B is left invertible.

PROOF. By Lemma 3.1 the following diagram commutes

ZUWO > Z-"»(R- i )

y\ /B'
* /

Z»-1/2(R»-l)

By Theorem 2.1, y is an isomorphism. Hence B is left invertible or an isomorphism
if and only if B' is left invertible or an isomorphism. But, by Lemma 1.2, each of
these last properties is equivalent to the complementing condition holding.

COROLLARY 3.3. If A is properly elliptic and s>% the following are equivalent.
(a) (A,B): Z*(R!J;)-*-Zs~2(R!f)xZs~(3/2)(Rm~1) is an isomorphism.
(b) B satisfies the complementing condition.
(c) (A, B) is left invertible.

PROOF. The proof is the same as that of Corollary 2.3.

4. Related results in Sobolev spaces

Here we use the results of the previous sections to obtain known estimates for
various boundary value problems in Sobolev spaces. Similar estimates (for integer
s) were originally found by Agmon et al. (1959), Browder (1959) and Schechter
(1959).
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[9] Elliptic boundary value problems 9

Let A = A(D) = Siai^2aa^a be a second order operator with constant
coefficients and B = B(D) = S"=i^< A + ^ o be a first order boundary operator with
constant coefficients. Let g = {xeRn: | x | < 1} and Q+ = {xeQ: xn>0}.

THEOREM 4.1. Let s be real. The estimate

(4-l) H«IIH.(II-)<C(M«IIH—(B-) + ll«llfl-i(R»)) M allueH%Q),

holds if and only if A is elliptic.

PROOF. We may suppose that A(£) is homogeneous of order 2, since lower order
terms can be asborbed into the remainder term ||W||H«-I(R»> in estimate (4.1).

Suppose then (4.1) holds. Let ueCjj°(Rn)nZ<l(Rn) which is dense in Zs(Rn).
Then ue denned by ue(x) = es~^n/2)u(x/e) is in Q > ( 0 provided 0<esSe0, say.
Moreover, | |MJ H . - I ( R » ) -» | |M | | Z . ( R » ) and ||«e||H<-i(R»)->0 as e-^-0, as in Pryde
(1979a). So, from (4.1) applied to ue, we obtain

Hence A is left invertible, and, by Theorem 1.1, A is elliptic.
Conversely, suppose A is elliptic. Then in particular (4.1') holds for all

«eQ°(0nZ»(R n ) . By Pryde (1979a) the Sobolev and homogeneous norms are
equivalent on this last space and so

(4-1") NIH.(R»>^IM«IU-»<R-> forall«eC»(0nZs(R«).

But the closure of qf(0nZs(R") in Hs{Q) has finite codimension. On any
complement of that closure, | |« | |H«(R>.)~| |« | |HI-I(R«) and so estimate (4.1) follows.

In analogous fashion we obtain the following results from Theorems 2.1 and 3.2
and their corollaries.

THEOREM 4.2. Let A be homogeneous and elliptic with s^\, — \, — §,.... The
estimate

(4.2) || w||flr.(R+ +

for all Me//|e r4(R!f) with support in Q+,

holds if and only if A is properly elliptic.

THEOREM 4.3. Let A be elliptic with s>$. The estimate

(4-3) | |" | |H. ( R +») < c( || Au ||H.-.(R+»,+1| yu ||H.-<ui)(R.-i,+1| «|U.

for allueHs(R™) with support in ~Q~^,
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10 A. J. Pryde [10]

holds if and only if A is properly elliptic.

THEOREM 4.4. Let A be homogeneous and properly elliptic with s ^ f , $ , — \,
The estimate

(4.4) || M ||H.(R y „, < c( || Bu | |H.-(8/.)(R+«, +1| « | |H-1 ( R + « ) )

/or all ueH^JRty with support in Q+,

holds if and only if B satisfies the complementing condition.

THEOREM 4.5. Let A be properly elliptic with .?>§. The estimate

(4-5) II «IIH-(R+») <C(\\AU\\H>-HK+») +1| Bu||H-<»/1)(R»-1) + II "IU-i(R+»>)

for allueHs(Ri) with support in ~Q+,

holds if and only if B satisfies the complementing condition.

5. Regularity results

Let A and B be constant coefficient operators, not necessarily homogeneous, as
in the previous section.

THEOREM 5.1. Let A be elliptic with s real.
(a) If A is homogeneous, with «eL2(R") and AueZ*-*^) then ueHe(Rn).
(b) In general, ifueL\Rn) and AueHs~\Rn) then ueH%Rn).

PROOF.

(since A is homogeneous and elliptic)

So MeZs(R")nL2(Rm) and hence «eiF(R") .
(b) Let A = Ax+A2, where A^ is the (homogeneous and elliptic) highest order

part of A. We prove the theorem by induction on s. Firstly, the result is trivial for
j < 0 . Suppose then it is true for s^k, where fc>0, and take k<s4:k+l. By part
(a) it suffices to prove that A2ueZs~2(Rn). Now AueHg-\Rn)cHk-i(Rn) and so,
by the induction hypothesis, u<=Hk(Rn). So A1ueHk-1(Rn)^H'-2(Rn). Hence
A2u = Au-A1ueHs-\Rn). If s^2, A2ueZs-2(Rn) as required. If 0<s<2 then
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[11] Elliptic boundary value problems 11

A2ueH*-\Rn)nZ-\Rn). So (1 + | ||2)<s-2>/2042i/r and | £\-2(A2uT are both Z.2

functions. It follows readily that \^\s-\A2u)^eL\Rn) and so A2ueZs-2(Rn).

THEOREM 5.2. Let A be homogeneous and properly elliptic with s^\, — \, —§, . . . .
IfueL2(Ri) with Au = 0 and yueZ^R"1-1) then «e//s(R").

PROOF. Let g = yu and, in the notation of the proof of Theorem 2.1, let
t) = K?) I f \m(L + »"| f I f-mAW-igin Since

But also geZ*-*^""1) and so QgeZs(Rn). Therefore QgeHs(Rn). But RQg = M,
as proved before. So u

THEOREM 5.3. Let A be properly elliptic with s real and r>\.
(a) If A is homogeneous, with M G ^ R J ) , AueZs~2(Rl) and

then «ei/8(R£).
(b) In general, ifu e i/r(R£), Au e ifs-2(R£) and yu e H'-itR™-1), then u e HS(R").

PROOF, (a) If s<r there is nothing to prove, so take s^r. Then s>i and by
Corollary 2.3 the operator (A,y): Z*(Rp-^Z«-2(R»)xZ«-i(Rn-1) is an iso-
morphism. We construct an inverse G = Gs of (/4, y) as follows.

First, recall that y/ker /4 is an isomorphism with inverse E = /?£?. Next, let
P: Zs-2(Rp-^Z8-2(Rn) be the reflection operator constructed in Pryde (1979b),
Section 4. In particular, RP = /. (If s—2<0, P and /? were denoted j * and i*
respectively.) By Corollary 1.4, ^ : ZS(R£)-^ZS-2(R«;) is right invertible, and, in
fact, a right inverse is F = RA^P. Take

G = [(/-£y) F, E] = U[(/- fiy)^"IP, Q}.

Then
] [ A(I-Ey)F AE1 \ I 0 ]
J L y(I-Ey)F yE \ [ 0 / J'

and

because I—FA maps into
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12 A. J. Pryde [12]

Now let ueHr(R") with AucZs-2(Rf) and yueZ'-ifJBL"-1). Set w = (Au,yu).
Then u = Grw. Since we.//r(R£), (/4w)̂  and (y«)~ are functions, and so therefore
is (Gvvp. Hence

and

It follows that « = G,w = GsweZs(R!f). But t<e//r(R^) and so we#8(R£) as
required.

(b) Let A = Ax+Az as before. Again we prove the theorem by induction on s,
the result being trivial for s^r. Suppose then it is true for s ̂  r+k where k ̂  0 and
take r+k<s^r+k + l. By the induction hypothesis, ueHr+k(Rty. So

and therefore

If 5^2, ^ 2 M G Z S - 2 ( R ^ ) and the result follows from part (a). If r<s<2 then
PA2ueHs-2(Rn)nZ<-\Rn). So (l+|£|2)<s-2>/2(^2«r and \£\<-\PA2uT are
both L2 functions. Hence \^\s-%PA%uTeL?(Rn) and P ^ a w e Z ^ R " ) . So
^ 2 « G Z S ~ 2 ( R " ) and the result follows from part (a).

Using the isomorphism B', when B is homogeneous, or 2?2 otherwise (B2 denoting
the highest order part of B), we obtain from Theorem 5.2 and a simple modification
of the proof of Theorem 5.3.

THEOREM 5.4. Let A be homogeneous and properly elliptic, B homogeneous and
satisfying the complementing condition, and s^f, \, — \, If weL2(R£) with
Au = 0 and 5ueZ«-(3/2»(Rn-1) then Me#s(R«;).

THEOREM 5.5. Let A be properly elliptic, B satisfy the complementing condition,
s be real and r > f.

(a) If A and B are homogeneous, with ueHr(R$), AueZ8'2^) and
BueZ'-wvffL"-1), then ueHs(Rl).

(b) In general, if He/T(R»), AueHs-2(R») and Bu&H'-^^Q^-1), then
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