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Traditional production systems have viewed animals as homogeneous ‘machines’ whose nutritional and medicinal needs must be
provided in a prescribed manner. This view arose from the lack of belief in the wisdom of the body to meet its physiological
needs. Is it possible for herbivores to select diets that meet their needs for nutrients and to write their own prescriptions? Our
research suggests it is. Herbivores adapt to the variability of the external environment and to their changing internal needs not
only by generating homeostatic physiological responses, but also by operating in the external environment. Under this view, food
selection is interpreted as the quest for substances in the external environment that provide homeostatic utility to the internal
environment. Most natural landscapes are diverse mixes of plant species that are literally nutrition centres and pharmacies with
vast arrays of primary (nutrient) and secondary (pharmaceutical) compounds vital in the nutrition and health of plants and
herbivores. Plant-derived alkaloids, terpenes, sesquiterpene lactones and phenolics can benefit herbivores by, for instance,
combating internal parasites, controlling populations of fungi and bacteria, and enhancing nutrition. Regrettably, the simplification
of agricultural systems to accommodate inexpensive, rapid livestock production, coupled with a view of secondary compounds as
toxins, has resulted in selecting for a biochemical balance in forages favouring primary (mainly energy) and nearly eliminating
secondary compounds. There is a global need to create a more sustainable agriculture, with less dependence on external finite
resources, such as fossil fuels and their environmentally detrimental derivatives. Self-medication has the potential to facilitate the
design of sustainable grazing systems to improve the quality of land as well as the health and welfare of animals. Understanding
foraging as the dynamic quest to achieve homeostasis will lead to implementing management programs where herbivores have
access not only to diverse and nutritious foods but also to arrays of medicinal plants.
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Internal environment and homeostasis

Claude Bernard (1865) introduced the idea of internal
environment–internal milieu, as the fluid compartment
within which cells of organs and tissues are bathed. This
was a critical concept in physiology since it recognised the
need of organisms to maintain an internal state protected
from the variability and unpredictability of the external
environment. The evolution of the ‘constancy of the internal
milieu’ has been an essential factor that allowed animals to
survive and thrive in changing environments.

The need to achieve a hospitable environment where
cells and organs can perform in an optimal fashion was
attributed to the continuous engagement at all levels –
cells, organs, individuals – in active self-preservation. The
concept of organisms adapting and coping with their

environment was expanded and taken to a new dimension
with the work of Cannon (1929). He coined the term
‘homeostasis’ to refer to all the complex and coordinated
physiological processes that maintain steady states in
organisms. The term ‘homeostatic regulation’ was then
created to define and describe all those physiological
processes and mechanisms that keep the body ‘in balance’.
Cannon argued that the body knows what is best – the
wisdom of the body – and that organisms have ‘ancient
biological knowledge’ embodied in their tissues (Schulkin,
2001 and 2005).

Behavioural homeostasis

Curt Richter extended Bernard’s ideas on the constancy of
the internal milieu and Cannon’s views on homeostatic
regulation by demonstrating the role of behaviour in the- E-mail: villalba@cc.usu.edu
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regulation of the internal environment (Schulkin, 2005).
Richter realised that the body adapts to external circum-
stances and internal needs not only by generating physio-
logical responses that correct deviations from steady states,
but also by generating behaviours. The central idea of
behavioural homeostasis is that behaviours also evolved to
serve physiological regulation, bringing the concept of
homeostasis into the realm of behaviour and psychology
(Schulkin, 2005).

Richter’s research showed that adrenalectomised rats,
experiencing severe depletions of Na, increased their intake
and appetite for NaCl relative to control animals, beha-
viours that contributed substantially to their survival
(Richter, 1936). His groundbreaking findings on the rela-
tionships between behaviour and homeostasis led him to
argue that specific appetites could be used as a measure of
physiological deficiencies or nutritional needs in animals. In
general, Richter assumed that the animals’ behavioural
adjustments were innately programmed and guided by the
sense of taste. In many aspects, he generalised his studies
of sodium hunger to other specific hungers (Rozin, 1976).

The sodium model of nutritional wisdom was extra-
polated to livestock by scientists attempting to explore
‘instinctive appetites’ for other nutrients. However, these
efforts made researchers doubt that livestock possessed
nutritional wisdom. Cattle and sheep did not instinctively
ingest recommended levels of minerals, and many times
animals’ under- or over-consumed mineral supplements
relative to their requirements (Coppock, 1970; Coppock
et al., 1976; Pamp et al., 1977).

The idea of animals instinctively searching for specific
substances in the environment in order to rectify their needs
has also influenced ecological theory where food selection
has been explained through a ‘genetic programming of
ingestive behaviour’ (Schmidt-Nielsen, 1994). Evolution of
foraging strategies that optimise nutrient intake (Belovsky,
1978; Stephens and Krebs, 1986) and fixed rules of thumb
such as ‘eat tall green grass’ or ‘avoid bitter’ have also been
proposed as mechanisms underlying diet selection in her-
bivores (Cassini, 1994). However, the ‘sodium model of
nutritional wisdom’ is not a particularly good exemplar for
energy, protein, minerals and vitamins because animals do
not instinctively recognise through oduor/taste all of these
nutrients, nor do they necessarily recognise all of the var-
ious configurations of any particular nutrient (Provenza and
Balph, 1990; Provenza and Villalba, 2006). Beyond the
evolution of fixed codes or static rules of thumb, animals
evolved learning mechanisms to cope with the frequent
changes occurring in the internal and external environment.
Learning is itself a genetically evolved mechanism, a kind of
fixed plasticity that, like evolution, is adaptive (Skinner,
1984). Collectively, the information presented in this paper
supports the notion that behavioural regulation is an
important way individuals achieve homeostasis. However,
needs are not fixed and neither are the behaviours under-
lying homeostatic regulation fixed or pre-programmed; they
have a significant learned component. Behaviours are

flexible and a function of their consequences (Skinner,
1981).

Feedback systems: a dynamic loop to learn based on
consequences

Homeostatic regulation involves a mechanism of control
with precise monitoring and effector systems such that the
condition of the internal environment is regulated within
rather narrow limits. Such a system of control can be
understood as a feedback loop, or a circular arrangement of
functionally connected links. These links interact until the
last link in the loop feeds back to the first link in the cycle,
resulting in self-regulation of the system. Feedback is a
dynamic control system that influences behaviour through
actual, rather than expected performance (Capra, 1996).
This monitoring-action loop is particularly relevant in living
organisms because homeostasis is not static but inherently
dynamic: set points, equilibrium states and biochemical
processes change through time as organisms develop and
preserve their integrity (Rose, 1998). Thus, feedback cycles
do more than simply maintain variables within normal
limits; they increase the flexibility and adaptability of a
system’s response (Provenza et al., 1998; Provenza and
Villalba, 2006).

The first link of a feedback system in the food selection
process can be depicted as signals from nutrients and toxins
that originate in the external environment and upon food
ingestion impact cellular receptors in the animal (Figure 1).
These signals are conducted through afferent nerves to a
selector or decision-making organ – the central nervous
system – where information is processed, integrated and
where an output – a decision – is produced. The decision is
conducted through efferent nerves to an effector organ, a
muscle or group of muscles, which allows the animal to
operate on the environment (Figure 1). As a function of the
behaviour performed by the animal, a new signal will now
interact with the receptor system. Thus, by the recursive
application of these simple rules the system ‘rejuvenates’
itself and updates constantly, creating new decisions and
fine-tuning new behaviours until homeostasis is achieved.
This plasticity implies that as signals – in either the internal
or external environment – change in the short (e.g. within a
meal) or long (e.g. months) term, responses will track such
changes, always with the same final goal: homeostatic
regulation.

Homeostatic behaviour and diet selection

Food preferences involve interactions between taste and
postingestive feedback, which are determined by an ani-
mal’s physiological condition and the food’s chemical
characteristics (Provenza, 1995 and 1996). The senses of
smell and taste enable animals to discriminate among
foods. Postingestive feedback calibrates sensory experi-
ences of food – like or dislike – with its homeostatic utility.
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Thus, the receptor systems of the animal involves sensory
receptors in the nose and mouth – that allow for food
discrimination – and visceral receptors that respond to
nutrients, toxins, osmosis and pressure, which inform the
selector system of the animal (central nervous system)
about the consequences of ingesting food (Figure 1)
(Provenza, 1995 and 1996; Provenza and Villalba, 2006)

Homeostatic behaviour can be observed in livestock fed
diets that vary in nutrients. For instance, lambs and goats
fed diets low in energy and protein prefer flavoured low-
quality foods previously paired with intra-ruminal infusions
of energy (starch, propionate, acetate) or nitrogen (urea,
casein, gluten), respectively (Villalba and Provenza, 1996,
1997a, b and c; Arsenos et al., 2000; Duncan and Young,
2002). Given pre-loads of energy or nitrogen, lambs prefer
flavours previously paired with nitrogen or energy, respec-
tively, during the ensuing meals (Villalba and Provenza,
1999). Thus, animals maintain a balance of energy to pro-
tein that meets their nutritional needs, and in the process,
they associate different internal states with the ingestion,
or lack thereof, of different nutrients (Egan, 1980; Kyriazakis
and Oldham, 1993). Likewise, lambs deficient in phos-
phorus and calcium increase preferences for flavours and
supplements that provide those minerals (Villalba et al.,
2006a; J. Villalba, unpublished results).

Homeostatic behaviour can be also observed when ani-
mals are offered diets with deficits or excesses of nutrients
or excesses of toxins that deviate cells and organs from
well-being and self-preservation. In this case, behaviours
are geared towards limiting food intake. For instance, sheep
are reluctant to eat poorly nutritious foods such as straw as
straw does not meet needs for energy or protein, but their
intake and preference for straw increase when a nutritious
food (Greenhalgh and Reid, 1971) or starch (Villalba and
Provenza, 1997a and 2000) is infused into the rumen
immediately after a meal of straw. Ruminants also avoid
flavours associated with excesses of nitrogen (Kyriazakis
and Oldham, 1993; Villalba and Provenza, 1997a) or
excesses of volatile fatty acids (Villalba and Provenza,
1997b) and limit intakes of otherwise nutritious foods

that contain plant secondary metabolites (PSMs) (Provenza
et al., 1990; Provenza, 1996; Dearing et al., 2005).

Self-medication

If herbivores can evolve mechanisms to maintain home-
ostasis and contemporarily learn to avoid certain foods
because they lower their fitness, or prefer flavours asso-
ciated with nutrients because they increase their fitness,
they may also learn to ingest other substances in the
environment such as medicines as they also raise fitness
(Janzen, 1978). Just as foraging behaviour is influenced by
nutrients and PSMs, some responses may also be geared
towards reducing disease (Lozano, 1998).

Our thesis is that food selection in herbivores can be
interpreted as the constant quest for substances in the
external environment that provide a homeostatic benefit to
the internal environment (Provenza and Villalba, 2006).
Under this view, nutrients, PSMs, medicines are all ‘sub-
stances’ with the same final utility: improving the welfare of
cells and cellular processes that enable life. Thus, self-
medication – as ingestion of nutrients and avoidance of
PSMs – is another dimension of homeostatic behaviour in
animals. Ingesting nutrients and medicines are means to
the same end – stay well (Engel, 2002).

From prehistoric times, man has looked to the presumed
self-medicative behaviour of animals for clues about
remedies for ailments (Huffman, 2003). Implications of self-
medication transcend animal species and range from pro-
viding shortcuts for discovering new medicines (Clayton and
Wolfe, 1993) to managing the well-being of wild and
domestic animals (Lozano, 1998) and improving human
health (Engel, 2002).

The study of self-medication in animals has led to the
emergence of a new field, often referred to as ‘zoo-
pharmacognosy’ to describe the process by which animals
select and use PSMs or other non-nutritional substances for
treating and preventing disease (Rodriguez and Wrangham,
1993). While little is known about the abilities of animals to
self-medicate, and many of the observations are anecdotal
and equivocal (Clayton and Wolfe, 1993; Lozano, 1998;
Houston et al., 2001), there is evidence animals self-med-
icate (Engel, 2002). Researchers who contend that animals
self-medicate under natural conditions do so based on
observations that sick animals seek substances – not part of
their normal diet and preferably with no nutritional benefit
– that contain active ingredients capable of improving
health (Ketch et al., 2001; Engel, 2002; Huffman, 2003).
Such correlative studies are consistent with the self-medi-
cation hypothesis, but they do not establish cause and
effect (Lozano, 1998).

The amount of detailed information on self-medication in
animals available thus far is greatest in primates, in parti-
cular the African great apes (Huffman, 2003). The hypoth-
esis from research on these animals is that self-medication
behaviour aids in the control of internal parasites and

Figure 1 A feedback loop underlying behavioural homeostasis in
herbivores. Feedback confers plasticity and adaptability to a system
because control depends on actual conditions rather than on expected or
predetermined performance. The recursive application of simple rules
across each link of the loop rejuvenates and updates the system
constantly, creating and fine-tuning behaviours until homeostasis is
achieved.
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provides relief from gastro-intestinal upset (Huffman, 2003;
Huffman et al., 1993). Studies of apes show correlations
between the occurrence of parasite loads and ingestion
of anti-parasitic plant secondary compounds or plant
parts that enhance mechanical expulsion (Huffman, 2001;
Huffman and Caton, 2001).

One of the best examples of self-medication comes from
observations that wild chimpanzees consume the bitter pith
of the plant Vernonia amygdalina when suffering from
parasite-related diseases even when V. amygdalina is not
part of the animals’ diet, despite its year-round availability.
Parasite loads decrease dramatically after animals consume
that plant, and overt signs of disease disappear (Huffman
and Seifu, 1989; Huffman et al., 1993). V. amygdalina
contains sesquiterpene lactones and steroid glucosides
with antiparasitic activity at the doses consumed by the
animals (Koshimizu et al., 1994; Ohigashi et al., 1994).
PSMs in V. amygdalina also have been effective at con-
trolling nematodes that cause significant losses of livestock
in the tropics (Plotkin, 2000). Other plants selected by
chimpanzees have medicinal effects in the amounts
(doses) consumed: limonoids in Trichilia rubescens have
antimalarial activity (Krief et al., 2004), and methoxypsor-
alen in Ficus exasperata is a strong antibiotic (Rodriguez
and Wrangham, 1993).

Beyond the African great apes: self-medication in
livestock and other animals

The most attractive and conspicuous animals, and those
thought to be most similar to humans, have received the
greatest attention regarding self-medication (e.g. African
great apes; Huffman, 2003). However, evidence of self-
medication in primates may well represent an artifact of
collection in as much as intensive research in a reduced
number of species may suggest other species are unable to
self-medicate (Plotkin, 2000). Nevertheless, there is evi-
dence of self-medication in other animals including bears,
geese, leopards and dogs (Huffman, 1997 and 2006). Asian
two-horned rhinos consume large amounts of tannin-rich
plants with antiparasitic properties (Janzen, 1978). Peruvian
parrots prefer soils with much higher cation-exchange
capacity than adjacent bands of rejected soils. Selected
soils contain kaolin and mica, which bind PSMs such as
alkaloids and tannic acid (Gilardi et al., 1999), allowing
for increased diet breadth and digestibility. Likewise,
some propose soil (35% kaolin) consumption by African
elephants assists in the digestion of browse by detoxifying
high concentrations of PSMs in tropical forest trees
(Houston et al., 2001).

Sheep learn to ingest medicines such as polyethylene
glycol (PEG), a substance that attenuates the aversive
effects of tannins, when they eat foods high in tannins, and
they titrate the dose of PEG in accord with the amount
of tannin in their diet (Provenza et al., 2000). They dis-
criminate the medicinal benefits of PEG from non-medicinal
substances by selectively ingesting PEG after eating a meal

high in tannins (Villalba and Provenza, 2001). Sheep also
choose to forage in locations where PEG is present when
offered nutritious foods high in tannins in different loca-
tions. In contrast, time spent at locations with PEG declined
when tannins were not present in their diets (Villalba and
Provenza, 2002). Sheep fed acid-producing substrates such
as grains subsequently ingest foods and solutions that
contain sodium bicarbonate, which attenuates acidosis
(Phy and Provenza, 1998). In the most elaborate studies to
date, sheep learned to selectively ingest three medicines –
sodium bentonite, PEG, dicalcium phosphate – that lead to
recovery from illness due to eating too high amounts of
grain, tannins and oxalic acid, respectively (Villalba et al.,
2006b). In contrast, control lambs that ate the same foods
and medicines, but disassociated temporally so they did not
recuperate from illness, never changed their pattern of use
of the medicines, regardless of the food consumed before
the choice of medicines. This study showed learning is a
critical mechanism in self-medication and that sheep
are able to form multiple malaise-medicine associations
(Villalba et al., 2006b).

Self-medication and plant secondary metabolites

We have learned much during the past 30 years about the
importance of PSMs in the health of plants, including
functions as diverse as attracting pollinators and seed dis-
persers, helping plants recover from injury, protecting plants
from ultraviolet radiation and defending plants against
diseases, pathogens and herbivores (Rosenthal and Janzen,
1979; Palo and Robbins, 1991). PSMs cause postingestive
consequences in herbivores typically through their negative
actions on several cellular and metabolic processes, pro-
moting reduced intake, weight loss and even death (Cheeke
and Scull, 1985; Cheeke, 1998). Consequently, PSMs can
exert some of those negative actions across several trophic
levels, including herbivores and the bacteria, parasites and
fungi that inhabit herbivores’ bodies and cause decreases in
health (Lozano, 1998). What has not been seriously con-
sidered in the ecological literature is that the difference
between a toxin and a medicine can be very small, merely a
matter of dosage (Plotkin, 2000).

Plant-derived alkaloids, terpenes and phenolics have
antiparasitic properties (Kayser et al., 2003; Hocquemiller
et al., 1991) and sesquiterpene lactones have anti-
tumorigenic, anti-amoebic, anti-bacterial, anti-fungal and
cardiotonic properties (Picman, 1986; Robles et al., 1995;
Huffman et al., 1998). Thus, PSMs at appropriate doses
have the potential to benefit herbivores in ways that may
be more consequential than their negative effects. Never-
theless, the notion of herbivores using PSMs as medicines
has been overshadowed by the inherent negative effects of
PSMs at high doses on herbivores. Another constraint on
using PSMs as medicines is the potential large quantities of
a single PSM such as tannins required to achieve mean-
ingful doses in the herbivore in order to combat disease
(Waghorn and McNabb, 2003).
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Self-medication and internal parasites

Internal parasites are one of the greatest disease problems
in grazing livestock worldwide (Min and Hart, 2003; Waller,
2006). Parasitism is often the most pervasive challenge to
host survival and reproduction (Hutchings et al., 2003) and
failure to control gastro-intestinal nematodes results in poor
growth rates, ill thrift and death (Min et al., 2004).
Nevertheless, control of internal parasites is not easy, par-
ticularly in recent times due to the rise of drug-resistant
organisms (Plotkin, 2000; Jackson and Miller, 2006). Drugs
used to control gastro-intestinal parasites are failing due to
the increased prevalence of parasite resistance to anthel-
mintics (Pomroy et al., 2002; Min et al., 2004). Drug
resistance is testimony to the remarkable biological plasti-
city of nematode parasites in response to a sustained and
almost exclusive reliance on specific chemicals for disease
control (Waller, 2006). More effective and sustainable
programmes for combating parasites may be possible if
more choices and the greater variety of controls, including
anthelmintics, are used in combinations, along with grazing
management designed to minimise parasite infections
(Waller, 2006). Avoidance of dung patches and rotation of
animals in landscapes probably occurred naturally, prior to
the use of fencing in grazing management. Clearly, pro-
grammes that integrate grazing management and biological
control, in addition to anthelmintics, are best for reducing
parasites and minimising harmful effects of drugs on the
functioning of soils (Strong, 1993; Floate et al., 2002).

Considerable attention has been given recently to
bioactive plants that affect internal parasite populations
(Jackson and Miller, 2006). Several in vitro and in vivo
studies suggest condensed tannins have anthelmintic
effects against ruminant nematode parasites. Livestock
feeding on plants with tannins such as sulla (Hedysarum
corarium) and sericea lespedeza (Lespedeza cuneata) have
lower nematode burdens and lower faecal egg counts than
those eating plants of similar quality without tannins
(Niezen et al., 1998; Coop and Kyriazakis, 2001; Min and
Hart, 2003; Min et al., 2004). Chicory (Cichorium intybus)
contains an array of condensed tannins and other phenolic
compounds including sesquiterpene lactones, coumarin and
caffeic acid derivatives that reduce the need for commercial
anthelmintics in young farmed deer (Hoskin et al., 1999).

The effectiveness of certain PSMs at combating disease
has enhanced the interest in continuing the search for
plants with therapeutic properties. The quest for bioactive
PSMs in nature i.e. bioprospecting is the means that leads
to two different ends: (1) the industrial approach, where the
quest for bioactives has the main objective of creating new
drugs and additives to combat disease and (2) the holistic
and more sustainable approach where a variety of plants
rich in PSMs or other bioactives are considered and incor-
porated into grazing systems for disease control (see also
Athanasiadou and Kyriazakis, 2004). We believe that self-
medication has its highest potential for improving animal
health and welfare under the sustainable approach.

If parasitised herbivores learn to self-medicate, given a
variety of plant species with a variety of PSMs, producers
may not need to give fixed or average dosages of chemicals
to all the animals of a herd, likely with different parasite
burdens, and it may not be necessary to force parasited
animals to graze monocultures of PSM-rich pastures, which
may lead to overconsumption of PSMs and to negative
impacts on health and welfare. On the contrary, forage
mixes could be sown to enhance the antiparasitic and
nutritional characteristics of the forage on offer. If parasited
animals learn to self-medicate on PSM-containing plants,
this could aid in developing management programmes
geared to seeding and distributing ‘medicinal’ plant species
strategically in the environment, allowing herbivores to
combat disease by themselves.

Use of anthelmintics as a function of need via self-
medication is a targeted treatment that reduces usage and
helps maintain populations in refugia, which in turn aids in
conserving the genes for susceptibility within parasite
populations (Jackson and Miller, 2006). In fact, minimising
treatment to periods of peak infection, rotating or com-
bining different chemotherapies and proper dosage are
fundamental principles to control for parasite chemoresis-
tance in livestock and human treatment programmes
(Geertz et al., 1997). Self-medicative behaviour in the
African great apes appears to mirror these principles and
may represent a stable evolutionary strategy for parasite
control (Huffman et al., 1998). Thus, research on self-
medication may provide novel insights into strategies for
countering the increased prevalence of parasite resistance
to anthelmintics (Huffman et al., 1998). Moreover, self-
medication could be used in combination with other sus-
tainable disease prevention and treatment practices such as
nutritional and biological control and grazing management
(Waller, 2006), and when necessary, with the conventional
approach of drug application.

Even when self-medication may represent an effective
and alternative tool for disease control, there is no evidence
that livestock self-medicate to control infectious diseases
(e.g. helminthoses) and information on livestock self-
medicating in general is limited. Thus, innovative and
multidisciplinary research is needed to further explore the
limits and variables of this behaviour in domestic animal
species. This will help strengthen the current correlational
evidence on self-medication and infectious diseases, pro-
viding a starting point for developing parasite control
strategies in livestock systems.

The fundamental dichotomy in self-medicating with
PSMs: benefits v. costs

Overcoming the negative impacts of PSMs to experience
their benefits
The anti-parasitic, anti-fungal and anti-bacterial character-
istics of PSMs come with a cost. This is because some of the
negative impacts of PSMs on the cells and physiological
processes of the disease-inducing agents also can adversely

Villalba and Provenza

1364

https://doi.org/10.1017/S1751731107000134 Published online by Cambridge University Press

https://doi.org/10.1017/S1751731107000134


affect the host. Thus, the potential benefits associated with
consuming PSMs by sick animals must be traded-off against
the potentially negative consequences of PSMs on cells and
physiological processes of the host (Hutchings et al., 2003).

The positive (medicine) and negative (toxic) effects of
PSMs must be evaluated under the context of a common
measure to determine the net positive or negative outcome
of PSMs on herbivores. Animal performance emerges as an
interesting possibility in this regard as both disease and
PSM consumption affect performance (Athanasiadou and
Kyriazakis, 2004). Athanasiadou and Kyriazakis (2004)
propose three scenarios regarding the costs on herbivore
performance from ingesting PSMs: (1) the negative impacts
of PSMs overshadow their medicinal benefits; (2) the
benefits of PSMs overshadow their anti-nutritional proper-
ties; and (3) the negative effects of PSMs offset their
potential medicinal benefits. Beyond production costs
and benefits, the crucial question for understanding self-
medication with PSMs is: can sick herbivores associate a
potential medicinal effect with PSMs they might otherwise
avoid (Engel, 2002; Hutchings et al., 2003) and under what
circumstances will herbivores ingest PSMs to experience
the benefits?

Typically, PSMs decrease preference for food, a
mechanism that prevents herbivores from exceeding their
capacity to biotransform and eliminate these compounds,
which in turn prevents toxicosis (Provenza, 1996). Aversions
result from the stimulation of the emetic system of the mid-
brain and brain stem (Mitchelson, 1992). Stimulation of this
system induces malaise, and subsequently causes the ani-
mal to decrease intake of food (Provenza, 1996). Based on
this mechanism we can depict a cost–benefit scenario
within the realm of self-medication (Figure 2).

If the amount of PSM required to induce a therapeutic
effect in herbivores is below the threshold amount that
causes malaise and stimulates the emetic system, then the
likelihood of animals consuming such amounts to self-
medicate and combat disease will increase. In turn, inges-
tion of PSMs will give sick herbivores the opportunity to
experience the therapeutic effects of PSMs, which may lead
to a stronger preference for such compounds. In contrast, if
the doses of PSM required to promote a medicinal effect are
equal or above the threshold amount that stimulates the
emetic system, then the likelihood of animals crossing such
a threshold will diminish (Figure 2). Low or no therapeutic
consumption of PSMs will deprive animals from experien-
cing the potential medicinal benefits of PSMs. However,
if animals are forced to cross the ‘malaise threshold’ and
experience the benefits of consuming PSMs, will they
subsequently select PSMs to combat disease when they are
not forced to do so? Will they subsequently cross the
‘malaise threshold’ by themselves?

Previous research suggests they might. Lambs in a group
(experienced) were forced to consume foods with tannins,
terpenes and oxalates. These foods are complementary as
the combined intake of the three foods is comparable with
the intake of food without PSMs (Villalba et al., 2004). A
second group of lambs (naı̈ve) was not forced to consume
the PSM-containing foods. Subsequently, when these foods
were offered in a choice, lambs with experience ate sig-
nificantly more of the foods containing the PSMs, up to
40% of their diet, even when safe and nutritious foods
(alfalfa, barley) were available ad libitum. These differences
in food preferences and intake persisted during trials a year
later (Villalba et al., 2004).

Up to this point, we have considered animals ingesting
large doses of PSMs to obtain medicinal benefits, but
animals may not need to ingest PSMs in amounts that
stimulate the emetic system. Consuming small amounts
of a variety of PSMs, below therapeutic doses but on a daily
basis, may have a cumulative effect that eventually will
negatively impact disease-inducing organisms such as
parasites (F. Jackson, personal communication). Preliminary
results in our laboratory suggest low amounts of quebracho
tannin consumed by lambs on a daily basis have negative
impacts on nematode faecal egg counts (L. Lisonbee et al.,
unpublished results).

Some propose herbivores have evolved specific changes
in diet selection in response to parasitism (Kyriazakis et al.,
1998), which may facilitate exposure and familiarity with
PSMs in parasitised animals. Behaviour is a function of need
(Provenza et al., 2003) and by sampling a variety of bitter
substances an animal may increase the probability of
finding an active compound that supplies a medicinal
benefit (Freeland and Janzen, 1974; Glendinning, 1994).
Given the chemoprophylactic effects of bitter-tasting sub-
stances such as tannins and sesquiterpene lactones dis-
cussed above, it is conceivable that herbivores benefit from
consuming low doses of such compounds when sick. In
support of this, parasitised sheep begin to sample novel

Figure 2 Two potential scenarios affecting the likelihood of learning
about the beneficial effects of plant secondary metabolites (PSMs). In the
first scenario, the dose needed for PSMs to have a medicinal effect
requires that the animal ingest amounts of PSMs that are below those
that cause malaise and stimulation of the emetic centre. In this scenario,
the likelihood of animals being willing to consume therapeutical amounts
of PSMs will be high. In contrast, in the second scenario the dose needed
for PSMs to have a medicinal effect requires that the animal eats amounts
of PSMs which are above those that cause malaise and stimulation of the
emetic centre. This hierarchy of malaise and medicinal effects may
prevent herbivores from learning about the beneficial effects of PSMs.
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low-quality foods with quebracho tannin more readily than
non-parasitised animals (L. Lisonbee et al., unpublished
results). Repeated sampling of a bitter-tasting antimalarial
agent (chloroquine) by malaria-infected mice significantly
reduced percentages of parasitemia and the risk of mor-
tality (Vitazkova et al., 2001). More recently, a mechanism
for increasing preference for PSMs when organisms are
under parasitic burdens has been described. Infection
by parasites alters the taste response for specific PSMs
(pyrrolizidine alkaloids) in caterpillars, and in so doing,
encourages PSM ingestion, providing a biochemical defence
(Bernays and Singer, 2005). Finally, social models are likely
to be another way herbivores are enticed to cross the
‘malaise threshold’ and become exposed to the beneficial
effects of PSMs (see below).

Self-medicating in chemically diverse environments: an
alternative for reducing costs and enhancing benefits
In studies where production in parasitised animals has been
recorded, performance remained the same or was impaired
by the addition of PSMs to supplements of feeds. No net
benefit in terms of production has been found (Athanasiadou
and Kyriazakis, 2004). However, the majority of such studies
have forced animals to consume PSMs and only a single
PSM has been offered, much as conventional approaches
use anthelmintic drugs.

Historically, we have emphasised monocultures of plants
on pastures and even on rangelands (Provenza et al., 2007).
We are just beginning to appreciate the importance of
PSMs and biodiversity in the foraging behaviour of herbi-
vores (Provenza and Villalba, 2006; Provenza et al., 2007).
We believe creating mixtures of plants whose PSM profiles
complement one another and allowing animals to self-
medicate using a diverse array of PSMs is the way to reduce
the negative impacts of PSMs on animal production and
to enhance animal health through the medicinal effects
of PSMs.

All plants contain PSMs that limit the amount of a parti-
cular plant a herbivore can eat. Herbivores are able to meet
their needs for nutrients by ingesting a variety of plants with
different PSMs that complement one another (Freeland and
Janzen, 1974; Provenza et al., 2003). Large doses of one
PSM overload specific detoxification mechanisms in herbi-
vores. Thus, PSMs that affect different organs or detoxifica-
tion pathways are likely to be less toxic as a diluted mixture
than as a larger dose of one PSM (Freeland and Janzen,
1974). Indeed, sheep eat more when offered choices of
foods with various PSMs that affect different detoxification
mechanisms, and thus are complementary (Burritt and
Provenza, 2000; Villalba et al., 2004).

If animals can consume a higher total amount of PSMs
that are detoxified by different detoxification pathways,
then it is likely organisms inhabiting a host will receive a
greater total dose of PSMs, making the effectiveness of the
treatment greater. Thus, by providing a variety of plants
with different PSM profiles, herbivores may be able to meet
needs for nutrients and combat disease simultaneously.

Both bacterial resistance to drugs and the developing
anthelmintic resistance to drugs show how strains of
bacteria and parasites can quickly evolve to survive any one
type of selection pressure (e.g. specific antibiotics and
anthelmintics). Thus, they are also perfectly capable of
doing the same with other chemicals (Waller, 2006), just as
treatment with a single PSM such as tannins. A diversity of
PSMs might provide the variability needed to prevent or
diminish the development of resistance.

Eating nutrients or PSMs?

Given the negative impacts of PSMs and the positive effects
of nutrients on a herbivore’s physiology, a superficial ana-
lysis of the rules that guide foraging behaviour may lead to
the conclusion that animals will strongly avoid PSMs and
select nutrient-rich forages. However, not only do herbi-
vores manifest partial preferences (Westoby, 1978), they
also ingest substantial amounts of PSMs (Provenza, 1995
and 1996; Villalba et al., 2004), likely due in part to their
health and medicinal effects. If we view nutrients from
another angle, they can also enhance resilience and resis-
tance of the host to disease (Coop and Kyriazakis, 1999 and
2001). For instance, protein intake increases the resilience
of livestock to parasitic infection by increasing host pro-
ductivity, and when protein bound to tannins bypasses the
rumen and is subsequently digested in the small intestine,
that protein enhances immunity to nematode infections
(Coop and Kyriazakis, 2001; Ketzis et al., 2006). Thus, both
nutrients and PSMs can supply ‘health and medicinal’
benefits to herbivores. The question is how grazing animals
in their homeostatic quest for substances in their external
environment can best harvest both the benefits of nutrients
and PSMs, such that they achieve optimal nutrition and
enhanced protection against disease.

A useful approach to dealing with the complexity of
interactions among nutrients and PSMs in food selection is
the ‘geometric framework’ or the state-space graphical
representation of the animal within its chemical environ-
ment (Simpson and Raubenheimer, 1999; Raubenheimer and
Simpson, 1997). A Cartesian coordinate system defines a
‘chemical space’ where each coordinate represents a specific
chemical, such as a nutrient or a PSM. In this synthesis,
there is a point in chemical space or a ‘target’ that repre-
sents the optimal intake of the chemicals in question relative
to the animal’s physiological state. The rationale of this
system is rooted in behavioural homeostasis: When herbi-
vores are offered choices among foods with different con-
centrations of nutrients and PSMs with medicinal properties,
their selection should reflect the outcome of homeostatic
regulation for the chemicals in question.

The trade-off between toxicity-nutrition-medicinal effects
can be depicted in a two-dimensional space, where one
dimension is a nutrient (‘nutrient axis’) and the other a PSM
that provides medicinal effects (‘PSM axis’). Each food
available for consumption is represented in that space by a
line or ‘rail’ as it contains a specific proportion of nutrients
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and PSMs. For instance, in Figure 3 the OA line represents a
food high in PSMs and low in nutrients (e.g. medicinal food),
whereas the OB line represents a food low in PSMs and high
in nutrients (e.g. nutritive food). A point in chemical space
represents the hypothetical choice made by animals when
offered these two foods. The point closer to the nutritive
food (‘c’; Figure 3) depicts a choice where the animal is not
willing to consume high amounts of PSMs and thus prefers
the nutritive food. On the other extreme, the point closer to
the medicinal food (‘d’; Figure 3) shows a choice where the
animal consumes higher amounts of PSMs (i.e., is willing to
‘take its medicine’) to the detriment of its nutrition. Animals
performing the former choice will consume their required
nutrients but not enough PSMs, which may not be optimal if
the animal is sick and the medicine is highly effective at
combating disease. In contrast, the latter choice will provide
doses for medicinal effects but not enough nutrients.

The challenge is for the animal to determine – once ani-
mals are trained to experience the beneficial effects of PSMs
and nutrients from the foods on offer – the optimal point in
chemical space to maintain homeostasis by meeting needs
for nutrients and PSMs. For instance, animals with a parasitic
burden may be willing to consume more pastures with
bioactive PSMs that enhance health than non-parasitised
animals. Parasitised animals may increase their grazing time
to include medicinal plants in their diets. This analysis,
beyond the theoretical implications for the interactions of
nutrient-medicine, may guide the design of grazing systems
where nutritive and medicinal plants are sown to deliver
optimal proportions of nutrients and bioactive PSMs for
animal nutrition and health.

Trans-generational transmission of self-medication

Social organisation creates culture, the knowledge and habits
acquired by ancestors and passed from one generation to the

next about how to survive in an environment (De Waal,
2001). Cultures develop when learned practices contribute
to the group’s success in solving problems. Cultures evolve
as individuals in groups discover new ways of behaving, as
with finding new foods or habitats and better ways to use
foods and habitats (Skinner, 1981). The transition from the
unfamiliar to the familiar begins at conception and in utero
with mother and continues after birth with mother and
peers. Lessons learned early in life from a mother create a
dichotomy between the familiar and the unfamiliar (novel),
which is essential for survival (Provenza, 1995; Provenza
et al., 1998 and 2003). Animals prefer familiar to novel
foods and environments and they prefer to be with com-
panions as opposed to strangers (Provenza et al., 1998).
Critically, animals are at the same time cautious and curious
about the unfamiliar. Maintaining the appropriate balance
between the two is critical for survival.

Socialising enhances learning efficiency because each
animal no longer has to discover everything through trial
and error. It is difficult for animals to learn through trial and
error about the medicinal effects of substances, especially
if behaviour and consequences (flavour-feedback) are not
contingent (paired consistently) and contiguous (paired
closely in time). Naı̈ve animals familiar with only a limited
number of foods in a landscape, or familiar with many
foods eaten in the wrong sequence, may be less likely to
learn about the potential medicinal values of foods avail-
able in their environment. Thus, ‘pioneering’ animals in a
social group – those that learn exclusively based on con-
sequences – must be positioned in the ‘right place and at
the right time’. Once an individual ingests the ‘right foods
at the right time’ the beneficial effects of the new beha-
viour may then spread through the group, becoming part
of the foraging behaviour of females (Huffman, 2001;
Huffman and Hirata, 2004), who can then transmit those
behaviours to their offspring.

Such transmission of information across generations
occurs in livestock. For instance, when offered a choice,
lambs avoid or prefer foods as a function of their mothers’
avoidances or preferences (Mirza and Provenza, 1990 and
1992). When a mother’s food selection behaviour (eat or
avoid) is subsequently reinforced by postingestive feedback
from nutrients or toxins (positive or negative), her off-
springs respond strongly (eat or avoid) to a food (Provenza
et al., 1993). Such knowledge then becomes a part of the
culture, wherein young animals learn from their ancestors
through their mothers. As mentioned above, mother and
peers may facilitate exposure to PSMs in naı̈ve animals,
increasing the likelihood of experiencing the beneficial
effects of PSMs, even when they have to be ingested at
doses that cause stimulation of the emetic system.

Conclusions and implications

There is an increasing need to create a sustainable agri-
culture, with less dependence on external finite resources,
such as fossil fuels and their environmentally detrimental

Figure 3 Schematic illustration of nutrient and plant secondary
metabolite (PSM) regulation in a two-dimensional space. The line OA
represents a food high in PSMs and low in nutrients (medicinal food),
whereas the line OB represents a food low in PSMs and high in nutrients
(nutritive food). The depicted points in space represent two possible
outcomes of a selection made by a hypothetical animal when the two
foods are available for consumption. The point ‘c’ represents a decision
where the animal is not willing to consume high amounts of PSMs and
thus selects almost exclusively the food high in nutrients. In contrast, the
point ‘d’ represents a decision where the animal consumes substantial
amounts of PSMs but low amounts of nutrients.
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derivatives. From the consumer perspective, there is also an
increasing demand for products that are both ‘clean’ and
‘green’ (Waller, 2006).

Natural landscapes with diverse mixtures of plant species
are literally nutrition centres and pharmacies with vast arrays
of primary (nutrient) and secondary (pharmaceutical) com-
pounds vital in the nutrition and health of plants and her-
bivores. Regrettably, the simplification of agricultural systems
to accommodate inexpensive, rapid livestock production,
coupled with a view of secondary compounds as toxins, has
resulted in selecting for a biochemical balance in forages
favouring primary (mainly energy) and nearly eliminating
secondary compounds. Ironically, while we were minimising
secondary compounds to maximise yields of crop and pasture
plants over the past 30 years, we were learning of their value
in plant resistance to environmental stressors, and we are
now beginning to appreciate their nutritional and pharma-
ceutical values for herbivores and people. In their stead, we
resorted to fertilisers, herbicides and insecticides to grow and
protect plants in monocultures, and antibiotics and anthel-
mintics to maintain the health of herbivores.

Most contemporary agricultural systems have also
viewed animals as ‘machines’ whose fuel – needed nutri-
ents and medicines – had to be provided at prescribed
times and known amounts. While more research is required,
evidence presented in this paper suggests herbivores can
meet their needs for nutrients and ‘write their own pre-
scriptions’. If so, self-medication by herbivores can con-
tribute to sustainable grazing systems with benefits to the
environment and to the animal’s health and welfare.

Viewing foraging behaviour as the quest for substances
in the external environment that provide homeostatic utility
to the ‘internal milieu’ leads us to the conclusion that self-
medication is the consequence of the same mechanism that
allows animals to form preferences for nutrients (Villalba
and Provenza, 1996, 1997a, b, and c, 1999) and develop
aversions to toxins (Provenza et al., 1990): Behaviour by
consequences. Thus, while nutrients, PSMs and medicines
are labels scientists use to better comprehend foraging
complexity, for the animal in a dynamic homeostatic quest,
ingesting nutrients, PSMs and medicines are means to the
same end – staying well.
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