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1. Introduction
The ergodic theorems of Birkhoff, Hopf, von Neumann, Wiener, and Yoshida were gener-
alized to the measure-free setting of vector lattices (Riesz spaces) in 2007, see [19]. The
Poincaré recurrence theorem and Kac’s formula in vector lattices were published in 2023,
see [1]. In none of the above were the concept of Rokhlin towers/Kakutani–Rokhlin decom-
position used and, up to the present, the concept of Rokhlin towers/Kakutani–Rokhlin
decomposition had not been generalized to the vector lattice setting. In this paper, we
present a Kakutani–Rokhlin decomposition for dynamical systems defined by iterates of
a Riesz homomorphism acting on a vector lattice (Riesz space). This takes the work of
[5, 23, 24], and others, out of the realm of metric, topological, and measure spaces. We note
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2 Y. Azouzi et al

here the contrast between the development in vector lattices and that of [4], where the
ergodic theorems were derived as a consequence of the Rokhlin towers/Kakutani–Rokhlin
decomposition. Our generalization to vector lattices is with respect to a discrete-time
process, but generalizes the underlying space of the process. Other generalizations, see for
example [22], have kept the underlying space as a measure space, but have extended the
time-index space to amenable groups. We refer the reader to [14, 27] for some applications
and other generalizations of the Rokhlin towers/Kakutani–Rokhlin decomposition.

The extension given here, when applied back to probabilistic systems gives the existence
of a Kakutani–Rokhlin decomposition (also known in this context as Rokhlin towers)
for conditionally ergodic processes. A consequence of this is that every conditional
expectation preserving system that is aperiodic admits a Kakutani–Rokhlin decomposition.
Examples are given in each stage of our development to show that the given result cannot
be improved without additional assumptions.

In the probability setting, the Kakutani–Rokhlin lemma gives that, for each n ∈ N

and ε > 0, each almost everywhere (a.e.) bijective ergodic aperiodic measure preserving
transformation, τ , on the probability space (�, A, μ), there is a set B ∈ A so that
τ−j (B), j = 0, . . . , n − 1, are disjoint and μ(� \ ⋃n

j=1 τ 1−j (B)) < ε. We refer the
reader to [24, §3.3] for the specific result and to [13] for a survey of research around such
decompositions. The generalization of the Kakutani–Rokhlin lemma to the topology-free,
metric-free, measure-free setting of Riesz spaces (vector lattices) is given in Theorem 4.7.

We begin by giving an ε-free version of the Kakutani–Rokhlin lemma in the Riesz
space setting, Theorem 3.2, see [27] for the measure space version. This version applies
to conditionally ergodic systems on Riesz spaces (in fact, each conditional expectation
preserving system of a Riesz space gives rise to a conditionally ergodic system) and does
not require aperiodicity. This then forms the foundation of Theorem 4.7, where aperiodicity
is essential.

The remaining foundational aspects of ergodic theory in Riesz spaces needed for the
current work can be found in [3, 9, 16] for the general theory of conditional expectation
operators in Riesz spaces. It should be noted that many other stochastic processes have
been studied in the Riesz space (vector lattice) framework, for example, discrete [15] and
continuous [6, 7, 26] time martingale processes as well as mixing processes [3].

In §2, we recall the basics of conditional expectation preserving systems, ergodic
processes, Poincaré’s recurrence theorem, and Kac’s formula in Riesz spaces. In §3, we
give a Riesz space version of the ε-free Kakutani–Rokhlin type decompositions. In §4, we
introduce aperiodicity in Riesz spaces, and use this concept together with the Kac formula
and the ε-free Kakutani–Rokhlin type decomposition to give an ε-bound version of the
Kakutani–Rokhlin decomposition in Riesz spaces. We conclude in §5 with an application
of the Kakutani–Rokhlin theorem for aperiodic processes to show that every conditionally
ergodic process which can be decomposed into aperiodic processes can be approximated
by a periodic processes.

2. Preliminaries
For Riesz space theory and associated terminology, we refer readers to [28]. The
background material on ergodic theory can be found in [5, 23]. Our current work builds on
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Kakutani–Rokhlin decomposition in vector lattices 3

[1], in which many of the foundational results can be found. The concept of a conditional
expectation operator on a Riesz space is fundamental to the material presented here and,
hence, we quote its definition from [16].

Definition 2.1. Let E be an Archimedean Riesz space with weak order unit. A positive
order continuous projection T : E → E that maps weak order units to weak order units
is called a conditional expectation if the range of T, R(T ), is a Dedekind complete Riesz
subspace of E.

Throughout this work, we will assume that the conditional expectation operator T is
strictly positive, that is, if f ∈ E+ and Tf = 0, then f = 0.

The Riesz space analogue of a measure-preserving system was introduced in [10] as
a conditional expectation preserving system, see below. The concept was first used and
studied in [19], but not given a name there.

Definition 2.2. The 4-tuple, (E, T , S, e), is called a conditional expectation preserving
system (CEPS) if E is a Dedekind complete Riesz space, e is a weak order unit of E, T is
a conditional expectation operator on E with T e = e, and S is an order continuous Riesz
homomorphism on E with Se = e and T Sf = Tf for all f ∈ E.

Remark 2.3. If (E, T , S, e) is a conditional expectation preserving system, then

T Sjf = Tf

for all j ∈ N0 and f ∈ E.
We also note that if S is a Riesz homomorphism with T S = T , where T is a strictly

positive conditional expectation operator on a Dedekind complete Riesz space E, then
S is order continuous, see [12] for a more general study of order continuity Riesz
homomorphism. To see this, we let fα be a downwards directed net in E+ with fα ↓ 0,
then Sfα is downwards directed with Sfα ↓ h for some h ∈ E+. However, T S = T so,
as T is order continuous, 0 ← Tfα = T (Sfα) → T h. The strict positivity of T now gives
h = 0. Hence, Sfα → 0, making it order continuous.

We recall, from [16], the concept of T-universal completeness, the T-universal comple-
tion, and, from [20], the R(T )-module structure of L1(T ), see also [2].

Definition 2.4. If T is a strictly positive conditional expectation operator on a Dedekind
complete Riesz space, E with weak order unit e = T e, then the natural domain of T is

dom(T ) := {f ∈ Eu+| there exists net fα ↑ f in Eu, (fα) ⊂ E+, Tfα bounded in Eu},
where Eu denotes the universal completion of E. We define

L1(T ) := dom(T ) − dom(T ) = {f − g|f , g ∈ dom(T )}
and say that E is T-universally complete if E = L1(T ).

From the above definition, E is T-universally complete if, and only if, for each upwards
directed net (fα)α∈� in E+ such that (Tfα)α∈� is order bounded in Eu, we have that
(fα)α∈� is order convergent in E.
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Here, Eu has an f -algebra structure which can be chosen so that e is the multiplicative
identity. For T acting on E = L1(T ), R(T ) is a universally complete and thus an f -algebra,
and, further, L1(T ) is an R(T )-module. From [16, Theorem 5.3], T is an averaging
operator, which means that if f ∈ R(T ) and g ∈ E, then T (fg) = f T (g).

From [19], for each f ∈ L1(T ), the Cesàro mean

LSf := lim
n→∞

1
n

n−1∑
k=0

Skf , (2.1)

converges in order, in L1(T ), for each Riesz homomorphism S on E = L1(T ) with
T S = T and Se = e. We denote the invariant set of the Riesz homomorphism, S, by

IS := {f ∈ L1(T ) : Sf = f }.

We say that p ∈ E+ is a component of q ∈ E+ if p ≤ q and (q − p) ∧ p = 0. We
denote the set of components of q by Cq .

The conditional expectation preserving system (E = L1(T ), T , S, e) is said to be
conditionally ergodic if LS = T , which is equivalent to IS = R(T ), see [9], in which
case, ST = T and hence SjTf = Tf for all j ∈ N0 and f ∈ E.

LEMMA 2.5. If (E, T , S, e) is a conditional expectation preserving system and T is strictly
positive, then Sg = g for all g ∈ R(T ). In the case of E being an R(T ) module, this
invariance gives that S(gf ) = gSf for all g ∈ R(T ) and f ∈ E.

Proof. Due to the order continuity of S and the order density of the linear combinations
of components of e in E, it suffices to prove the result for g ∈ Ce ∩ R(T ) and f ∈ Ce.

For g ∈ Ce ∩ R(T ), we have that

g = T g = T Sg.

The averaging property of conditional expectations operators in terms of band projections
gives that PT Sg ≥ PSg , where these are respectively the band projections generated by
T Sg and Sg, see [17, Corollary 2.3] and [18, Lemma 2.3]. Here, Sg is a component of e so
PSge = Sg. Further, as g = T Sg, which is a component of e, we have PT Sge = g. Thus,
g ≥ Sg. As T is strictly positive and S is a Riesz homomorphism by [1, Note 2.3], we have
Sg = g.

For the second result, if f ∈ Ce, then fg = f ∧ g, so

S(gf ) = S(g) ∧ S(f ) = g ∧ S(f ) = gSf ,

since Sf is also a component of e.

In [1, Lemma 3.1], an equivalent formulation for the definition of recurrence in [1,
Definition 1.4] was proved. For convenience, here, we will take this equivalent statement
as a our definition of recurrence below.
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Definition 2.6. (Recurrence) Let (E, T , S, e) be a conditional expectation preserving
system with S bijective, then p ∈ Cq is recurrent with respect to q ∈ Ce if

p ≤
∨
n∈N

S−nq.

The following Riesz space generalization of the Poincaré recurrence theorem was
proved in [1, Theorem 3.2].

For brevity of notation, we define the supremum over an empty family of components
of e to be zero, that is,

0∨
j=1

pj := 0

for (pj ) ⊂ Ce.

THEOREM 2.7. (Poincaré) Let (E, T , S, e) be a conditional expectation preserving system
with T strictly positive and S surjective, then each p ∈ Cq is recurrent with respect to q for
each q ∈ Ce.

For k ∈ N, let

q(p, k) := p ∧ (S−kp) ∧
(

e −
k−1∨
j=1

S−jp

)
.

Here, q(p, k) is the maximal component of p recurrent at exactly k iterates of S and

q(p, k) ∧ q(p, m) = 0 for k 
= m, k, m ∈ N.

Writing Theorem 2.7 in terms of q(p, k), k ∈ N, we obtain the next corollary.

COROLLARY 2.8. Let (E, T , S, e) be a conditional expectation preserving system with T
strictly positive and S surjective, then for each component p of e, we have

p =
∞∑

k=1

q(p, k).

Here, this summation is order convergent in E.

From the definition of q(p, k), we have that

Skq(p, k) ≤ p

for all k ∈ N.

LEMMA 2.9. Let (E, T , S, e) be a conditional expectation preserving system with T
strictly positive and S surjective, then for all m, n ∈ N with 0 ≤ i ≤ m − 1, 0 ≤ j ≤
n − 1, and (i, m) 
= (j , n), we have

Siq(p, m) ∧ Sjq(p, n) = 0. (2.2)

Proof. Let i, j , m, n be as above.
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Case I: If m ≤ n and n − 1 ≥ j > i ≥ 0, then as Sj is a Riesz homomorphism,

Siq(p, m) ∧ Sjq(p, n) = Sj (Si−j q(p, m) ∧ q(p, n)).

Here,

Si−j q(p, m) ∧ q(p, n) ≤ Si−jp ∧
(

e −
n−1∨
k=1

S−kp

)
= 0

since i − j ∈ {−k|k = 1, . . . , n − 1}.
Case II: If m < n and i = j , then

Siq(p, m) ∧ Sjq(p, n) = Si(q(p, m) ∧ q(p, n)) = 0

as m 
= n and Si is a Riesz homomorphism.

Case III: If m < n and m − 1 ≥ i > j ≥ 0, then

Siq(p, m) ∧ Sjq(p, n) = Si(q(p, m) ∧ Sj−iq(p, n)).

Here,

q(p, m) ∧ Sj−iq(p, n) ≤
(

e −
m−1∨
k=1

S−kp

)
∧ Sj−ip = 0,

since j − i ∈ {−k|k = 1, . . . , m − 1}.
Rewriting the expression for the first recurrence time for p a component of e, n(p), from

[1], in terms of q(p, k), we get

n(p) =
∞∑

k=1

kq(p, k).

The conditional Kac formula of [1] gives the conditional expectation of n(p), as follows.

THEOREM 2.10. (Kac) Let (E, T , S, e) be a conditionally ergodic conditional expectation
preserving system, where T is strictly positive, E is T-universally complete, and S is
surjective. For each p a component of e, we have that

T n(p) = PTpe,

where PTp is the band projection onto the band in E generated by Tp.

3. Kakutani–Rokhlin lemma—ε-free
We recall an ε-free version of the Kakutani–Rokhlin decomposition for ergodic
measure-preserving systems from [21, Theorem 2] and [5, Theorem 6.24]. We note here
that these references state the bound 1 − nμ(A); however, their proofs yield the better
bound given below.

THEOREM 3.1. Let (�, B, μ, τ) be an ergodic measure preserving system, let A ∈ B with
μ(A) > 0 and n ∈ N. Then, there is a set B ∈ B such that B, τ−1B, . . . , τ 1−nB are
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pairwise disjoint and

μ

( n−1⋃
i=0

τ−iB

)
≥ 1 − (n − 1)μ(A).

We now give a conditional Riesz space version of the previous result. If, in the following
result, p is taken as the characteristic function, χA, with A of the above result, and T
is the expectation with respect to a probability measure μ, then the below result yields
immediately the above result. However, if T is a conditional expectation, then the below
result yields the above, but with μ being the conditional probability induced by T.

THEOREM 3.2. (Kakutani–Rokhlin lemma) Let (E, T , S, e) be a conditionally ergodic
conditional expectation preserving system with S surjective. Let n ∈ N and p be a
component of e, then there exists a component q of PTpe such that q, Sq, . . . , Sn−1q

are pairwise disjoint and

T

( n−1∨
j=0

Sjq

)
≥ (PTpe − (n − 1)Tp)+. (3.1)

Proof. By Corollary 2.8, p can be decomposed into a sum of disjoint components as
follows:

p =
∞∑
i=1

q(p, i).

Let

Rk =
∞∑
i=k

q(p, i) =
∞∨
i=k

q(p, i),

then Rk is the maximal component of p with no component recurrent in under k steps.
For fixed n ∈ N and k, j ∈ N0 with k 
= j , from equation (2.2), we have

SnjRn(j+1) ∧ SnkRn(k+1) =
∨

i≥n(j+1)

∨
r≥n(k+1)

(Snj q(p, i) ∧ Snkq(p, r)) = 0, (3.2)

since nj < i, nk < r and nj 
= nk. Let

q :=
∞∑

j=0

SnjRn(j+1) =
∞∨

j=0

SnjRn(j+1) =
∞∑

j=0

∑
i≥n(j+1)

Snj q(p, i). (3.3)

Here, q is a component of e.
We now show that Siq ∧ Sjq = 0 for all 0 ≤ i < j ≤ n − 1. For this, it suffices

to prove that q ∧ Skq = 0 for all 1 ≤ k ≤ n − 1. If j , m ∈ N0, with i ≥ n(j + 1) and
r ≥ n(m + 1), then nj 
= nm + k, i > nj , and r > nm + k, so, by equation (2.2),

q ∧ Skq =
∞∑

j ,m=0

∑
i≥n(j+1)

∑
r≥n(m+1)

Snj q(p, i) ∧ Snm+kq(p, r) = 0. (3.4)

Thus, q, Sq, . . . , Sn−1q are disjoint.
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We now proceed to the proof of equation (3.1). From the definition of q in equation
(3.3), we have

n−1∨
i=0

Siq =
n−1∑
i=0

Siq =
n−1∑
i=0

∞∑
j=0

∑
k≥n(j+1)

Snj+iq(p, k).

Applying T to the above equation and using T Si = T , i ∈ N0, along with the order
continuity of T, we have

T

( n−1∨
k=0

Skq

)
=

n−1∑
k=0

∞∑
j=0

∞∑
i=n(j+1)

T q(p, i)

=
∞∑

j=0

∞∑
i=n(j+1)

nT q(p, i)

=
∞∑
i=0

n

[
i

n

]
T q(p, i).

However, by the Riesz space version of the Kac theorem, that is, Theorem 2.10, we have

PTpe = T n(p) =
∞∑
i=1

iT q(p, i).

Therefore,

PTpe − T

( n−1∨
i=0

Siq

)
=

∞∑
i=1

n

(
i

n
−

[
i

n

])
T q(p, i) ≤

∞∑
i=1

(n−1)T q(p, i) = (n−1)Tp,

concluding the proof of equation (3.1).

Example 3.3. We now give an example of where Theorem 3.2 cannot be improved to the ε

approximation of Theorem 4.7. Consider the Riesz space E = R × R with componentwise
ordering and weak order unit e = (1, 1) and order continuous Riesz homomorphism
S(x, y) = (y, x). We take as our conditional expectation T (x, y) = (x + y)/2(1, 1). It
is easily verified that (E, T , S, e) is a conditionally ergodic conditional expectation
preserving system. Taking p = (1, 0) in Theorem 3.2, we have that Tp = 1

2 (1, 1) giving

(PTpe − (n − 1)Tp)+ =
(

(1, 1) − n − 1
2

(1, 1)

)+
=

⎧⎪⎪⎨
⎪⎪⎩

(1, 1), n = 1,
1
2
(1, 1), n = 2,

(0, 0), n ≥ 3.

The required components of PTpe = e for the respective values of n are q1 = (1, 1),
q2 = (0, 1), and q = (0, 0) for n ≥ 3. Then, qn, . . . Sn−1qn are disjoint and

T

( n−1∨
j=0

Sjqn

)
=

⎧⎪⎪⎨
⎪⎪⎩

(1, 1), n = 1,

(1, 1), n = 2,

(0, 0), n ≥ 3.

For this example, the ε bound of Theorem 4.7 fails for 0 < ε < 1
2 and n = 2.
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Example 3.4. As in [1, §5], let (�, A, μ) be a probability space, where μ is a complete
measure. Let � be a sub-σ -algebra of A. As the Riesz space E, we take the space
of a.e. equivalence classes of measurable functions f : � → R for which the sequence
(E[min(|f (x)|, n)|�])n∈N is bounded above by an a.e. finite valued measurable function.
Here, n is the (equivalence class of the) function with value n a.e. For f ∈ E with f ≥ 0,
we define

Tf = lim
n→∞ E[min(f (x), n)|�]

in the sense of a.e. pointwise limits. We now extend T to E by setting Tf = Tf + − Tf −.
This T is the maximal extension of E[·|�] as a conditional expectation operator, and we
will denote it again by E[·|�]. The space E has the a.e. equivalence class of the constant
1 function as a weak order unit. The space E is a T-universally complete Riesz space
with weak order unit 1 and T is a strictly positive Riesz space conditional expectation
operator on E having T 1 = 1. If we take τ : � → � to be a map with τ−1(A) ∈ A and
E[χτ−1(A)|�] = E[χA|�] for all A ∈ A and set Sf := f ◦ τ , the Koopman map, then S is
a Riesz homomorphism on E with S1 = 1 and T S = T . Further, if for each A ∈ A there
is BA ∈ A so that μ(A
τ−1(BA)) = 0, then S is a surjective.

The system (E, T , S, e) is a conditional expectation preserving system, with S
surjective and

LSf = lim
n→∞

1
n

n−1∑
k=0

f ◦ τ k

converges a.e. pointwise to a conditional expectation operator on E (which when restricted
to L1(�, A, μ), is a classical conditional expectation operator). The system (E, T , S, e)

is conditionally ergodic if and only if LS = T .
Then, Theorem 3.2 gives that if n ∈ N and A ∈ A, then there exists B ∈ A with

E[A|�] > 0 a.e. on B such that B, τ−1(B), . . . , τ 1−n(B) are a.e. pairwise disjoint and

E

[ n−1⋃
j=0

τ−jB

∣∣∣∣�
]

≥ (χ{ω|E[χA|�](ω)>0} − (n − 1)E[A|�])+. (3.5)

4. Aperiodicity and an ε-bounded decomposition
A probability space (�, B, μ), μ is non-atomic if for any A ∈ B with μ(A) > 0, there
exists B ∈ B with B ⊂ A and 0 < μ(B) < μ(A). On non-atomic measure spaces, an
ε-bounded version of the Kakutani–Rokhlin decomposition can be obtained, see [5,
Corollary 6.25] and [23, Lemma 4.7].

THEOREM 4.1. Let τ : � → � be an ergodic measure preserving transformation on a
non-atomic measure space (�, B, μ), n ∈ Z, and ε > 0, then there is a measurable set
B ⊂ � such that B, τ−1B, . . . τ 1−nB are pairwise disjoint and cover � up to a set of
measure less than ε.
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The original ε-bounded version of the decomposition, as developed by Rokhlin, see
[24, p. 10], was posed for ergodic measure preserving systems which are aperiodic. See
also [11].

On a probability space (�, B, μ), an aperiodic transformation is a transformation
whose periodic points form a set of measure 0 (see [24]), that is, μ({x ∈ � | τpx = x

for some p ∈ N}) = 0. We recall Rokhlin’s 1943 version of the Kakutani–Rokhlin lemma
requiring aperiodicity, quoted from [27].

THEOREM 4.2. If τ is an aperiodic automorphism, then for any natural number n and any
positive ε, there exists a measurable set A ⊂ � such that the sets A, τ−1A, . . . , τ 1−nA

are pairwise disjoint, and the complement of their union has measure less than ε.

Let (�, B, μ) be a probability space. The measure μ is said to be continuous if
for any A ∈ B with μ(A) > 0 and any α ∈ R with 0 < α < μ(A), there exists B ∈ B
with B ⊂ A and μ(B) = α. Note that every continuous measure is non-atomic. If μ is
a continuous measure and τ is an ergodic measure preserving transformation, then τ

is aperiodic. Indeed, as τ is ergodic, there exists p ∈ N such that μ(Ap) > 0, where
Ap = {x ∈ � | τpx = x}. Choose B ⊂ Ap with 0 < μ(B) < 1/p, which is possible as
μ is a continuous measure. The set C = B ∪ τ−1B ∪ · · · ∪ τ 1−pB is τ -invariant and
satisfies 0 < μ(C) < 1, contradicting the assumption of ergodicity.

An aperiodic transformation on a continuous measure space need not be ergodic.
For example, consider the unit square [0, 1] × [0, 1] with Lebesgue measure. The
transformation

τ(x, y) = ((x + α) mod 1, y) for all (x, y) ∈ [0, 1] × [0, 1],

with α ∈ [0, 1] irrational, is aperiodic but not ergodic.
We extend these decompositions to the measure-free context of Riesz spaces and begin

by giving (a non-pointwise) definition of periodicity in the setting of Riesz spaces.

Definition 4.3. Let (E, T , S, e) be a conditional expectation preserving system and v be a
component of e. We say that (S, v) is periodic if there is N ∈ N so that for all components
c of v with 0 
= c 
= v, we have that q(c, k) = 0 for all k ≥ N .

The logic of this definition is that for all such c, we have

c =
N−1∨
k=1

q(c, k)

and Skq(c, k) ≤ c for k = 1, . . . , N − 1.
We note that, as in the measure theoretic setting, aperiodicity is defined as a stronger

constraint than the negation of periodicity.

Definition 4.4. Let (E, T , S, e) be a conditional expectation preserving system and v 
= 0
be a component of e. We say that (S, v) is aperiodic, if for each N ∈ N and each component
c 
= 0 of v, there exists k ≥ N and a component u of c with q(u, k) 
= 0.
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THEOREM 4.5. Consider E = L1(�, B, μ) a probability space with Tf := E[f ]1, where
e := 1 is the constant function with value 1 a.e., and Sf := f ◦ τ is the von Neumann
map generated by τ , a measure-preserving transformation with τ a.e. surjective. Further
assume that there is G ∈ B with 0 < μ(G) < 1. In this case, the measure theoretic
definition of aperiodicity of τ is equivalent to the Riesz spaces definition of (S, e) being
aperiodic.

Proof. Suppose that (S, e) is aperiodic, that is, for each N ∈ N and each component c
of e, there exists k ≥ N and a component u of c with q(u, k) 
= 0. Let A denote the
set of periodic points of τ . By the way of contradiction, suppose that μ(A) > 0. Hence,
there exists N ∈ N such that μ(AN) > 0, where AN is the set of points of period N. Let
c := χAN

, then from the aperiodicity of (S, v), there is a component u of c and k > N

so that q(u, k) 
= 0. Here, there is a measurable subset B of AN so that u = χB . Here,
all points of B are of period N, giving q(u, j) = 0 for all j ≥ N , which contradicts
q(u, k) 
= 0.

Conversely, if the set of periodic points of τ has measure zero, we show that (S, e) is
aperiodic.

Developing on [25, Lemma 3.12], we give a meaning to the set of periodic points of τ

having measure zero in a point-less setting. Let pk := χAk
, where Ak is the a.e. maximal

measurable set which has every measurable subset invariant under τ−k . In the Riesz space
terminology, pk is the maximal component of e with Skv = v for each v a component of
pk . Now, τ being aperiodic gives that pk = 0 for all k ∈ N.

Suppose that (S, e) is not aperiodic, then there exist N ∈ N and a component c 
= 0 of
e, so that, for all k ≥ N and components u of c, we have q(u, k) = 0. Hence,

u =
N−1∑
k=1

q(u, k)

for all k ≥ N and u a component of c. Thus,

SN!u = u

for all components u of c, making c a component of pN! = 0. Thus, 0 < c ≤ pN! = 0,
which is a contradiction. Thus, (S, e) is aperiodic.

LEMMA 4.6. Let (E, T , S, e) be a conditionally ergodic conditional expectation preserv-
ing system with ET -universally complete and (S, e) aperiodic, then, for each N ∈ N, there
is a component cN of e with PT cN

e = e and SicN ∧ Sj cN = 0 for all i, j = 0, . . . , N with
i 
= j .

Proof. For each component p 
= 0 of e, let

KN(p) =
∞∑

k=N+1

q(p, k).
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Here, KN(p) is a component of p and, by Lemma 2.9,

0 = SiKN(p) ∧ SjKN(p)

for all 0 ≤ i < j ≤ N .
Let

G := {(p, T KN(p)) | p a component of e}.
Here, (e, 0) ∈ G so G is non-empty. We partially order G by (p, T KN(p)) ≤
(p̃, T KN(p̃)) if and only if p ≤ p̃ and T KN(p) ≤ T KN(p̃).

If (p, T kN(p))p∈� is a chain (totally ordered subset) in G, let

p̂ =
∨
p∈�

p.

Here,

p̂ = lim
p∈�

p,

where (p)p∈� is an upwards directed net, directed by the partial ordering in the Riesz
space. By Lemma 2.8,

KN(p) = p −
N∑

k=1

q(p, k),

making KN(p) order continuous in p, see the definition of q(p, k). Thus,

T KN(p̂) = lim
p∈�

T KN(p).

Further, by the ordering on G, the net (T KN(p))p∈� is increasing and bounded, thus
having

lim
p∈�

T KN(p) =
∨
p∈�

T KN(p).

Hence, we have

T KN(p̂) =
∨
p∈�

T KN(p),

making (p̂, T kN(p̂)) an upper bound (in fact, the supremum) for (p, T kN(p))p∈�.
Thus, Zorn’s lemma can be applied to G to give that it has a maximal element, say

(p, T kN(p)).
If PT KN(p)e 
= e, let u = e − PT KN(p)e, then u is a non-zero component of e, so by the

aperiodicity of (S, e), there exists k > N and ck(u) a component of u with q(ck(u), k) 
= 0.
As u ∈ R(T ), we have Sju = u for all j ∈ Z and p ≤ e − u ∈ R(T ), which give

KN(ck(u) + p) = KN(ck(u)) + KN(p) > KN(p).

Thus,

(p, T KN(p)) < (p + ck(u), T KN(p + ck(u)) ∈ G,
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which contradicts the maximality of (p, T KN(p)). Hence, PT KN(p) = e and setting
cN = KN(p) concludes the proof.

The Kakutani–Rokhlin lemma with ε-bound can be formulated in a Riesz space as
follows.

THEOREM 4.7. (Riesz space Kakutani–Rokhlin) Let (E, T , S, e) be a conditionally
ergodic conditional expectation preserving system with ET -universally complete and S
surjective. If (S, e) is aperiodic, n ∈ N and ε > 0, then there exists a component q of e in
E with (Siq)i=0,...,n−1 disjoint and

T

(
e −

n−1∨
i=0

Siq

)
≤ εe. (4.1)

Proof. Let n ∈ N and ε > 0. Take N > (n − 1)/ε. By Lemma 4.6, there exists a
component cN of e with PT cN

e = e and SicN ∧ Sj cN = 0 for all i, j = 0, . . . , N with
i 
= j . Let p := cN . Then, q(p, k) = 0 for all k = 1, . . . , N giving that

Np ≤ n(p). (4.2)

By Theorem 2.10, we have

e = PTpe = T n(p). (4.3)

Combining equations (4.2) and (4.3), we get

NTp ≤ T n(p) = e. (4.4)

Since N > (n − 1)/ε, equation (4.4) yields

Tp ≤ ε

n − 1
e. (4.5)

By Theorem 3.2, there exists a component q of PTpe = e such that q, Sq, . . . , Sn−1q

are pairwise disjoint and

T

( n−1∨
j=0

Sjq

)
≥ PTpe − (n − 1)Tp ≥ e − εe, (4.6)

which gives the inequality of the theorem.

On reading the works of Rokhlin, it appears that the requirement of conditional
ergodicity is redundant and only aperiodicity is needed. As we know, every CEPS is
conditionally ergodic with respect to LS . So, in our case, conditional ergodicity can be
dispensed with, but we need to be careful to use the conditional expectation operator LS

and work in the LS-universal completion of E, which we will denote by Ê.

COROLLARY 4.8. Let (E, T , S, e) be a conditional expectation preserving system with
ET -universally complete and S surjective, then (Ê, LS , S, e) is a conditionally ergodic
conditional expectation preserving system. If v is a component of e in R(LS) with (S, v)
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aperiodic, n ∈ N and ε > 0, then there exists a component q of v in E with (Siq)i=0,...,n−1

disjoint and

LS

(
v −

n−1∨
i=0

Siq

)
≤ εv.

Theorem 4.7 is the specific case of Corollary 4.8, where (E, T , S, e) is conditionally
ergodic and E is T-universally complete, as then LS = T .

Example 4.9. Continuing on Example 3.4, let n ∈ N and A ∈ A be so that LSχA = χA. If
ε > 0 and, in addition, τ is an a.e. aperiodic map on A, then Corollary 4.8 gives that there
exists B ∈ A with B ⊂ A such that B, τ−1(B), . . . , τ 1−n(B) are a.e. pairwise disjoint
and

0 ≤ LS(χA − χC) ≤ εχA, (4.7)

where C = ⋃n−1
j=0 τ−jB.

To highlight the need for aperiodicity, we now give an example of a conditionally
ergodic preserving system (E, T , S, e), which is T-universally complete and is neither
periodic nor aperiodic, and for which the ε approximation of Theorem 4.7 fails.

Example 4.10. Let En = �(n), the space of real finite sequences of length n with
componentwise ordering. On En, we introduce the conditional expectation

Tn(fn)(i) = 1
n

n∑
j=1

fn(j)1n, fn ∈ En,

where 1n(j) = 1 for all j = 1, . . . , n. Further, 1n is a weak order unit for En. On each
En, we take Sn as the Riesz homomorphism given by S1(f1) = f1, and for n ≥ 2,

Snfn(j) =
{

fn((j − 1)), j = 2, . . . , n,

fn(n), j = 1.

Clearly, (En, Tn, Sn, 1n) is a Tn-universally complete ergodic conditional expecta-
tion preserving system. We take (E, T , S, 1) as the direct product of the spaces
(En, Tn, Sn, 1n), n ∈ N. Now,

E =
∞∏

n=1

En, T =
∞∏

n=1

Tn, S =
∞∏

n=1

Sn, 1 = (11, 12, . . .).

The resulting space (E, T , S, e) is a conditionally ergodic conditional expectation preserv-
ing system with ET -universally complete. Further, (S, e) is neither periodic nor aperiodic.
If we take n ∈ N \ {1} and 0 < ε < 1/n in Theorem 4.7 and assume that there exists
component p of 1 exhibiting the required properties of the theorem, then the disjointness
of Sjp for j = 0, . . . , n gives that the components pj = 0 for j ≤ n, but then Sk

j pj = 0
for all k, and so equation (4.1) fails.
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5. Approximation of aperiodic maps
Rokhlin proved an interesting consequence of his lemma stating that any aperiodic
transformation τ can be approximated by periodic ones, see [8, pp. 75] and [27]. That
is, for any positive integer n and any ε > 0, there exists a periodic transformation τ ′ of
period n such that d(τ , τ ′) ≤ 1/n + ε, where d(τ , τ ′) = μ{x : τx 
= τ ′x}.

In this section, we apply Theorem 4.7 to obtain an approximation of aperiodic
conditional expectation preserving transformations by periodic ones in the conditional
Riesz space setting.

THEOREM 5.1. Let (E, T , S, e) be a T-universally complete conditionally ergodic pre-
serving system, where S is a surjective Riesz homomorphism and (S, e) aperiodic. For
each 1 > ε > 0, there exists a surjective Riesz homomorphism S ′ such that (E, T , S′, e) is
a conditional expectation preserving system with (S ′, e) periodic and

sup
u∈Ce

T |(S − S′)u| ≤ εe. (5.1)

Proof. Let ε > 0 and n > 4/ε. By Theorem 4.7, there is a component p of e such that
(Sip)i=0,...,n−1 are disjoint and

T (e − h) ≤ ε

4
e, (5.2)

where

h =
n−1∑
i=0

Sip =
n−1∨
i=0

Sip ∈ Ce. (5.3)

Hence, (
1 − ε

4

)
e ≤ T h. (5.4)

Further, applying T to equation (5.3) gives

nTp = T h ≤ T e = e, (5.5)

so

Tp ≤ 1
n
e ≤ ε

4
e. (5.6)

We now give a decomposition of e which will be the basis for the decomposition of E
into bands. Let

q =
n−2∑
i=0

Sip =
n−2∨
i=0

Sip ∈ Ce. (5.7)

Here,

h = Sn−1p + q = (Sn−1p) ∨ q. (5.8)
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Hence, we have the following disjoint decomposition of e by its components q, Sn−1p,
e − h,

q + (Sn−1p) + (e − h) = e. (5.9)

We define the approximation Riesz to S as

S′ = SPq + S1−nPSn−1p + Pe−h. (5.10)

Here, S′ is a finite sum of order continuous maps and is thus order continuous.
We begin by verifying that (E, T , S′, e) is a conditional expectation preserving system

with S′ surjective. Additionally, S′ is a sum of compositions of Riesz homomorphisms and
is thus a Riesz homomorphism. From equations (5.9) and (5.10), we get

S′e = Sq + p + (e − h) = e.

From equations (5.10) and (5.9), as T S = T ,

T S′ = T SPq + T S1−nPSn−1p + T Pe−h = T (Pe−h+q+Sn−1p) = T .

As T is strictly positive, the condition T S′ = T ensures that S′ is injective.
We now prove that S′ is surjective. In particular, for f ∈ E, set

f̂ = Pe−hf + PqS−1f + PSn−1pSn−1f .

We show that S′f̂ = f . To see this

S′f̂ = (SPq + S1−nPSn−1p + Pe−h)(Pe−hf + PqS−1f + PSn−1pSn−1f )

= Pe−hf + SPqS−1f + S1−nPSn−1pSn−1f .

Here,

SPqS−1f = SPS−1SqS−1f = SS−1PSqf = PSqf

and

S1−nPSn−1pSn−1f = S1−nSn−1Ppf = Ppf .

Thus, by equation (5.10),

S′f̂ = Pe−hf + PSqf + Ppf = P(e−h)+Sq+pf

giving S′f̂ = f , showing that S′ is surjective.
We now show that (S′, e) is periodic. It suffices to show that, for each u ∈ Ce with

u 
= 0, we have that
n∨

k=1

(S′)ku ≥ u.

Let u ∈ Ce with u 
= 0. Here,

S′u ≥ S′(u ∧ (e − h)) = u ∧ (e − h). (5.11)
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Let 0 ≤ j ≤ n − 1 and 0 ≤ i ≤ n − 1 − j . We show inductively with respect to i that

(S′)i(u ∧ Sjp) = Si(u ∧ Sjp) ≤ Si+jp ≤ q. (5.12)

For i = 0,

(S′)0(u ∧ Sjp) = u ∧ Sjp = S0(u ∧ Sjp) ≤ Sjp ≤ q. (5.13)

Now, suppose 0 ≤ i ≤ n − 1 − j − 1 and that

(S′)i(u ∧ Sjp) = Si(u ∧ Sjp) ≤ Si+jp ≤ q, (5.14)

then applying S′ to equation (5.14), from the definition of S′, we get

S′(S′)i(u ∧ Sjp) = S(S′)i(u ∧ Sjp) = Si+1(u ∧ Sjp) ≤ Si+j+1p ≤ q,

from which equation (5.12) holds by induction.
In particular, for i = n − j − 1,

(S′)n−1−j (u ∧ Sjp) = Sn−1−j (u ∧ Sjp) ≤ Sn−1p. (5.15)

Now, applying S′ to the above gives

(S′)n−j (u ∧ Sjp) = S1−nSn−1−j (u ∧ Sjp) = S−j (u ∧ Sjp) ≤ p = S0p. (5.16)

Hence, equation (5.16) can be written as

(S′)n−j (u ∧ Sjp) = (S−j u) ∧ S0p. (5.17)

So by equation (5.17), we have

(S′)n(u ∧ Sjp) = (S′)j (S′)n−j (u ∧ Sjp) = (S′)j ((S−j u) ∧ S0p),

and now applying equation (5.12) (with replacing j by 0, i by j, and u by S−j u), we have

(S′)n(u ∧ Sjp) = (S′)j ((S−j u) ∧ S0p) = Sj ((S−j u) ∧ S0p) = u ∧ Sjp. (5.18)

Taking the supremum of equation (5.18) over j = 0, . . . , n − 1 gives

(S′)nu ≥ (S′)n(u ∧ h) =
n−1∨
j=0

(S′)n(u ∧ Sjp) = u ∧
( n−1∨

j=0

Sjp

)
= u ∧ h. (5.19)

Combining equations (5.11) and (5.19) gives

(S′)nu ∨ S′u ≥ (u ∧ h) ∨ (u ∧ (e − h)) = u ∧ e = u,

showing that (S′, e) is periodic.
Finally, we show that S′ obeys the bound in equation (5.1). For u ∈ Ce, we have

(S − S′)u = (S − S1−n)PSn−1pu + (S − I )Pe−hu.

Here, as T Sj = T , j ≥ 0, by equation (5.6),

T |(S − S1−n)PSn−1pu| ≤ T Snp + Tp = 2Tp ≤ ε

2
e
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and, by equation (5.2),

T |(S − I )Pe−hu| ≤ T S(e − h) + T (e − h) = 2T (e − h) ≤ ε

2
e,

giving

T |(S − S′)u| ≤ T |(S − S1−n)PSn−1pu| + T |(S − I )Pe−hu| ≤ εe.

Thus, equation (5.1) holds.
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