A NOTE ON REDUCTIVE OPERATORS

BY

P. A. FILLMORE

For a bounded linear operator T on a Hilbert space \mathcal{H} , denote by $\operatorname{Lat}_0 T$ the lattice of all linear submanifolds \mathcal{M} of \mathcal{H} such that $T\mathcal{M} \subset \mathcal{M}$, and by $\operatorname{Lat}_2 T$ (resp. Lat T) the sublattice consisting of operator ranges (resp. closed subspaces). The operator T is said to be reductive if $\operatorname{Lat} T \subset \operatorname{Lat} T^*$. Dyer, Pedersen, and Porcelli [3] asked whether reductive operators must be normal, and showed that an affirmative answer would be equivalent to an affirmative solution of the invariant subspace problem (see also [1]).

Thus it may be of some interest to examine the implications of the (stronger) conditions $\text{Lat}_0 T \subset \text{Lat}_0 T^*$ and $\text{Lat}_{\frac{1}{2}} T \subset \text{Lat}_{\frac{1}{2}} T^*$. The former is known [4] to imply that T^* is a polynomial in T, and in particular that T is normal. However it seems not to have been noticed that the latter implies the same conclusion.

THEOREM. For any operator T the following conditions are mutally equivalent:

1. Lat₀ $T \subset Lat_0 T^*$;

2. $Lat_{\frac{1}{2}} T \subset Lat_{\frac{1}{2}} T^*;$

3. $T^* = u(T)$ for some entire function u;

4. $T^* = p(T)$ for some polynomial p;

5. Either T is normal and algebraic, or else T = aH + bI for some self-adjoint operator H and complex numbers a and b.

Moreover each of these conditions is equivalent to the symmetric condition obtained by interchanging T and T^* .

Proof. Obviously 1 implies 2. Assume 2 holds. If T is not algebraic (i.e. $p(T) \neq 0$ for all nonzero polynomials p), then 3 holds by [2, Th. 2]. If T is algebraic, we will show that it satisfies 1, so that (as remarked above) 4 and hence 3 will follow by [4]. Fix $\mathcal{M} \in \text{Lat}_0 T$ and $x \in \mathcal{M}$. Since T is algebraic the cyclic subspace [x] generated by x is finite dimensional, so that $[x] \in \text{Lat}_2 T$, $[x] \in \text{Lat}_2 T^*$ by 2, and $T^*x \in [x] \subset \mathcal{M}$. Therefore $T^*\mathcal{M} \subset \mathcal{M}$ and $\mathcal{M} \in \text{Lat}_0 T^*$.

Next assume $T^* = u(T)$ for an entire function u. Then $u^*(z) = \overline{u(\overline{z})}$ defines an entire function u^* , and it is easy to see (from the power series expansion of u) that

$$T = (T^*)^* = (u(T))^* = u^*(T^*) = u^*(u(T)).$$

101

Received by the editors May 15, 1978 and, in revised form, June 23, 1978.

P. A. FILLMORE

Consider the entire function $v(z) = u^*(u(z)) - z$; we have that v(T) = 0. If $v \neq 0$, then T is algebraic [5, p. 860], so assume v = 0. Then u is a homeomorphism, and in particular $u^{-1}(K)$ is compact for every compact set K, so that $\lim_{z\to\infty} |u(z)| = \infty$ and u has a pole at infinity. Thus u is a univalent polynomial, and so is linear. We now have $T^* = aT + bI$, and it follows easily that T is a linear function of a self-adjoint operator of the form $cT + \bar{c}T^*$. Therefore 3 implies 5.

Now assume 5. If T is normal and algebraic, then it is of the form $\sum_{i=1}^{n} \lambda_i E_i$ for suitable pairwise orthogonal projections E_i and complex numbers λ_i , and therefore $p(T) = T^*$ for any polynomial p with p(0) = 0, p(1) = 1, and $p(\lambda_i) = \overline{\lambda_i}$ for all i. If T = aH + bI with H self-adjoint, then T^* is a linear function of H, and H is a linear function of T, so T^* is a linear function of T. Thus 5 implies 4. Since 4 obviously implies 1, and since 5 is equivalent to the symmetric condition obtained by interchanging T and T^* , the proof is complete.

References

1. E. A. Azoff and F. Gilfeather, Measurable choice and the invariant subspace problem, Bull. Amer. Math. Soc. 80 (1974) 893-895.

2. R. G. Douglas and C. Foias, Infinite dimensional versions of a theorem of Brickman-Fillmore, Indiana University Math. J. 25 (1976) 315-320.

3. J. A. Dyer, E. A. Pedersen, and P. Porcelli, An equivalent formulation of the invariant subspace conjecture, Bull. Amer. Math. Soc. 78 (1972) 1020-1023.

4. P. A. Fillmore, On invariant linear manifolds, Proc. Amer. Math. Soc. 41 (1973) 501-505.

5. P. R. Halmos, Capacity in Banach algebras, Indiana Univ. Math. J. 20 (1971) 855-863.

DALHOUSIE UNIVERSITY HALIFAX NOVA SCOTIA B3H 3J5

102