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Let R be a commutative Noetherian ring and G a group of elements acting on R as
automorphisms. In this note, we are concerned with the structure of the lattice of
invariant ideals of R. In particular we shall compute the Krull dimension of this lattice.
Our group is an arbitrary group. There are none of the usual assumptions of some sort of
algebraic action.

By Krull dimension, we mean the notion of Krull dimension introduced by
Rentschler and Gabriel [1, p. 180]. This definition attaches an ordinal number to a
Noetherian lattice (and to certain other lattices). (For a definition, see below.) For a
commutative Noetherian ring, the Krull dimension of the lattice of ideals is the same as
the usual (classical) Krull dimension in terms of the longest chain of prime ideals [1, p.
192]. It follows that in some sense the structure of the lattice of ideals is determined by
the poset of prime ideals. The point of this paper is that the same holds for the lattice of
invariant ideals. However there may not be enough invariant prime ideals but there are
enough prime ideals with finite orbit. We recall that an ideal with finite orbit is called an
orbital ideal [2].

The Krull dimension of a lattice can be an infinite ordinal. One can define the
classical Krull dimension so that the classical Krull dimension can be an infinite ordinal [1,
p. 191]. (For a definition, see below.) We will denote the Krull dimension of the lattice of
invariant ideals by KG(R) and the classical Krull dimension of the poset of orbital primes
by dG(R). Thus if there is a bound on the lengths of chains of prime ideals, dc{R) is the
maximum length of a chain. If there is no bound, then do(R) will be an infinite ordinal.

THEOREM 1. If R is a commutative Noetherian ring with a group G acting on it, then
= do(R).

An invariant ideal P of R is called G-prime if whenever IJcP for invariant ideals /
and J, then / c P o r / c / " . Theorem 1 can be restated using chains of G-prime ideals as
follows.

THEOREM 2. If R is a commutative Noetherian ring with a group G acting on it, then
KG(R) is the classical Krull dimension of the poset of G-prime ideals of R.

Let A be a free abelian group of rank n and k a field. If G is a subgroup of GLn(Z),
then G acts on A and hence on the group ring k[A\. In this case the length of the longest
chain of orbital primes of k[A] has already been calculated. In order to state this, we
recall some definitions [2]. A non-identity orbital subgroup B of A is a plinth if Q ®z B
contains no nontrivial orbital subspaces. If B is a plinth we can replace it with its pure
closure. Then a subgroup H of finite index acts on B and hence on the free abelian group
A/B. In this way we can define a chain of subgroups B, c B 2 c . . . c Bn = A such that
Bj+JBj is a plinth in A/Bj. The integer n is called the plinth length of A. Roseblade has
shown that the plinth length of A is the same as the length of the longest chain of orbital
prime ideals of k[A] [2, p. 437]. Hence we have the following corollary.
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COROLLARY 1. Let G act on the finitely generated free abelian group A and hence on
the group ring k[A]. The Krull dimension of the lattice of G-invariant ideals of k[A] is the
plinth length of A.

As the definition of the Krull dimension of a lattice may be unfamiliar to
commutative ring theorists, we recall the definition [1, p. 174]. Let L be a lattice. If it is
trivial, we say K(L) = -°°. if L has DCC and is nontrivial, then *r(L) = 0. For a general
ordinal a, we define tc(L) = a provided (i) K(L) =£ /3 < a- and (ii) in any descending chain
of elements of L, all but finitely many factors (intervals) have Krull dimension less than
a. Lattices with ACC will always have a Krull dimension.

We recall the definition of the dimension of a poset A satisfying ACC [1, p. 191] (not
the Krull dimension!). Let AQ be the subset of maximal elements of A; and, for each
ordinal a, let

Aa = {a eA.b eA, b>a implies b e Ap for some /3 < a}.

Then dim .4 is the least a with Aa = A. By the classical Krull dimension of a set 9> of
prime ideals (or G-prime ideals), we shall mean the dimension of the poset d>.

The equivalence of Theorems 1 and 2 follow from the next lemma.

LEMMA 1. The classical Krull dimension of the lattice of orbital prime ideals is the
same as the classical Krull dimension of the G-invariant primes.

Proof. Let A be the set of orbital primes and let AQ be the maximal orbital prime
ideals and, inductively for the ordinal a, let

Aa = {PeA:QeA,Q>P implies Q e Ap for some /3 < a}.

Similarly define Ba for the G-invariant ideals. If P is an orbital prime, then (~) Pg is a
G-prime ideal. Furthermore all G-prime ideals Q arise this way. (The minimal primes
over Q are orbital and, if P is any such one, C\ Pg = Q.) Our proof will be by showing that
P e Aa if and only \i(\ps e Ba. We induct on a-. For a = 0, let P e Ao. If O Ps £ D Q8,
where P and Q are orbital primes, then, for some g and h, Ps c Qh. But P8 is maximal; so
Pg = Qh. It follows that C]P8 is in Bo. Conversely, suppose C\PS is in B n a n d P c Q ,
where Q is orbital. Then P | P8 = D Q8- But the orbit of P and the orbit of Q both consist
of the minimal primes over Pi P8. Hence P = Q and P e Ao. Now inductively suppose the
statement is true for all ordinals less than a. Suppose that P e Aa. If f~) P8 g Q8, then, for
some h, PQQH. Furthermore P* Qh since otherwise (~)P8 = H Q8- Hence Qh is in Ap
and by induction (~l!2g is in Bp. It follows that f~)P8eBa. Conversely, suppose that
P | P8 e Ba. Suppose Q is an orbital prime and that P g Q. Then H P8 c Pi Q8- K they
were equal, then the orbit of P and the orbit of Q both would consist of the minimal
primes over H P8- Then P = Q, a contradiction. Therefore (~) Qs e Bp and by induction
Q e Ap. It follows that P e Aa.

Our original proof was to prove Theorem 1 directly using the orbital primes. The
following proof was suggested to us by the referee. It involves a notion of G-primary
decomposition which may be well known.

Let R be a commutative Noetherian ring and let G be a group acting on R as
automorphisms. An invariant ideal will be called a G-ideal. A G-ideal / is G-primary if
whenever A and B are G-ideals with AB c / , then either A c / or B" c / for some n. A
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G-ideal / is G-irreducible if whenever A and B are G-ideals with AtlB = I, then either
A = I or B = I.

LEMMA 2. If I is a G-ideal of R, then rad(/) is a G-ideal. Furthermore if I is
G-primary, then rad(/) is G-prime.

Proof. Obviously rad(/) is G-invariant. Let P be rad(/). Suppose / is G-primary. If
A and B are G-ideals with AB(=.P, then since, for some n, P " c / , we must have
(AB)" = A"B" cI.UA^P, then A"£P and hence A" £ /. Therefore Bnm c / and hence
fie P.

LEMMA 3. Any G-irreducible is G-primary.

Proof. Let / be G-irreducible and suppose AB c. I for G-ideals A and B. We may
assume / c A and / c f i . Suppose that A<£I. By the Artin-Rees lemma AD B" QAB E /
for some n and hence An(B" + I)= A(~\ B" + I cAB +1 = I. Since A and B" +1 are
G-ideals and / is G-irreducible and A ± I, we have B" +1 = I and hence B" c /.

COROLLARY 2. Any G-ideal has a G-primary decomposition.

LEMMA 4. Let I be a G-primary ideal with radical P. Then there is DCC on G-primary
ideals between I and P.

Proof. Let Q be a prime ideal minimal over P, then the (finite) orbit of Q consists of
all the minimal primes over P and P = f] Qg. Let S - R - C\ Qs. We claim that if / is a
P-primary ideal then J = JRS (1R. Let X = JRS DR. If x e X, then x =j/s for some j eJ
and s eS. It follows that xs =j. Now R is a Noetherian ring so X is finitely generated.
Hence there exists a single s with Xs c / . Let Y = {r-.Xr^I}. Now XY c / and X and Y
are G-ideals. If X £J, then Y" cj which implies s" e J, a contradiction. Now P" c / for
some n and (PRs)'/(PRsy

+l is a finitely generated module over the Artinian ring RS/PRS.

LEMMA 5. / / Qx DA c Q2> where Qt and Q2 are G-primary and A is a G-ideal and
An£Q2 for all n,thenQl^Q2.

Proof. QXA c Q2, so if Q\ £ Q2, then A" c Q2, a contradiction.

We recall that a module M is G-critical if KG(M) = a and KC(M/I) < a for all
nonzero G-submodules /.

Let P be a G-prime ideal. Let Q be a minimal prime over P. Let 5 = R — (~) Qg. We
form Rs and define the symbolic powers Pin) = RC\ PhRs.

LEMMA 6. If 0 is a G-primary ideal and P is a G-prime ideal, then (~~) P(n) = 0.

Proof. The usual commutative proof works.

LEMMA 7. Let P be a G-prime ideal with KG(R/P) = a. Then (i) R/P is G-critical,
and (ii) if / g 7 are G-ideals with I P-primary, then KG(J11) = a.

Proof. Suppose the result fails, but, by Noetherian induction holds for all G-prime
ideals bigger than P. First suppose Q is a G-prime and P^Q. For the moment assume
that P = 0. Letting Q(n) denote the symbolic powers, we have H Q(n) = 0. Now each Q(n)

is g-primary and hence by induction KG(Q(n)/Q(n+i)) = KG(R/Q) = f}. Since there are
infinitely many such factors we must have /3 < a. By Lemma 4 and the Noetherian
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condition, there is a saturated chain of P-primary ideals fi = / 0 DP = / , D / 2 | . . . 5 / m = /
between R and /. It is enough to show that /„//„+! is a - G-critical. Let 7 be a G-ideal
with / n + 1 g / c / n . Note that the P-primary component of / is /„, so suppose that
J = In C\ Qx C~\. . . (~) Qs is an irredundant G-primary decomposition of J. There is a strictly
increasing map from !£{!„/J), the lattice of G-ideals between /„ and / , to ££{R/Q) x
...x<e(R/Qs) and so KC{IJJ) < max KG(R/Qt). Now if P,•, = VQh then P g P , since
some power of P is contained in /n +i£j2/- Since the result holds for each Ph

KC(R/Qd < oc and so KG(In/J) < a for n > 1.
It remains to show that JcG(/n//n+1)> a for n > 1. We do this by showing that

jcc(/n//n+1) > /3 for all fi< a. Without loss of generality suppose that /„+, = 0. Let / = /„.
Choose P g Q with R/Q a j8-G-critical module. Obviously Q is G-irreducible and hence
G-primary. If Q' = VQ=£Q, K G ( ^ / G ) < / 3 , a contradiction. Hence Q is G-prime. Now,
0 (/ n Q(t)) c n Q(t) = 0, since R is G-primary, and so for infinitely many t>0,
ID QM/In n Q(l+1)^0, otherwise some power of Q is zero. Therefore each nonzero
factor /„ n Q(l)/In n Q(t+X) has Krull dimension equal to /3 by induction. Thus KG(L) > /3
by induction.

COROLLARY 3. Let I be a G-ideal of R. Then I is G-prime if and only if R/l is
G-critical.

Proof. If / is G-prime then the lemma shows that R/I is G-critical. Conversely,
suppose that R/I is G-critical. Certainly / is G-irreducible and hence G-primary. If
P = V / ^ / then by the lemma KC(R/P) = KC(P/I), and this contradicts the fact that R/I
is G-critical. Thus / = P whence / is G-prime.

Proof of Theorem 2. First we prove that dG(R) ^ KC(R). Assume the result for
proper G-factors of R. Then R is G-prime, otherwise a contradiction is easily obtained.
Let KG(R) = a and let P be any nonzero G-prime of R. Then by induction, and part (i) of
the lemma, dG(R/P) < KG(R/P) < KG(R). Hence dG(R) < *rG(^)- Conversely, we prove
that KG(R)<dG(R). If KG(R) = a then there is a G-prime ideal / such that R/I is
a--G-critical and so / is G-prime. Thus, assume R is G-prime, and that the result holds for
proper G-factors of R. Let /3 < a and choose a G-prime P with KG(R/P) = /3. By
induction, dG{R/P) > jS and hence dG(R) > dG(R/P) > /? for any p < a. Thus dG(R) > a.
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