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1. Introduction

In [17], Lang made some conjectures concerning entire curves in complex projective
varieties X. He conjectured, for example, that the Zariski closure of the locus in X swept
out by entire curves is equal to the locus swept out by images of abelian varieties under
non-constant rational maps ¢: A --» X. When X is a very general quintic 3-fold in P*,
this has been shown to be incompatible with Clemens’s conjecture [6] by the following
arguments.

(i) X contains countably many families of rational curves, and they are Zariski dense
in X.

(ii) On the other hand, X is not swept out by images of non-constant generically finite
rational maps ¢: A --» X with A abelian, dim A > 2 (see [25]).

(iii) Finally, if X was swept out by elliptic curves, this would contradict Clemens’s
conjecture on the discreteness of rational curves in X. (See [8, Lecture 22] or [25].)

The goal of this paper is to discuss and illustrate by examples several possible notions
of approximate rational connectedness or approzimate elliptic connectedness concerning
complex projective manifolds. The general hope would be that approximately elliptically
connected varieties are exactly varieties with trivial Kobayashi pseudo-distance (see [15]).
The main idea is that, instead of looking at rational or elliptic curves (or abelian varieties)
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sitting in X, we should study rational or elliptic curves contained in arbitrarily small
neighbourhoods of X in projective space (for the Euclidean topology).

We assume that X is embedded in some projective space PV. We start with the
following naive definition.

Definition 1.1. X is said to be approximately rationally connected in PV in the
naive sense if, for any neighbourhood (for the Euclidean topology) U C PV of X, any
two points of X are contained in a rational curve C C U.

Remark 1.2. An equivalent definition is that any two points of X can be joined in
an arbitrarily small neighbourhood of X by a chain of rational curves, since such chains
can be made irreducible by a small deformation in U, because U has positive tangent
bundle.

The reason why this definition cannot be interesting, from the point of view of the
study of the Kobayashi pseudo-distance of X, is the following fact.

Lemma 1.3.

(i) Let Y be a connected projective variety. Then, X := Y x P! is approximately
rationally connected in the naive sense in any projective embedding X C PV .

(ii) More generally, any connected variety X such that the union of rational curves
contained in X is dense in X for the FEuclidean topology is approximately rationally
connected in the naive sense in any projective embedding.

(ili) Assume that X C PN has the property that, for any neighbourhood U of X, and
for any point x € X, there exists a rational curve C' C U passing through x. Then,
X is approximately rationally connected in the naive sense.

Proof. (i) Indeed, let U be a neighbourhood of X in PV. For any automorphism g
of PV sufficiently close to the identity, and any curve Cy=yxP'CY xP' =X, the
curve g(Cy) is then contained in U. It immediately follows that, for any « € X, the set
of points z in X such that there exists a rational curve C C U passing through = and z
contains an open neighbourhood of the curve Cp,, () \ {#} in X \ {z}. Applying this
argument to any z # x in this neighbourhood, we find that the set of points 2’ € X such
that there exists a chain of two rational curves C7,Cy C U passing through z and z’
contains an open neighbourhood of z in X. As X is connected and compact, this easily
implies that any two points of X can be connected by a chain of rational curves contained
inU.

(ii) Let U be a neighbourhood of X in PV¥. For some ¢ > 0, U contains U.(X) = {y € PV,
d(y,X) < €}. For any point « € X, there exists by assumption a rational curve C C X
such that d(z,C) < e. Applying an automorphism g of PV such that d(g,Id) < ¢, we
can thus find a curve ¢g(C) contained in U and passing through z. We then conclude
using (iii).
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(iii) For any point € X, there exists a rational curve C, C U passing through z.
Applying to C, automorphisms of PV close to the identity and fixing a point y € C,,
y # x, we conclude as in (i) that there exists a neighbourhood V,, of « in X such that any
point y € V,, is connected to x by a chain of two rational curves C, U g(C;) contained
in U. By the compactness and connectedness of X, we conclude that any two points of X
can be joined by a chain of rational curves contained in U. ]

Remark 1.4. The statement in Lemma 1.3 (i) shows that the Kobayashi pseudo-
distance dx g of a subvariety X C PY may be different from the limit over the open sets
U C P¥ of the restrictions du, i |x - Indeed, in the above notation, if one chooses Y to be
Kobayashi hyperbolic, then the Kobayashi pseudo-distance of X =Y x P! is non-zero,
while the restrictions dy x|x are all 0.

The main defect of Definition 1.1 is the fact that it is not stable under surjective
morphisms, that is, if ¢: X — Y is surjective and X is approximately rationally con-
nected in the naive sense, Y need not satisfy the same property. Indeed, this follows from
Lemma 1.3 (i) and Lemma 1.13. We could try to correct the definition by asking that
not only X but also all varieties Y, such that there exists a surjective morphism from X
to Y, are approximately rationally connected in the naive sense (say in any projective
embedding). However, the following example shows that this is not strong enough.

Example 1.5. Consider the case where X = (C x S)/t, where C is a curve of genus
greater than or equal to 2 with hyperelliptic involution 4, S is a K3-surface that is the
universal cover S — T of an Enriques surface, the involution ¢ acting on C' x E acts as
the hyperelliptic involution on C' and as the involution over 7" on S. This involution ¢
has no fixed points. By Lemma 1.3 (ii), X is approximately rationally connected in any
projective embedding, because rational curves are topologically dense in the fibres of
X — P!. Consider any surjective morphism X — Y, where Y is normal. We claim that
Y is approximately rationally connected in the naive sense in any projective embedding.
Indeed, if dimY = 1, one has that A'°(Y) = 0, so Y = PL. If dimY = 2, as Y is
dominated by C' x S, either it is dominated by the K3-surface S, or for each ¢ € C' the
morphism from ¢ x S to Y has for image a curve D, and then Y is rationally dominated
by a product C' x P!, since, for any dominating rational map from a K3-surface to a
smooth curve D, one has that D = P!. In both cases, it is approximately rationally
connected in the naive sense in any projective embedding, using Lemma 1.3. The case
where dimY = 3 is worked similarly.

There are several ways to correct the naive definition and we propose two of them.

Definition 1.6. X is strongly approximately rationally connected if, for any embed-
ding j of X in a product P of two projective spaces, j(X) is approximately rationally
connected inside P in the naive sense (see Definition 1.1).

We now give another variant of Definition 1.1, which might be easier to relate to the
vanishing of the Kobayashi pseudo-metric. For any smooth X C P, the projectivized
tangent bundle P(Tx) is naturally contained in the projectivized tangent bundle P(Tpn ).
Any curve C C PV has a tangent lift C' to P(Tp~). Let U be a neighbourhood of P(Tx)
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in P(Tpn). We say that a curve C C PV is U-close to X if C' C U. Hence, not only is
C close to X, but its tangent space at any point is close to Tx. The following definition
takes into account the cohomology classes of the curves considered. Here we use the fact
that if U is a tubular neighbourhood of X in P, U and X have the same homology.
Now let U be a neighbourhood of P(Tx) in P(Tp~). Note that if, for any U, U and for
any point x of X, there passes a curve C;, C U passing through x, which is U-close
to X, C can be chosen to vary locally continuously with x, hence to have a cohomology
class [C] € Hy(U,Z) = Hy(X,Z) locally independent of z. By considering chains, and
by smoothing them, we conclude, using arguments similar to the proof of Lemma 1.3,
that, if X is connected, we can assume that the class of the covering curves C, is in fact
independent of x.

Definition 1.7. A connected variety X C PV is cohomologically approximately ratio-
nally connected if for any U, U, as above, through any point x of X there passes a
rational curve C,, contained in U and U-close to X, of class [C] independent of x. Fur-
thermore, the convex cone generated by the (n — 1,n — 1)-components of the classes
[Ci] € H2(U,Z) = H2(X,Z) = H* %(X,Z) of such covering curves C;, contains a
strongly positive class.

We say here that a class of type (n—1,n—1) on an n-dimensional variety X is strongly
positive if it has a positive intersection with pseudo-effective (1,1)-classes (represented
by weakly positive currents of type (1,1)). When the class belongs to the space Ni(X)
generated by curve classes, this is equivalent to being in the interior of the convex cone
generated by classes of moving curves (see [1]).

Remark 1.8. Since the class of a curve C' C U is the class of the current of integration
over C, this is the class in U of a closed current of type (N —1,N —1), N = dimU.
Using a differentiable retraction 7: U — X, we also have the current of integration over
m(C), whose class is the cohomology class [C] above. This last class is not in general of
type (n — 1,n — 1) (see examples in §2). However, when U is small, it is close to being
of type (n —1,n—1), as C' is U-close to X.

The cohomological condition in Definition 1.7 addresses the weakness of Definition 1.1;
indeed, the rational curves g(C) used in the proof of Lemma 1.3 (i) are in the same class
as the fibres of pri, and this class is not strongly positive.

Remark 1.9. If H?(X,Q) = Q, Definitions 1.7 and 1.1 are quite close. Indeed, in this
case, the cohomological condition in Definition 1.7 is empty, and we, thus, just ask that,
for any neighbourhoods U of X, U of P(Tx ), and any general point x € X, there exists

a rational curve in U passing through = and U-close to X. The last condition is satisfied
by the examples of Lemma 1.3 (i) (but they do not satisfy H?(X,Q) = Q).

We believe that these notions should be related to the triviality of the Kobayashi
pseudo-distance (see [15]) of X, although it is quite hard to establish precise relations.
This is due to the notorious difficulty in localizing Ahlfors currents or Brody curves
(see [11,12,19] for important progress on this subject). The motivation for introduc-
ing these geometric definitions is the lack of progress on the understanding of complex
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varieties with vanishing Kobayashi pseudo-distance (in contrast with the recent progress
made on the Green—Griffiths conjecture, for example, for high-degree hypersurfaces in
projective space; see [10]).

However, the following easy lemma shows that approximate rational connectedness in
either of the above senses is too restrictive topologically.

Lemma 1.10. Abelian varieties are not approximately rationally connected (in the
naive sense). More precisely, if A C PV is an abelian variety, and U is a tubular neigh-
bourhood of A, U does not contain any rational curve.

Proof. A and U have the same homotopy type. Hence, as ma(A) = 0, we also have
that mo(U) = 0. Thus, a rational curve contained in U should be homologous to 0 in U,
hence in PV, which is absurd. O

This lemma (and the fact that abelian varieties have trivial Kobayashi pseudo-distance)
is the motivation for the following variant of Definitions 1.6, 1.7 and 1.1.

Definition 1.11.

(i) X c PV is said to be approximately elliptically connected in the naive sense if,
for any neighbourhood U of X in PV, any two points =,y € X can be joined by a
chain of elliptic curves in U.

(i) X C PV is said to be strongly approximately elliptically connected if Definition 1.6
holds with rational curves replaced by chains of elliptic curves.

(iii) X c P¥ is said to be cohomologically approximately elliptically connected if Defi-
nition 1.7 holds with rational curves replaced by elliptic curves.

Remark 1.12. If X is connected and approximately rationally (respectively, ellip-
tically) connected in the cohomological sense, then it is also approximately rationally
(respectively, elliptically) connected in the naive sense, as follows from Lemma 1.3 (iii)
(or its obvious extension to the elliptic case).

Properties (i), (ii) and (iii) are satisfied by (very general) Calabi-Yau varieties obtained
as the double cover of the projective space P ramified along a degree 2n + 2 hypersur-
face, as they are covered (in infinitely many different ways) by families of elliptic curves
(see [22]).

We give, however, in § 2 (see Theorem 2.5), examples of varieties containing only finitely
many rational curves, but which are approximately rationally connected in the cohomo-
logical sense. Similarly, abelian varieties are approximately cohomologically elliptically
connected (see Theorem 2.1), while the general ones do not contain any elliptic curve.
From this, one can deduce that the Fano varieties of lines of very general cubic 4-folds
satisfy this property, as they are covered in infinitely many different ways by a two-
dimensional family of surfaces birationally equivalent to abelian surfaces (see [24]).
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Our hope is that approximately elliptically connected varieties in one of the strength-
ened senses described above are the same as the ‘special varieties’ invented by Cam-
pana [4] (which are also conjectured to be the complex projective varieties with triv-
ial Kobayashi pseudo-distance). Note that Demailly in [9] gives a description of the
Kobayashi pseudo-metric of X involving algebraic curves in X, together with their intrin-
sic hyperbolic metric. This says that if X has a trivial Kobayashi pseudo-distance, there
exist many algebraic curves in X for which the intrinsic hyperbolic metric is small com-
pared with the metric obtained by restricting a given metric on X. In particular, this
compares the genus of these curves with their degree, but this does not say anything
about the genus alone.

To start with, we have the following easy lemma.

Lemma 1.13. If a projective variety X is Kobayashi hyperbolic, it is not approxi-
mately elliptically connected (in the naive sense) in any projective embedding.

Proof. Indeed, if there exists an elliptic curve E,, in any neighbourhood U, (X) of X
in PV, with lim,_cc€, = 0, we can choose for each n a holomorphic map f,: A —
E,, — P from the unit disc to FE,, such that |f/(0)| = n, where the modulus of the
derivative is computed with respect to the ambient metric. By Brody’s lemma [2], there
exists an entire curve in PV obtained as the limit of a subsequence of the f,, conveniently
reparametrized. This entire curve is contained in (1, U, (X)) = X and X is not Kobayashi
hyperbolic. (I

We also prove, in § 3, the following property.

Proposition 1.14 (see Proposition 3.3). If X is strongly approximately ratio-
nally (respectively, elliptically) connected and ¢: X — Y is a surjective morphism, then
Y is approximately rationally (respectively, elliptically) connected in the naive sense. In
particular, Y is not Kobayashi hyperbolic.

We do not know whether this result holds for cohomological approximate elliptic or
rational connectedness, but we know by Lemmas 1.3 and 1.13 that it does not hold for
naive approximate elliptic or rational connectedness.

Next, as the definitions are stable under étale covers (see Lemma 3.1), one crucial point
needed in order to make the class of approximately elliptically connected varieties close
to Campana’s special manifolds is the following.

Conjecture 1.15. A variety of general type is not approximately elliptically connected
in the naive sense.

As we do not even know that elliptic or rational curves are not topologically dense
in a variety of general type (a weak version of the Green—Griffiths—Lang conjecture),
an answer to this question seems to be out of reach at the moment. For example, we
know that general hypersurfaces in P™ of degree greater than or equal to 2n — 2 do not
contain any rational curve for n > 4 (see [21], giving an optimal bound that is slightly
better than [7]), and that the only rational curves contained in general hypersurfaces
in P™ of degree 2n — 3, for n > 6, are lines (see [18]), but general hypersurfaces in P"
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of degree n + 2 < d < 2n — 4 are not known to carry finitely many families of rational
curves, and not even known to not contain a dense set covered by rational curves.

In the other direction, we do not know if rational curves in Calabi—Yau hypersurfaces
are topologically dense, except in dimension 2, that is, for K3-surfaces, for a Baire second
category subset of the moduli space by [5]. One question implicitly raised in the present
paper is whether it is easier to study rational (or elliptic) curves contained in small
neighbourhoods of such hypersurfaces.

2. Some examples

We give two examples of classes of varieties that do not contain many rational (respec-
tively, elliptic) curves but are approximately rationally (respectively, elliptically) con-
nected in the cohomological sense.

Theorem 2.1. Abelian varieties are approximately elliptically connected (for any
projective embedding) in the cohomological sense.

Proof. Let A C PV and let U C P(Tpn) be a Euclidean neighbourhood of P(T)4). For
a small deformation A, of A in PV, P(Ty,) C P(Tpn) is a small deformation of P(T4),
hence is contained in U when the deformation is small enough. It follows that, for any
curve C' C A, its tangent lift C is contained in U.

We now use the well-known fact that abelian varieties that are isogenous to a product
Ey x -+ x E,, where each F; is an elliptic curve, are dense (for the Euclidean topology)
in the moduli space of n-dimensional polarized abelian varieties. On the other hand,
inside F4 X --- x E,, the elliptic curves obtained as the images of E; under the natural
morphisms ¢;: E; — E1 X «-- X Ep, x — (€e1,...,€i-1,%,€;41,...,€,) for given points
e; € E; can be chosen to pass through any point. Of course, the same is true for any
abelian variety isogenous to E™.

Now let A, C PN be a sufficiently small deformation of A isogenous to E; x - - x E,,.
The elliptic curves ¢;(F;) contained in A, then sweep out A., and their tangent lift is
contained in U. For any point 2 € A, we can find an automorphism of PV that is close
to the identity and such that z € g(A.). Thus, the curves g(¢(E)) can be chosen to pass
through any point of A and to have their tangent lift contained in U.

Finally, when there is no non-zero morphism between E; and E; for i # j, the classes
of the curves ¢;(F;) generate the space of the Hodge classes Hngn*Z(AE). In particular,
a convex combination of these classes contains the class h;:l, where ha, = ¢1(04,(1)).
Using the canonical isomorphism H?""2(A.,R) = H?*"~2(A,R), we conclude that a
convex combination of these classes, transported to A, contains the class hﬁ_l, where
ha = c1(0a(1)). Taking the (n — 1,n — 1)-component, we also conclude that a convex
combination of the (n —1,n — 1)-components of these classes, transported to A, contains
the class h;"(% which finishes the proof. O

Remark 2.2. The example of abelian varieties also illustrates why the notion of
approximate elliptic (or rational) connectedness might be easier to study than the prop-
erty of being swept out by entire curves, or of having arbitrarily small neighbourhoods

https://doi.org/10.1017/50013091513000813 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091513000813

288 C. Voisin

in PV swept out by entire curves. Indeed, there exist, of course, a lot of entire curves
in abelian varieties. However, the elliptic curves E exhibited above, contained in a small
deformation of a given abelian variety A in projective space, are much more reasonable,
since their induced metric is uniformly equivalent to their flat metric kg (normalized
so the volume is equal to the degree). This is because the flat metric of A is equiva-
lent to the induced metric on A, which easily implies that there exists a flat metric h 4,
on A, equivalent to the induced metric on A, with constants depending only on A. The
restriction h4_|g of this flat metric to E is a flat metric on E, which is then uniformly
equivalent to the induced metric h|g. In other words we have ch|g < ha,|g < Ch|g, for
some constants ¢, C' depending only on A. Integrating the corresponding Kéhler forms
over F/, we get that

cdegEé/wAeEngegE,

E
which tells us, since wy, |g is the flat metric, that the normalized metric kg, which is

equal to
deg F
—ha_|E,
Jpwa.le
satisfies o
c
—hlg <kg < —hl|g. 2.1
ohle <ke< —hlg (2.1)

The above arguments suggest the following interesting questions.

Question 2.3.

(i) Does any elliptic curve close enough in the usual topology to an abelian subvariety A
of PV satisfy (2.1) for some constants depending only on A?

(ii) Does the above question have an affirmative answer for elliptic curves U-close to A
for a small neighbourhood U of P(T4) in P(Tpn)?

An affirmative answer to these questions would have the following consequence.

Proposition 2.4. Assume that Question 2.3 (i) has an affirmative answer for a given
abelian variety A C PN. A subvariety X C A that is of general type is then not approx-
imately elliptically connected in the naive sense. If Question 2.3 (ii) has an affirmative
answer for A C PV, then a subvariety X C A that is of general type is not approximately
elliptically connected in the cohomological sense.

Proof. Indeed, one knows by [14] that X satisfies the Green—Griffiths conjecture, so
the union of the entire curves contained in X is not Zariski dense in X. On the other hand,
assume that, for any € X, there exists an elliptic curve E,, C PN passing through z such
that B, C V1/,(X) = {y € PV, zd(y,X) < 1/n}. Then consider the flat uniformization
fn: C— E, such that f,(0) =z, and f}kg, is the standard metric (so f, is defined up
to the action of U(1)). If Question 2.3 (i) has a positive answer, as E,, is close to A, then
the derivatives |f/| (computed with respect to the ambient metric on PY) are bounded
above and below in modulus, so we can extract a subsequence that converges uniformly
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on compact sets of C to a non-constant entire curve passing through = and contained
in X. As z is arbitrary, this contradicts Kawamata’s result. Similarly, if Question 2.3 (ii)
has an affirmative answer, elliptic curves U-close to A satisfy the above property for
U small. This is then also true for elliptic curves U-close to X. Hence, by the above
argument, one cannot have an elliptic curve U-close to X passing through any point
of X for U arbitrarily small. 0

The second example we consider is the example of elliptic surfaces with finitely many
rational curves. More precisely, we consider a very general hypersurface S C P! x P2 of
bidegree (21,3) with [ > 2.

Theorem 2.5.

(i) S contains finitely many rational curves, namely, the singular fibres of the elliptic
fibration f := pri|s: S — PL.

(ii) S is approximately rationally connected (relative to the Segre embedding) in the
cohomological sense.

Proof. (i) A smooth surface X C P! x P? of bidegree (2,3) is a K3-surface that
contains only countably many rational curves. If X' is chosen to be very general,

Pic ¥ = (Pic(P' x P?))|x;

hence, no algebraic curve in X has degree 1 over P'. Take such a X and consider a
very general morphism ¢: P! — P} of degree I. The surface S = X X]P%IP’l is then of
bidegree (21,3) in P! x P2, and, for each rational curve C' C X not contained in a fibre
of X — P}, the curve CxPé]P’l C S is irreducible of positive geometric genus. Hence, S
does not contain any rational curves beyond those contained in a fibre of pry: S — P

(ii) First of all, we apply the criterion for density of the Noether—Lefschetz locus due
to Green (see [23, Proposition 5.20]) to show that arbitrarily small deformations Se C
P! x P2 of a general surface S, as above, admit sections of f.: S. — P*.

We recall the statement of the criterion in the form that we use here: consider the
universal family 7: S — B, S C B x P! x P2, of such smooth surfaces. Let 0 € B and
let Sp be the fibre 771(0). We then have the following.

Proposition 2.6. Assume that there exists a A € H'(Sp, {2s,) such that the map
Via: Tpo — H?(Sy,0s,) is surjective. For any open set U C B (for the Euclidean
topology), the set of classes o € H?(Sp,Z) that become algebraic on some fibre S; for
somet € U then contains the set of integral points in a non-empty open cone of H?(Sy, R).

In this statement, the map V is the composition of the Kodaira-Spencer map T o —
H'(Sy,Ts,) and the cup-product/contraction map Aa: H(Sp, Ts,) — H?(So, Os, )

Using the Griffiths description of the infinitesimal variations of Hodge structure (IVHS)
of hypersurfaces (see [23, 6.2.1]), we find that this map identifies to the multiplication

ppy : Ra3(So) = Rei—2,6(S0)
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by a certain polynomial Py € H(Sy, Og, (4l — 2,3)), where R(Sp) is the Jacobian ring
of the defining equation of Sy. One checks explicitly that, for generic Sy and generic Py,
the map pp, is surjective.

Using Proposition 2.6, we conclude that, for generic Sy and for any small simply
connected neighbourhood U of 0 in B, there exists a non-empty open cone C'in H2(Sp, R)
such that any integral class o € H?(Sy,Z) N C becomes (by parallel transport) algebraic
on some fibre S;, for some t € U.

Now let F' € H?(Sp,Z) be the class of a fibre of fy. Its parallel transport to S;
is then the class F; of a fibre of f;, and the elliptic fibration f;: S; — P! admits a
section if and only if there exists an algebraic class o € H?(S;, Z) = H?(Sp, Z) such that
{(ar, F') = 1. Note, furthermore, that the class h := ¢1 (priOpz(1)), which is of degree 3 on
the class F, remains algebraic on any deformation S; of Sy in P! x P2, Hence, f; has a
section if and only if there exists an algebraic class o € H?(S;, Z) = H?(Sp, Z) such that
(o, F) =1 mod 3. To conclude that the set of surfaces S; having a section is dense, we
then use the following lemma (which is used implicitly in [20, Remark 1]).

Lemma 2.7. For any non-empty open cone C C H?(Sg,R), there exist elements in
CN{a € H*(Sy,Z), (o, F) =1 mod 3}.

The second and final step of the proof is the following lemma, due to Chen and
Lewis [5].

Lemma 2.8. Let f: S — P! be an elliptic fibration, and let L be a line bundle on
Si, of degree d # 0 on fibres. Assume that the fibres of f are irreducible and reduced
and that the monodromy group Im (P}, to) = Aut H'(Sy,,Z) is the full symplectic
group SL(2,Z). For any section o: P! — S of f such that the class d[o] — c¢1(L) is not
of torsion, the curves C, := 0,,(P') then have the property that |J, C,, is dense for the

Euclidean topology in S.

Here o, := p, o o, where u,: S --+ S is the self-rational map that associates the
point y of the fibre S, to z € S with f(z) = u € P! such that (dn + 1)z — nL|g, =y in
Pic S,,.

The proof of Theorem 2.5 is now concluded as follows. Let Sy be generic. Let U be a
neighbourhood of Sy in P? and let U be a neighbourhood of P(Ts,) in P(Tps). As Sy is
generic, the fibration fy: Sy — P! is a Lefschetz fibration with irreducible fibres and with
monodromy equal to the full symplectic group. These properties remain true for a small
deformation of Sg.

By Lemma 2.7, there exists a surface S, that is a small deformation of Sy in P! xP? C P°
such that f;: S; — P! has a section C. In particular, S; is contained in U, and P(Ts,)
is contained in U. Thus, any curve contained in Sy is U-close to So. By Lemma 2.8, the
union | J,,Cy, is dense in S;. Applying automorphisms of P° close to the identity, if needed,
we conclude that, for any point « € Sy, there exists an arbitrarily small deformation S,
of Sy in P containing a section C,, passing through z. These curves are contained in U
and are U-close to Sy.

To conclude, it only remains to check that a convex combination of the (1,1)-comp-
onents of the classes of (a variant of) the curves C,, (transported to Sp) contains an ample
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class on Sy. For this we observe that the sum 2[C,,] + [C_2,_1] € H?(S;,Z) = H?(Sy,Z)
is a combination of the class h and the class F'. The coefficient in h is obviously positive.
This class may not be ample, but we observe that the class F' is, in Sy, the class of a
rational curve (namely, a singular fibre). Instead of the curves C,, we can thus consider
the curves C!, obtained by smoothing, in P5, the union of C,, and a covering of large
degree of a singular fibre. The resulting curves can be chosen to stay U-close to Sp, and
the sum 2[C!] + [C"o,,_1] € H?(S;,Z) = H?(So,Z) is an ample class. O

These two examples might give one the feeling that the natural way to produce elliptic
or rational curves in an (arbitrarily) small neighbourhood of a subvariety X C PV is by
studying elliptic or rational curves lying in some small deformation X, of X in PV, This
is, however, not true at all, as the following example, obtained by mimicking the trick
of [26], shows. Start with an abelian variety A & C™/I" admitting an endomorphism ¢
such that the corresponding endomorphism ¢g of I'y = Hi(A, Q) has only eigenvalues of
multiplicity 1. It is then immediate to see that the pair (A4, ¢) is rigid. Furthermore, we
can construct this ¢ such that A does not contain any elliptic curve (one considers, for
example, simple abelian varieties with complex multiplication).

Starting from such a pair (A4, ¢), we consider the projective variety X obtained by
successively blowing up A x Ax P! along A x g X t1, 1 X A X t, diag A x t3, graph ¢ x ty4,
for generic choices of zg, z1 and distinct points t1,...,t4 € P!. Choose a projective
embedding of X in PY. As A does not contain elliptic or rational curves, the only rational
or elliptic curves contained in X are contained in the union D of the exceptional divisors of
the blow-ups or in proper transforms of the fibres of the map paxa07: X — AX A, where
7: X = A x A x P! is the blow-up map. Furthermore, the deformations of X preserve
the exceptional divisors, hence are all of the same type as X, and, as the pair (4, ¢) is
rigid, it follows that elliptic or rational curves contained in a small deformation X, of X
in PV are close (for the usual topology) to either a curve contained in D, or to a fibre
of the map paxao7: X — A x A. Hence, for a general point = of X, elliptic curves
passing through x and contained in a small deformation X, of X have for homology class
a multiple of the class of a fibre of pax4 o 7. As this class is not strongly positive, we
cannot use such curves to prove that X is approximately elliptically connected in the
cohomological sense.

We have, however, the following result.

Lemma 2.9. X is approximately elliptically connected (for any projective embedding
X C PV) in the cohomological sense.

Proof. Indeed, recall that 7: X — A x A x P! is the blow-up map. Choose a neigh-
bourhood U of P(Tx) in P(Tpn) and let # € X. Let 7(x) = (y,t) with y € A x A and
t € PL. We choose x such that t € {t1,...,t4}, so, in particular, 2 does not belong to the
exceptional divisor of 7, and there exists a copy A x A x t C X passing through z. By
Theorem 2.1, A x A xt is then approximately elliptically connected in PV in the infinites-
imal and cohomological sense. Thus, there exists an elliptic curve FE, passing through x,
whose tangent lift is contained in U. Furthermore, the class of these elliptic curves can
be chosen to be independent of x € X, and a convex combination of them generates an
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ample class on A x A xt C X. On the other hand, assume now that the line y x P! does
not meet the locus of A x A x P! blown up under 7. This line is then a rational curve C,
contained in X and passing through z. In PV, we can smooth the curve E.,C: and
it is easy to see that the smoothed curve can be chosen to pass through = and to stay
U-close to X. This proves the result since a convex combination of the classes [Cy] + [E,]
is strongly positive. (I

3. Stability results and further questions

We start with the following results concerning stability under étale covers. Here, P is
any smooth complex projective variety.

Proposition 3.1. Assume that X C P is connected and approximately rationally
or elliptically connected in the naive (respectively, cohomological) sense. Let U C P be
a neighbourhood of X that has the same homotopy type as X (e.g. a tubular neigh-
bourhood). Any étale connected proper cover X' — X is then approximately rationally
connected in the corresponding neighbourhood f: U’ — U of U, in the naive (respec-
tively, cohomological) sense.

Proof. We give the proof for the rational case, the elliptic case being similar, due
to the fact that étale covers of elliptic curves are again elliptic curves. We first consider
approximate connectedness in the naive sense. Any small neighbourhood V. (X') of X’
in U’ contains a neighbourhood of the form f~1(U. (X)) for some €. Now let 2/, y’ € X’
and let x, y be their images in X. There exists a smooth rational curve C' contained
in Us(X) (we assume here that dimU > 3, since the case where dim X = 1 is com-
pletely understood by Lemma 1.13) and containing x and y. The inverse image of C
in f~}(U.(X)) is a finite union of rational curves, and one of them, say C,/, passes
through z’. As C,» maps onto C, it contains one point y” of X’ over y. In conclusion, the
set of points y” € X' that are joined to 2’ by a rational curve in V.(X’) contains an open
subset W, € X’ that maps onto X. For any point z € W, the open set W, must be
equal to Wy, since a point in W, is joined to x’ by a chain of two rational curves passing
through z, and this chain can be smoothed. We may assume that the cover f: X’ — X
is Galois. Let g € Gal(X’/X). Then gW,» = Wy, and, by the above, we conclude that
X’ is the finite disjoint union of open sets of the form W,,. As X' is connected, it follows
that X' = W.

For approximate rational connectedness in the cohomological sense, we have to add
the following argument. Recall from Definition 1.7 that we need to have, for any tubular
neighbourhood V' of X', any neighbourhood V' of P(Tx/) in P(Ty+) and any point
x' € X', a finite number of rational curves C; . passing through z’, contained in V’,
V'-close to X', such that the class of the curve C; . does not depend on 2’ and the
(n —1,n — 1)-part of the class >_,n;[C; o] € Ho(V',Z) = Ho(X',Z) is strongly positive
for some n; > 0. Of course, we may assume that V’ and V' are inverse images under f
of similar neighbourhoods V, V for X C U. If we start from such data Ciz, forx e X
and for the neighbourhoods V, ‘7, we observe now that the class in Ho(X',Z) of the
unique lift C; ,» of C; , passing through ' does not depend on ', because it can be
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chosen to vary continuously with z’, and X’ is connected. In particular, we find that the
SUM 3 qaix/x) 9+ [Cier] is equal to card G[C; ] and it is the pullback under f of the
class [C; ] € Ha(X,Z). The fact that there exist such C; s with Y .n;[C; /]" 171 €
Hy(V',R) = Ho(X',R) strongly positive is, thus, equivalent to the fact that there exist
such C;, with > .n;[C; ;] € Ho(V,R) = Ha(X,R) strongly positive. O

The following consequence of Proposition 3.1 illustrates the power of the cohomological
condition in Definition 1.11.

Corollary 3.2. The varieties X in Example 1.5 are not approximately elliptically
connected in the cohomological sense in any projective embedding.

Proof. Recall that X is a quotient of a product S x C by a free involution ¢, where
g(C) > 2. If it was approximately elliptically connected in the cohomological sense in
some projective embedding, by Proposition 3.1, the product S x C would be approxi-
mately rationally connected in the cohomological sense in some embedding. In partic-
ular, there would exist elliptic curves F; contained in a tubular neighbourhood U of
S x C, with the property that some combination of the (2,2)-component of the classes
[Ei] € Ho(U,Z) = Ho(S x C,Z) = H*(S x C,Z) be strongly positive. But, for any con-
tinuous map ¢ from an elliptic curve E to a genus greater than or equal to 2 curve C,
the induced map ¢.: Ho(E;) — Ho(C) is trivial. Thus, the classes pro.[E;] vanish in
Hy(C,Z), and, for any line bundle L of positive degree on C, (prici(L),[E;]) = 0. Thus,
Sini(prici (L), [E;]*?) = 0 for any n;, which provides a contradiction. O

Concerning the stability under morphism, we have the following easy result.

Proposition 3.3. Let ¢: X — Y be a surjective morphism, where X and Y are
smooth projective and dimY > 0. If X is strongly approximately rationally (respectively,
elliptically) connected, Y is approximately rationally (respectively, elliptically) connected
in the naive sense in any projective embedding.

Proof. Let jy: Y < PN be a projective embedding. Choose a projective embed-
ding jx of X in some projective space P, and consider the embedding

ik = (x. gy 09): X = P=PM x PV,

By assumption, j% (X) is approximately rationally (respectively, elliptically) connected
in the naive sense in P. The morphism pry: P — PV sends rational curves (respectively,
a chain of elliptic curves) passing through any two given points of j% (X) and contained
in a sufficiently small neighbourhood of j% (X)) to rational curves (respectively, a chain of
elliptic curves) passing through any two given points of jy (Y') and contained in a given
neighbourhood of Y in PV, O

Corollary 3.4. A fibration X — Y over a Kobayashi hyperbolic variety Y is not
strongly approximately elliptically connected.
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Proof. Indeed, if it were strongly approximately elliptically connected, the variety Y
would be approximately elliptically connected, hence, in particular, not Kobayashi hyper-
bolic by Lemma 1.13. This gives a contradiction. O

As we mentioned in § 1, Proposition 3.3 is not true for naive approximate rational or
elliptic connectedness. This implies a negative answer to the following question.

Question 3.5. Let Z C PV be the Segre embedding of P* x P! for some integers k, I.
Fix a distance d on PV. Is it true that, for any € > 0, there exists n(e) > 0 such that
lim._,on(e) = 0, and that, for any rational (respectively, elliptic) curve C' contained in
U.(Z), there exists a rational (respectively, elliptic) curve C' C Z such that d(C,C") :=
SupcGC, ceC’ {d(cv Cl)a d(cla C)} < 77?

If we look at the proof of Lemma 1.3 (i), a counter-example is obtained by constructing,
in a small neighbourhood of the union of a large number of lines [; = z; xP!,i =1,..., M,
contained in Z, with d(l;,1;+1) < €, a chain Uili?€ of rational curves in PV obtained by
deforming the I; in such a way that [;  meets ;11 ¢, and then by smoothing the resulting
chain to a rational curve C. If the diameter of the set {z;, i = 1,..., M} is large, and the
points z; are taken in a Kobayashi hyperbolic subvariety Y C P*, the distance d(C,C")
between C and any elliptic or rational curve C’ in Z is bounded below by a positive
constant.

3.1. Further questions and remarks

The first obvious question is the following.

Question 3.6. Let X C PV be approximately elliptically connected (in the strong or
cohomological sense). Is the Kobayashi pseudo-distance of X trivial?

As our motivation was to understand the class of varieties with trivial Kobayashi
pseudo-distance, which includes conjecturally Calabi—Yau manifolds (see [15]), it is also
natural to ask the following.

Question 3.7. Let X be a Calabi-Yau manifold. Is X approximately rationally or
elliptically connected (in any of the senses introduced in this paper)?

Another important question is the following.

Question 3.8. Is the property of cohomological approximate rational or elliptic con-
nectedness independent of the choice of projective embedding?

The following question is related to the work of Graber et al. [13].

Question 3.9. Let ¢: X — Y be a surjective morphism. Assume that the fibres of ¢
are rationally connected (see [16]) and that Y is approximately rationally (respectively,
elliptically) connected in the strong or cohomological sense. Is X then approximately
rationally (respectively, elliptically) connected in the same sense?

We give one result in this direction. Let P =P" and let Q = P(H°(P, Op(d))), where
d < n and n > 2 are such that the general hypersurface of degree d in P is Fano of
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dimension greater than or equal to 1. There exists a universal subvariety Z C @ x P,
defined by the tautological equation Fy € H(Ogxp(1,d)). Via the second projection, Z
is a fibration in projective spaces over P.

Proposition 3.10. If Y C @ is rationally (respectively, elliptically) connected in the
cohomological sense, and X :=Y xoZ — Y is smooth of the expected dimension (hence,
the generic fibre of X — Y is a smooth hypersurface in P), X is approximately rationally
(respectively, elliptically) connected in the cohomological sense in Z, hence in ) X P.

Proof. Let V C Z be a tubular neighbourhood of X and let V C P(Tz) be a neigh-
bourhood of P(Tx). There exist neighbourhoods U C Q of Y and U C P(Tg) of P(Ty)
such that V contains 7~ *(U) and V is contained in 7, *(U), where 7 := pri|z: Z — Q.
AsY C @ is approximately rationally (respectively, elliptically) connected in the cohomo-
logical sense, there exists a curve F that is rational (respectively, elliptic), contained in U
and passing through any point y of Y. Furthermore, E can be chosen to be U-close to Y,
of class independent of y, and, finally, a convex combination of the (n — 1,n — 1)-part
of these classes contains a strongly positive class in Y, where n = dimY. Moving F
if needed, we may assume that Zg is smooth with irreducible fibres and Zp — F is
a smooth Fano complete intersection over the generic point of FE. By the Tsen-Lang
theorem, the family Zp — E has a section. Results of [16] even show that such a sec-
tion F can be chosen to have an arbitrarily positive class in Zg. These sections produce
elliptic curves E C V that are then V-close to X, and pass through the general point of
X. Finally, under our assumptions (and because we may assume that dim X > 3, since
otherwise the result is obvious), the Lefschetz hyperplane section theorem states that
H?*(X,7) = H*(Y,Z) & H*(P,Z). It is then immediate to conclude that if the curves E
have an ample class in Zg, and a convex combination of the (n — 1,n — 1)-components
of the pushforward of their classes in Ho(U,Z) = Ha(Y,Z) = H?*"~2(Y,Z) contains a
strongly positive class, then a convex combination of the (m — 1, m — 1)-components
of their classes in Ho(V,Z) = Ho(X,Z) = H*™ 2(X,Z) contains a strongly positive
class. g

Remark 3.11. The analogous result, if one only assumes that the fibres of X — Y are
approximately elliptically or even rationally connected in the strong sense, is not true.
Indeed, consider Example 1.5, where X = (C x S)/t, and Y = P!, where C is a curve of
genus greater than or equal to 2 with hyperelliptic involution i, .S is a K 3-surface that is
the universal cover S — T of an Enriques surface. The morphism ¢: X — Y is induced
by passing to the quotient from the projection ps: C' x S — C using the isomorphisms
X = (C x S)/t, C/i = P! and the equivariance of ps. The fibres of ¢ are isomorphic
to S or to T, hence are strongly approximately rationally connected. However, X is not
strongly approximately rationally or elliptically connected by Corollary 3.2.

To finish, we pose the following questions.

Question 3.12 (Campana). Assume that X is approximately rationally connected
(in the adequate sense). Is 71 (X) finite?

The following similar question is very much related to the results of [3].
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Question 3.13 (Campana). Assume that X is strongly approximately elliptically
connected (in the adequate sense). Is 7 (X) virtually abelian?

The two questions (for cohomological approximate connectedness) are related as fol-
lows.

Proposition 3.14. Suppose that Question 3.13 has a positive answer for cohomo-
logical approximate connectedness; Question 3.12 then also has a positive answer for
cohomological approximate connectedness.

Proof. Let X C PV be approximately rationally connected in the cohomological
sense. We know, assuming that Question 3.13 has a positive answer, that w1 (X) is virtu-
ally abelian. Passing to an étale cover of X, and using Lemma 3.1, we may assume that
X is approximately rationally connected in the cohomological sense in an adequate vari-
ety U, and, furthermore, has torsion-free abelian 7. We want to prove that 7 (X) is triv-
ial. Equivalently, if ax: X — Alb X is the Albanese map, letting Y := ax(X) C Alb X,
one wants to prove that Y is a point. Assume the contrary. Then, choosing an ample
line bundle on Alb X, its pullback a%L to X is a semi-positive line bundle that is
not numerically trivial. Consider now the rational curves C' in a tubular neighbour-
hood U of X in projective space. Their class [C] € H3(U,Z) = Hy(X,Z) then factors
through m3(X), hence vanishes in Hy(Alb X) under the map ax.. Hence, we conclude
that ([C], ¢*c1(a% L)) = 0.

This contradicts the fact that X is approximately rationally connected in the coho-
mological sense, because the latter implies, in particular, the existence of rational
curves C; in any small neighbourhood of X in U, with the property that the class
oG trmt € Hnm (X)) is strongly positive, so

o m{C) 0" er(a ) #0.

O
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